1. Determine which of the following subsets \(A \) are compact subsets in the appropriate \(\mathbb{R}^n \).

 (i) \(A = [0, 2) \)

 (ii) \(A = \mathbb{Q} \cap [0, 1] \)

 (iii) \(A = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_2 = 0 \} \)

 (iv) \(A = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 4 \} \cup \{(1, 2)\} \).

Solution.

(i) Compact sets are closed (in any Hausdorff space). Since \([0, 2) \) is not closed it is not compact. (The open covering \([0, 2) \subseteq \bigcup_{n=1}^{\infty} (-1, 2 - \frac{1}{n}) \) has no finite subcovering.)

(ii) This set is not closed, and so it is not compact. (And, for example \(A \subseteq \bigcup_{n=1}^{\infty} \left((-1, \frac{(n-1)\sqrt{2}}{2n}) \cup \left(\frac{(n+1)\sqrt{2}}{2n}, 2 \right) \right) \) is an open covering for which there is no finite subcovering.)

(iii) To be compact a set must be bounded; this set is not.

(iv) This set is closed and bounded; so it is compact (by Heine-Borel).

2. Let \(A \) and \(B \) be compact subsets of a topological space \(X \). Show that \(A \cap B \) and \(A \cup B \) are also compact.

Solution.

The question is wrong as stated: to prove that \(A \cap B \) is compact an extra assumption is needed. However, \(A \cup B \) is necessarily compact. For suppose that \((V_i)_{i \in I} \) is a family of open sets with \(A \cup B \subseteq \bigcup_{i \in I} V_i \). Since \(A \subseteq A \cup B \) it follows that \(A \subseteq \bigcup_{i \in I} V_i \), and since \(A \) is compact there is a finite subset \(J \) of \(I \) with \(A \subseteq \bigcup_{j \in J} V_j \). Similarly there is a finite subset \(K \) of \(I \) with \(B \subseteq \bigcup_{k \in K} V_k \). So \(\bigcup_{j \in J} V_j \cup \bigcup_{k \in K} V_k = \bigcup_{j \in J \cup K} V_j \). Since \(J \) and \(K \) are finite, so is \(J \cup K \), and we have produced a finite subcovering from an arbitrary open covering of \(A \cup B \). So \(A \cup B \) is compact.

If the space \(X \) is assumed to be Hausdorff then the set \(A \) is closed, since compact implies closed in Hausdorff spaces (as we proved in lectures). It then follows from Question 4 below that \(A \cap B \) is compact. (Note that the result in Question 4 is valid for all topological spaces, not just Hausdorff ones.)

3. Let \((A_i)_{i \in I} \) be any family of compact subsets of a metric space \((X, d) \). Prove that \(B = \bigcap_{i \in I} A_i \) is compact, while \(\bigcup_i A_i \) is not necessarily compact.

Solution.

An infinite union obviously need not be bounded. For example, in \(\mathbb{R} \) let \(A_i = [-i, i] \), for each positive integer \(i \). Each \(A_i \) is compact, by Heine-Borel, but \(\bigcup_{i=1}^\infty A_i = \mathbb{R} \) is not bounded, so not compact.

For the other part it suffices to assume that \(X \) is a Hausdorff space. (This is weaker than assuming that \(X \) is a metric space: all metric spaces are Hausdorff, but there are Hausdorff spaces that are not metrizable.) Again, we can use Question 4: choose a fixed \(i_0 \in I \), put \(A = \bigcap_{k \neq i_0} A_i \) and put \(B = A_{i_0} \). Since \(X \) is Hausdorff the sets \(A_i \) are all closed, and so \(A \) is closed (being an intersection of closed sets). Since \(B \) is compact it follows that \(A \cap B \) is compact. But \(A \cap B = \bigcap_{i \in I} A_i \).

4. Let \(A \) and \(B \) be subsets of a topological space \(X \) such that \(A \) is closed and \(B \) is compact. Show that \(A \cap B \) is compact.

Solution.

