The definition of continuity (as stated in Lecture 1 for functions from \mathbb{R}^2 to \mathbb{R}^2) makes sense for functions from any metric space (X, d) to any other metric space (Y, d').

A function $f: X \to Y$ is continuous at the point $a \in X$ if for every real number $\varepsilon > 0$ there exists a real number $\delta > 0$ such that the following condition holds:

for all $x \in X$, if $d(x, a) < \delta$ then $d'(f(x), f(a)) < \varepsilon$.

Using the concept of “open ball”, this can be rephrased as follows:

A function $f: X \to Y$ is continuous at $a \in X$ if and only if for every open ball B with centre at $f(a)$ there is an open ball C with centre a such that $f(C) \subseteq B$.

Note that the condition $f(C) \subseteq B$ is equivalent to $C \subseteq f^{-1}(B)$. (This is easy to prove: it follows immediately from the definitions of “image” and “preimage”.)

The following proposition generalizes the above statement slightly.

Proposition. Let (X, d), (Y, d') be metric spaces and $f: X \to Y$ a function, and let $a \in X$. Then f is continuous at a if and only if for every open subset U of Y with $a \in f^{-1}(U)$ there is an open ball C with centre a such that $C \subseteq f^{-1}(U)$.

Proof. Suppose first that f satisfies the stated condition; we shall show that f is continuous at a.

Let $\varepsilon > 0$. Then $U = B(f(a), \varepsilon)$ is an open subset of Y, and $a \in f^{-1}(U)$ (since $f(a) \in U$). So by the given condition there exists an open ball C centred at a such that $C \subseteq f^{-1}(U)$. Let δ be the radius of C (so that $C = B(a, \delta)$). Now if x is an arbitrary element of X satisfying $d(x, a) < \delta$, then

$$x \in C \subseteq f^{-1}(U),$$

whence $f(x) \in U = B(f(a), \varepsilon)$, which means that $d'(f(x), f(a)) < \varepsilon$.

Thus we have have shown that for every $\varepsilon > 0$ there exists $\delta > 0$ such that, for all $x \in X$, if $d(x, a) < \delta$ then $d(f(x), f(a)) < \varepsilon$. That is, we have shown that f is continuous at a.

Conversely, suppose that f is continuous at a, and let U be an open subset of Y such that $a \in f^{-1}(U)$. Since U is open and $f(a) \in U$ there is an $\varepsilon > 0$ such that $B(f(a), \varepsilon) \subseteq U$. Since f is continuous at a there exists $\delta > 0$ such that, for all $x \in X$, if $d(x, a) < \delta$ then $d'(f(x), f(a)) < \varepsilon$. Now put $C = B(a, \delta)$, an open ball centred at a. For all $x \in C$ we have $d(x, a) < \delta$, which gives $d'(f(x), f(a)) < \varepsilon$, and hence $f(x) \in B(f(a), \varepsilon) \subseteq U$. So $x \in f^{-1}(U)$ whenever $x \in C$; in other words, $C \subseteq f^{-1}(U)$. Thus we have shown that for every open set U containing $f(a)$ there is an open ball centred at a and contained in $f^{-1}(U)$, as required.

In view of the definition of the interior of a set, we can restate the above result as follows.

Corollary. The function $f: X \to Y$ is continuous at a if and only if, for all open subsets U of Y, if $a \in f^{-1}(U)$ then $a \in \text{Int}(f^{-1}(U))$.

This enables us to now give a concise characterization of continuous functions.

Corollary. If (X, d) and (Y, d') are metric spaces then a function $f: X \to Y$ is continuous if and only if $f^{-1}(U)$ is an open subset of X whenever U is an open subset of Y.

Proof. To say that f is continuous is to say that it is continuous at all points $a \in X$. By the previous corollary, this holds if and only if for all open $U \subseteq Y$ and all $a \in X$, if
\(a \in f^{-1}(U) \) then \(a \in \text{Int}(f^{-1}(U)) \). That is, for every open \(U \subseteq Y \), all points of \(f^{-1}(U) \) are interior points. But to say that all points of \(f^{-1}(U) \) are interior points is to say that \(f^{-1}(U) \) is open. \(\square \)

Some inequalities

Suppose that \(0 \leq \theta \leq 1 \). If \((x_0, y_0)\) and \((x_1, y_1)\) are points in \(\mathbb{R}^2 \) then the point \((x, y)\) defined by

\[
\begin{align*}
x &= \theta x_0 + (1 - \theta)x_1 \\
y &= \theta y_0 + (1 - \theta)y_1
\end{align*}
\]

lies on the line segment joining \((x_0, y_0)\) and \((x_1, y_1)\). Now the graph of \(y = \ln x \) is concave downwards; so if \((x_0, y_0)\) and \((x_1, y_1)\) are on this graph then \((x, y)\) will be below it; that is, \(y \leq \ln x \). In other words, if \(a, b > 0 \) and we define

\[
\begin{align*}
x_0 &= a \\
y_0 &= \ln a \\
x_1 &= b \\
y_1 &= \ln b
\end{align*}
\]

so that

\[
\begin{align*}
x &= \theta a + (1 - \theta)b \\
y &= \theta (\ln a) + (1 - \theta)(\ln b)
\end{align*}
\]

then it follows that

\[
\theta (\ln a) + (1 - \theta)(\ln b) \leq \ln(\theta a + (1 - \theta)b).
\]

Taking exponentials of both sides, using the fact that \(e^x \) is monotone increasing, it follows that \(e^{\theta \ln a + (1 - \theta)\ln b} \leq \theta a + (1 - \theta)b \).

