Week 6 Summary

Lecture 11

We have shown that if a and b are integers such that $a^2 + b^2$ is prime then $a + bi$ is an irreducible element of $\mathbb{Z}[i]$, and we have also shown that that if p is a prime that is not a sum of two squares then $\pm p$ and $\pm pi$ are irreducible in $\mathbb{Z}[i]$.

Proposition: Every irreducible element of $\mathbb{Z}[i]$ has one or other of these two forms.

Suppose that (x, y, z) is a basic Pythagorean triple. Any prime that is a divisor of both x and z is a divisor of $z^2 - x^2 = y^2$, and hence a divisor of y. But since our Pythagorean triple (x, y, z) is basic, there is no integer greater than 1 dividing all three of x, y and z. So gcd(x, z) = 1. Since x is odd and y even it follows that z is odd. So gcd($4x^2, z^2$) = 1. Now suppose that $\gamma \in \mathbb{Z}[i]$ is a gcd of $x + iy$ and $x - iy$. Then γ divides $(x + iy) + (x - iy) = 2x$. Taking complex conjugates, we deduce that also $\overline{\gamma} \mid 2x$. So $\gamma \overline{\gamma} \mid (2x)^2$. That is, $N(\gamma) \mid 4x^2$. Also, since $\gamma \mid (x + iy)$ and $\overline{\gamma} \mid (x - iy)$ it follows that $\gamma \overline{\gamma} \mid (x + iy)(x - iy) = x^2 + y^2 = z^2$. So $N(\gamma) \mid z^2$, and therefore $N(\gamma) \mid \gcd(4x^2, z^2) = 1$. Hence γ is a unit: we have shown that $x + iy$ and $x - iy$ are coprime Gaussian integers. But their product is a square (since $(x + iy)(x - iy) = z^2$), and it follows from the unique factorization theorem for $\mathbb{Z}[i]$ that if the product of two coprime Gaussian integers is a square then they are each squares, up to unit factors. So $x + iy = u_1 \zeta_1^2$ and $x - iy = u_2 \zeta_2^2$ for some units u_1, u_2 and some $\zeta_1, \zeta_2 \in \mathbb{Z}[i]$.

Writing $\zeta_1 = a + bi$, and noting that u_1 must be 1, -1, i or $-i$, we have $x + iy = \pm((a^2 - b^2) + 2abi)$ or $x + iy = \pm(-2ab + (a^2 - b^2)i)$. Since x is odd, we must have the former case rather than the latter. Interchanging a and b if necessary, we see that $x = a^2 - b^2$ and $y = 2ab$ for some integers a and b.

We turn next to an investigation of powers in \mathbb{Z}_n. When $n = 7$, for example, the successive powers of 3 are 3, 2, 6, 4, 5, and 1, repeating in a periodic sequence of period six. The powers of 2 form a sequence of period three, and the powers of 6 a sequence of period two. It turns out that if gcd(a, n) = 1 then there is always a positive integer k such that $a^k \equiv 1 \pmod{n}$. The least such k is called the order of a modulo n, denoted by ord$_n(a)$. The sequence of powers of a in \mathbb{Z}_n has period ord$_n(a)$. One can check easily that ord$_7(a)$ is a divisor of six in each case; this is a special case of a result known as the Fermat-Euler Theorem.

Lecture 12

We adopt the convention that if S is any finite set then $|S|$ denotes the number of elements of S.

The Euler phi function is the function $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$ defined as follows: $\varphi(n)$ is the number of positive integers a with $1 \leq a \leq n$ and gcd(a, n) = 1. That is, $\varphi(n) = |\{a \in \mathbb{Z} | 1 \leq a \leq n \text{ and } \gcd(a, n) = 1\}|$.

−1−
Recall that \(\gcd(a, n) = 1 \) if and only if \(a \) has an inverse in \(\mathbb{Z}_n \). In other words, \(\gcd(a, n) = 1 \) if and only if \(a \) is a unit in \(\mathbb{Z}_n \). Denote the set of units of \(\mathbb{Z}_n \) by \(\mathbb{Z}_n^* \). The definition of \(\varphi(n) \) can then be restated as \(\varphi(n) = |\mathbb{Z}_n^*| \).

For example, \(\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\} \), and so \(\varphi(15) = 8 \). Similarly one can check that \(\varphi(1) = 1, \varphi(2) = 1, \varphi(3) = 2, \varphi(4) = 2, \varphi(5) = 4, \varphi(6) = 2, \varphi(7) = 6, \varphi(8) = 4, \varphi(9) = 6 \). There is a formula for \(\varphi(n) \) in terms of the prime factorization of \(n \); we shall come to this later.

Fermat-Euler Theorem: Let \(a, n \in \mathbb{Z}^+ \) with \(\gcd(a, n) = 1 \). Then \(a^{\varphi(n)} \equiv 1 \pmod{n} \). Moreover, \(\text{ord}_n(a) \) is a divisor of \(\varphi(n) \).

(The proof can be found in Walters, or indeed any elementary text.)

A *primitive root* modulo \(n \) is an integer \(a \) coprime to \(n \) having the property that \(\text{ord}_n(a) = \varphi(n) \). For example, since \(\text{ord}_7(3) = 6 = \varphi(7) \), we see that 3 is a primitive root modulo 7. When \(a \) is a primitive root modulo \(n \), the powers of \(a \) in \(\mathbb{Z}_n^* \), which has only \(\varphi(n) \) elements altogether, it follows that all elements of \(\mathbb{Z}_n^* \) are powers of \(a \). For example, the powers of 2 in \(\mathbb{Z}_{25}^* \), from \(2^1 \) to \(2^{20} \), are as follows: 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13 and 1. We exhausted all 20 elements of \(\mathbb{Z}_{25}^* \) before reaching the point at which the sequence repeats. So 2 is a primitive root modulo 25.

Primitive roots modulo \(n \) do not exist for all values of \(n \). They exist when \(n \) is prime or the square of a prime, or twice a prime, but not otherwise. They are not easy to find: basically, one just uses trial and error to find them.

Consider the decimal representation of a rational number \(p/q \), where \(p \) and \(q \) are coprime positive integers with \(p < q \). As is well known, this has the form \(0.a_1a_2...a_na_{n+1}a_{n+2}...a_{n+r} \), where the overline notation indicates a repeating block. The values of \(n \) and \(r \) for a given decimal expansion of \(p/q \) are not unique: for example, 0.23154 can also be written as 0.231541541. To avoid this, we insist on choosing \(n \) and \(r \) to be as small as possible. We then call \(n \) and \(r \), respectively, the lengths of the non-periodic and periodic parts of the decimal expansion.

Proposition: If \(q = 2^a5^bm \), where \(\gcd(m, 10) = 1 \), then the non-periodic part of the decimal expansion of \(p/q \) has length \(\max(a, b) \), and the periodic part has length \(\text{ord}_m(10) \). (Note that it is assumed that \(\gcd(p, q) = 1 \) and \(0 < p < q \).)