Let \((V_i)_{i \in I} \) be a family of open sets such that \(A \cap B \subseteq \bigcup_{i \in I} V_i \). Let \(J \) be a set obtained by adding one more element to \(I \): say \(J = I \cup \{ j \} \). Define \(V_j = X \setminus A \), and observe that \(V_j \) is open since \(A \) is closed. Now for all \(b \in B \), we have either that \(b \in V_j \) (if \(b \notin A \)), or else \(b \in A \cap B \subseteq \bigcup_{i \in I} V_i \), giving \(b \in V_i \) for some \(i \in I \). In either case \(b \in V_i \) for some \(i \in J \). So the family of sets \((V_i)_{i \in J} \) form an open covering of \(B \), and since \(B \) is compact there exists a finite subset \(L \) of \(J \) with \(B \subseteq \bigcup_{i \in L} V_i \). Now the set \(L \setminus \{ j \} \) is a finite subset of \(J \setminus \{ j \} \). So we can show that \(A \cap B \subseteq \bigcup_{i \in L \setminus \{ j \}} V_i \). For suppose that \(b \in A \cap B \). Then \(b \in B \subseteq \bigcup_{i \in L} V_i \), and so \(b \in V_i \) for some \(i \in L \). But \(b \in A \), and so \(b \notin X \setminus A = V_j \). So \(b \in V_i \) for some \(i \in L \setminus \{ j \} \), as required. Thus the arbitrarily chosen open covering \((V_i)_{i \in I} \) of the set \(A \cap B \) has a finite subcovering, namely \((V_i)_{i \in L \setminus \{ j \}} \). Hence \(A \cap B \) is compact.

5. Let \(X \) be a non-empty set with \(d \) the standard discrete metric, and \(A \) any subset of \(X \). Show that \(A \) is compact if and only if \(A \) is finite.

Solution.

Recall that this metric satisfies \(d(x, y) = 1 \) whenever \(x \neq y \). It follows that for every \(x \in X \) the open ball \(B(x, \frac{1}{2}) \) is just the singleton set \(\{ x \} \). Now every subset \(A \) of \(X \) can be expressed as a union of open balls; specifically, \(A = \bigcup_{a \in A} \{ x \} \). So all subsets of \(X \) are open. This condition implies that the compact sets are precisely the finite sets.

Firstly, suppose that \(A \) is a finite set, and suppose that \(A \subseteq \bigcup_{i \in I} V_i \), where the \(V_i \) are any subsets of \(X \). For each \(a \in A \) we have \(a \in \bigcup_{i \in I} V_i \), and so we may choose an element \(i_a \in I \) such that \(a \in V_{i_a} \). Then \(A \subseteq \bigcup_{a \in A} V_{i_a} \), and since \(A \) is a finite set there are only finitely many terms in this union. So
we have shown that every covering of A has a finite subcovering, and so A is compact.

Conversely, suppose that A is a compact subset of X. Then the singleton sets $(\{x\})_{x \in X}$ form an open covering of A, since $A \subseteq X = \bigcup_{x \in X} \{x\}$, and since the singleton sets are open. By the compactness of A there is a finite subcovering; that is, there is a finite subset B of X such that $A \subseteq \bigcup_{x \in B} \{x\}$ = B. Since A is a subset of the finite set B, it too is finite.

6. Let X be a compact metric space (or topological space), and A any infinite subset of X. Show that A has an accumulation point in X. (That is, show that $A' \neq \emptyset$).

Solution.
Let A be a subset of X with no accumulation points in X. We shall show that A is finite.

Let $x \in X$ be arbitrary. Since x is not an accumulation point of A there is an open neighbourhood U_x of x such that $U_x \cap A \setminus \{x\} = \emptyset$. Equivalently, $U_x \cap A \subseteq \{x\}$. Since $x \in U_x$ it follows that $X \subseteq \bigcup_{x \in X} U_x$. That is, the family $C = (U_x)_{x \in X}$ is an open covering of X. Since X is compact, C has a finite subcovering: there exists a finite subset $\{x_1, x_2, \ldots, x_m\}$ of X with $X \subseteq \bigcup_{i=1}^m U_{x_i}$. (Indeed, this union equals X since X is the whole space.) It follows that $A = X \cap A = \bigcup_{i=1}^m U_{x_i} \cap A \subseteq \bigcup_{i=1}^m \{x_i\}$. So A has at most m points, and is therefore finite.

Consequently, any infinite subset A of X must have an accumulation point in X.