But \(e^{\theta \ln a + (1 - \theta)\ln b} = e^{\theta \ln a} e^{(1 - \theta)\ln b} = a^\theta b^{1 - \theta} \); so we have shown that

\[
\theta a^\theta b^{1 - \theta} \leq \theta a + (1 - \theta)b.
\]

for all \(a, b > 0 \). The same in fact holds for \(a, b \geq 0 \), since if either \(a \) or \(b \) is zero then the left hand side is zero, while the right hand side remains nonnegative.

Hölder’s Inequality. Let \(p > 1 \) and put \(q = p/(p - 1) \) (so that \(q > 1 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \)). Let \(a_k, b_k \) be arbitrary complex numbers, where \(k \) runs from \(1 \) to \(n \). Then

\[
\sum_{k=1}^{n} |a_k b_k| \leq \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q \right)^{1/q}.
\]

Proof. Let \(c_k = |a_k|^p \) and \(d_k = |b_k|^q \), and put \(C = \sum_{k=1}^{n} c_k \) and \(D = \sum_{k=1}^{n} d_k \). Put \(\theta = 1/p \), so that \(1 - \theta = 1/q \), and apply \((*)\) with \(c_k/C \) in place of \(a \) and \(d_k/D \) in place of \(b \). We obtain

\[
(c_k/C)^{1/p}(d_k/D)^{1/q} \leq (1/p)(c_k/C) + (1/q)(d_k/D).
\]
Summing from \(k = 1 \) to \(n \) gives
\[
\sum_{k=1}^{n} \frac{c_k^{1/p} d_k^{1/q}}{C^{1/p} D^{1/q}} \leq \frac{1}{pC} \sum_{k=1}^{n} c_k + \frac{1}{qD} \sum_{k=1}^{n} d_k
\]
\[
= \frac{1}{p} + \frac{1}{q} = 1.
\]
Hence \(\sum_{k=1}^{n} c_k^{1/p} d_k^{1/q} \leq C^{1/p} D^{1/q} \); that is,
\[
\sum_{k=1}^{n} |a_k b_k| \leq \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q \right)^{1/q}
\]
as required. \(\square \)

The special case of Hölder’s Inequality in which \(p = q = 2 \) is known as Cauchy’s Inequality.

Minkowski’s Inequality. Let \(p \geq 1 \), and let \(a_k, b_k \in C \) be arbitrary. Then
\[
\left(\sum_{k=1}^{n} |a_k + b_k|^p \right)^{1/p} \leq \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{1/p}.
\]

Proof. Since \(|a + b| \leq |a| + |b| \) for all complex numbers \(a \) and \(b \), it is clear that the result holds for \(p = 1 \). So we assume that \(p > 1 \). Put \(q = p/(p-1) \).

For all \(k \) from \(1 \) to \(n \) we have
\[
(a_k + b_k)^p = a_k(a_k + b_k)\,^{p-1} + b_k(a_k + b_k)^{p-1}
\]
and so using standard properties of the modulus function for complex numbers (namely \(|ab| = |a||b| \) and \(|a + b| \leq |a| + |b| \) for all \(a, b \in \mathbb{C} \), and \(|a^t| = |a|^t \) for all \(a \in \mathbb{C} \) and \(t \in \mathbb{R} \)) we deduce that
\[
|a_k + b_k|^p \leq |a_k|(|a_k + b_k|)^{p-1} + |b_k|(|a_k + b_k|)^{p-1}
\]
for all \(k \). Summing from \(k = 1 \) to \(n \), and then applying Hölder’s Inequality to each of the sums on the right hand side gives
\[
\sum_{k=1}^{n} |a_k + b_k|^p \leq \sum_{k=1}^{n} |a_k|(|a_k + b_k|)^{p-1} + \sum_{k=1}^{n} |b_k|(|a_k + b_k|)^{p-1}
\]
\[
\leq \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} (|a_k + b_k|)^{(p-1)q} \right)^{1/q} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} (|a_k + b_k|)^{(p-1)q} \right)^{1/q}
\]
\[
= \left(\left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{1/p} \right) \left(\sum_{k=1}^{n} (|a_k + b_k|)^{p-1} \right)^{1/q},
\]
where in the last line we have used \((p-1)q = p \). Dividing through by the second factor on the right hand side gives
\[
\left(\sum_{k=1}^{n} |a_k + b_k|^p \right)^{1-(1/q)} \leq \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{1/p},
\]
which is the required result, since \(1 - \frac{1}{q} = \frac{1}{p} \). \(\square \)