We noted last time that a space that is homeomorphic to a connected space is also connected. In fact, it is very easy to establish a stronger result: continuous images of connected sets are connected.

Theorem. Let \(f : X \rightarrow Y \) be continuous, and suppose that \(A \) is a connected subset of \(X \). Then \(f(A) \) is a connected subset of \(Y \).

Proof. If \(f(A) \) is disconnected then there exist open subsets \(V_1, V_2 \) of \(Y \) such that

\[
\begin{align*}
\text{f(A)} & \subseteq V_1 \cup V_2, \\
f(A) \cap V_1 & \neq \emptyset \quad \text{and} \quad f(A) \cap V_2 \neq \emptyset, \\
f(A) \cap V_1 \cap V_2 & = \emptyset.
\end{align*}
\]

Since \(f \) is continuous, \(f^{-1}(V_1) \) and \(f^{-1}(V_2) \) are open subsets of \(X \). By (1) above, for each \(a \in A \) we have either \(f(a) \in V_1 \) or \(f(a) \in V_2 \); that is, either \(a \in f^{-1}(V_1) \) or \(a \in f^{-1}(V_2) \). So \(A \subseteq f^{-1}(V_1) \cup f^{-1}(V_2) \). By (2) there is an \(a \in A \) such that \(f(a) \in V_1 \), giving \(a \in f^{-1}(V_1) \), and similarly there is an \(a' \in A \) with \(a' \in f^{-1}(V_2) \). So \(A \cap f^{-1}(V_1) \neq \emptyset \) and \(A \cap f^{-1}(V_2) \neq \emptyset \). Finally, \(A \cap f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \), since if there were some element \(a \) in this set it would follow that \(f(a) \in f(A) \cap V_1 \cap V_2 \), contradicting (3). We have shown that

\[
\begin{align*}
A & \subseteq f^{-1}(V_1) \cup f^{-1}(V_2), \\
A \cap f^{-1}(V_1) & \neq \emptyset \quad \text{and} \quad A \cap f^{-1}(V_2) \neq \emptyset, \\
A \cap f^{-1}(V_1) \cap f^{-1}(V_2) & = \emptyset,
\end{align*}
\]

contradicting the fact that \(A \) is connected. So the assumption that \(f(A) \) is disconnected has led to a contradiction; so \(f(A) \) is connected. \(\square \)

There is any even shorter proof using the fact that a set is disconnected if and only if there is a continuous surjective function from the set to the discrete space \(\{0, 1\} \). If \(f(A) \) is disconnected then there is a surjective continuous function \(g : f(A) \rightarrow \{0, 1\} \), and then the function from \(A \) to \(\{0, 1\} \) given by \(a \mapsto g(f(a)) \) is continuous (since composites of continuous functions are continuous) and surjective (since \(g \) is surjective). So \(A \) is disconnected.

As we shall see, it is not clear that the definition of connectedness that we have given really captures the everyday concept of connectedness, which is perhaps more to do with path-connectedness, a concept that we shall define in due course, and that is stronger than connectedness. However, if intuition suggests that a set is connected, then it ought to be true that the set is indeed connected in the technical sense. In particular, intervals in \(\mathbb{R} \) are connected sets.

There are nine different kinds of intervals: \((a, b)\), \([a, b]\), \([a, b)\), for any \(a, b \in \mathbb{R} \) with \(a < b \), \([a, b]\), for any \(a, b \in \mathbb{R} \) with \(a \leq b \), \((−\infty, a)\), \((a, \infty)\), \([a, \infty)\), \((−\infty, \infty)\) (the whole real line). \(\dagger \) Intervals can be characterized as follows: a subset \(I \) of \(\mathbb{R} \) is an interval if and only if \(I \) is nonempty, and for all \(a, b \in I \) and \(x \in \mathbb{R} \), if \(a \leq x \leq b \)

\(\dagger \) We have deviated from the convention adopted in Choo’s notes by permitting one-element subsets of \(\mathbb{R} \) to be counted as closed intervals.

then $x \in I$. That is to say, if $I \neq \emptyset$ then I is an interval if and only if every point of \mathbb{R} that lies between two points of I is also in I.

Lemma. Let $a, b \in \mathbb{R}$ with $a < b$, and S a subset of \mathbb{R} such that $a \in S$ and $b \notin S$, and let $p = \sup(S \cap [a, b])$.

(i) If S is closed in \mathbb{R} then $p \in S$.

(ii) If S is open in \mathbb{R} then $p \notin S$.

Proof. Note that $S \cap [a, b]$ is nonempty (since $a \in S \cap [a, b]$) and bounded above (by b).