7. Let X be a topological space and A a subspace of X. Prove that a set $B \subseteq A$ is compact in X if and only if B is compact in A (with respect to the subspace topology on A).

Solution.
Suppose that A is compact in X. Let C be a covering of B by the subsets of A which are open in the subspace topology on A. Then $C = (V_i \cap A)_{i \in I}$, where each V_i is an open subset of X (and I is an indexing set). Thus $B \subseteq \bigcup_{i \in I} (V_i \cap A) \subseteq \bigcup_{i \in I} V_i$, so that $D = (V_i)_{i \in I}$ is a covering of B by the open sets in X. Since A is compact in X there is a finite subfamily J of I such that $B \subseteq \bigcup_{i \in J} V_i$, and since $B \subseteq A$ it follows that $B = B \cap A \subseteq \bigcup_{i \in J} (V_i \cap A)$, showing that $(V_i \cap A)_{i \in J}$ is a finite subcovering of C. Since C was arbitrary, this shows that B is compact as a subset of A.

Conversely, suppose that B is compact in the subspace topology, and let $(V_i)_{i \in I}$ be a covering of B by open sets of X. Since $B \subseteq A$ we see that $(V_i \cap A)_{i \in I}$ is a covering of B by subsets of A, and furthermore these subsets are open in the subspace topology. So there is a finite subfamily J of I such that $(V_i \cap A)_{i \in J}$ is a covering of B, and it follows that $(V_i)_{i \in J}$ is a finite subcovering of the original open covering of B. Thus B is compact in X.

8. Let X be a metric space (or topological space). Prove that X is compact if and only if for every family $(F_i)_{i \in I}$ of closed subsets of X, if $\bigcap_{i \in I} F_i = \emptyset$ then there is a finite subset $\{i_1, i_2, \ldots, i_m\}$ of I such that $F_{i_1} \cap F_{i_2} \cap \cdots \cap F_{i_m} = \emptyset$.

Solution.
Suppose that X is compact and $(F_i)_{i \in I}$ is a family of closed subsets of X with $\bigcap_{i \in I} F_i = \emptyset$. By De Morgan’s Law, $X = X \setminus \emptyset = X \setminus \bigcap_{i \in I} F_i = \bigcup_{i \in I} (X \setminus F_i)$, showing that $(X \setminus F_i)_{i \in I}$ is an open covering of X, so each F_i is closed. Since X is compact, there is a finite subfamily J of I such that $(X \setminus F_i)_{i \in J}$ is a covering of X. That is, $X = \bigcup_{i \in J} (X \setminus F_i)$. Thus, by De Morgan’s Law,

$$0 = X \setminus X = X \setminus \left(\bigcup_{i \in J} (X \setminus F_i) \right) = \bigcap_{i \in J} (X \setminus (X \setminus F_i)) = \bigcap_{i \in J} F_i,$$

showing, as desired, that there is a finite subset of I such that the intersection of the corresponding sets F_i is empty.

Conversely, suppose the condition holds. Let $(V_i)_{i \in I}$ be an open covering of X; that is, $X = \bigcup_{i \in I} V_i$. By De Morgan, $\emptyset = X \setminus \bigcup_{i \in I} V_i = \bigcap_{i \in I} (X \setminus V_i)$. Let $F_i = X \setminus V_i$. Since each V_i is open, each F_i is closed. So $(F_i)_{i \in I}$ is a family of closed sets with empty intersection. By the hypothesis there is a finite subfamily J of I such that the subfamily $(F_i)_{i \in J}$ also has empty intersection. By De Morgan,

$$X = X \setminus \emptyset = X \setminus \left(\bigcap_{i \in J} F_i \right) = X \setminus \left(\bigcap_{i \in J} (X \setminus V_i) \right) = \bigcup_{i \in J} \left(X \setminus (X \setminus V_i) \right) = \bigcup_{i \in J} V_i.$$

Hence an arbitrary open covering of X has a finite subcovering, and therefore X is compact.

9. Let X be a metric space (or topological space). Prove that X is compact if and only if for every family $(F_i)_{i \in I}$ of closed subsets of X with the property that every finite subfamily $(F_{i_1}, F_{i_2}, \ldots, F_{i_m})$ has a non-empty intersection has itself, a non-empty intersection.

Solution.
This is just the contrapositive of the result proved in the previous question.