So, by an axiom of the real number system, $S \cap [a, b]$ has a least upper bound. So the definition of p in the statement of the lemma is meaningful. Observe that $a \leq p$ (since $a \in S \cap [a, b]$ and p is an upper bound for $S \cap [a, b]$) and $p \leq b$ (since b is an upper bound for $S \cap [a, b]$ and p is the least upper bound for $S \cap [a, b]$).

Suppose that S is closed, and suppose that $p \notin S$. Then $p \in \mathbb{R} \setminus S$, which is an open set since S is closed, and so there exists an $\varepsilon > 0$ such that $B(p, \varepsilon) \subseteq \mathbb{R} \setminus S$. Of course, since we are discussing \mathbb{R} with its usual metric, $B(p, \varepsilon) = (p - \varepsilon, p + \varepsilon)$. Now let $x \in S \cap [a, b]$ be arbitrary. Since p is an upper bound for $S \cap [a, b]$ we have $x \leq p$, and so either $x \leq p - \varepsilon$ or $p - \varepsilon < x \leq p$. The latter alternative gives $x \in (p - \varepsilon, p] \subseteq (p - \varepsilon, p + \varepsilon) \subseteq \mathbb{R} \setminus S$, contradicting $x \in S$, and so we must have $x \leq p - \varepsilon$. Since this holds for all $x \in S \cap [a, b]$, it follows that $p - \varepsilon$ is an upper bound for $S \cap [a, b]$. But $p - \varepsilon < p$, and so this contradicts the fact that p is the least upper bound for S.

For the second part, suppose that S is open and $p \in S$. Since $b \notin S$ and $p \leq b$ it follows that $p < b$. Thus $p \in (\infty, b) \cap S$, an open set since both (∞, b) and S are open, and so there exists an $\varepsilon > 0$ such that $(p - \varepsilon, p) \subseteq (\infty, b) \cap S$. In particular, $p + (\varepsilon/2) \in S$ and $p + (\varepsilon/2) < b$, and since $a \leq p < p + (\varepsilon/2)$ it follows that $p + (\varepsilon/2) \in S \cap [a, b]$. But since $p + (\varepsilon/2) > p$, this contradicts the fact that p is an upper bound for $S \cap [a, b]$.

Example. Let $I \subseteq \mathbb{R}$ be an interval. Then I is connected.

Proof. Suppose that I is not connected. Then there exist open subsets U_1, U_2 of \mathbb{R} with $I \cap U_1$ and $I \cap U_2$ nonempty, $I \cap U_1 \cap U_2 = \emptyset$, and $I \subseteq U_1 \cup U_2$. We can choose $a \in I \cap U_1$ and $b \in I \cap U_2$ (since these sets are nonempty), and then $a \neq b$ (since $I \cap U_1 \cap U_2 = \emptyset$). Swapping the names of U_1 and U_2 if necessary, we may assume that $a < b$.

Since $a, b \in I$, and I is an interval, it follows from our characterization of intervals that $[a, b] \subseteq I$. Now put $A = [a, b] \cap U_1$ and $B = [a, b] \cap U_2$. Then

$$A \cup B = [a, b] \cap (U_1 \cup U_2) = [a, b],$$

since $[a, b] \subseteq I \subseteq U_1 \cup U_2$, and

$$A \cap B \subseteq I \cap U_1 \cap U_2 = \emptyset;$$

so $A = [a, b] \setminus B = [a, b] \setminus U_2$. Now if we define $p = \sup A$ then it follows from the first part of the lemma that $p \in A$, since $A = [a, b] \cap (\mathbb{R} \setminus U_2)$ and $\mathbb{R} \setminus U_2$ is closed. However, $A = [a, b] \cap U_1$ and U_1 is open; so it follows from the second part of the lemma that $p \notin A$. Thus we have obtained the desired contradiction.

Our characterization of intervals also yields the following converse to the above result.

Proposition. If $A \subseteq \mathbb{R}$ is connected and nonempty then A is an interval.

Proof. Suppose that A is connected and $A \neq \emptyset$, and suppose that A is not an interval. By the characterization, of intervals there exist $a, b \in A$ and $x \notin A$ with $a \leq x \leq b$. Put $U_1 = (\infty, x)$ and $U_2 = (x, \infty)$. Then U_1 and U_2 are open subsets of \mathbb{R} with $a \in A \cap U_1$ and $b \in A \cap U_2$ (showing that $A \cap U_1$ and $A \cap U_2$ are both nonempty), $A \subseteq \mathbb{R} \setminus \{x\} = U_1 \cup U_2$, and $A \cap U_1 \cap U_2 = \emptyset$ (since $U_1 \cap U_2 = \emptyset$). This shows that A is not connected.