Suppose that a group G has an action on a set S. For variety, we shall assume that this is a right action, but totally analogous statements are also valid for left actions. For each $s \in G$ the subset of G

$$\text{Stab}_G(s) = \{ g \in G \mid sg = s \}$$

is called the stabilizer of s in G. It is quite straightforward to observe that $1 \in \text{Stab}_G(s)$, that $g^{-1} \in \text{Stab}_G(s)$ whenever $x \in \text{Stab}_G(s)$, and that $xy \in \text{Stab}_G(s)$ whenever $x, y \in \text{Stab}_G(s)$. Hence the stabilizer of S is a subgroup of G. The subset of S

$$\mathcal{O} = \{ sg \mid g \in G \}$$

is called the orbit of s under the action of G. If $\mathcal{O} = S$ then the action of G on S is said to be transitive.

As a temporary notation, for $s, t \in S$ let us write $s \sim t$ if there exists $g \in G$ such that $sg = t$. Since $s1 = s$ we have that $s \sim s$, for all $s \in S$; so the relation \sim is reflexive. If $sg = t$ then $tg^{-1} = s$; thus if $s \sim t$ then $t \sim s$, and so \sim is symmetric. And \sim is also transitive, since if $s, t, u \in S$ with $s \sim t$ and $t \sim u$ then there exist $g, h \in G$ with $sg = t$ and $th = u$, and this yields $s \sim u$ since $s(gh) = (sg)h = th = u$. Thus \sim is an equivalence relation, and in consequence the set S is the disjoint union of \sim-equivalence classes. The equivalence class containing s is the set

$$\{ t \in S \mid s \sim t \} = \{ sg \mid g \in G \},$$

which is precisely the orbit of s. The orbits of G on S are the equivalence classes for the relation \sim as defined above.

One can see that if the stabilizer of an element s is large then the orbit of s is small, and vice versa. The two extreme cases are as follows: if the stabilizer of s is the whole group G then the orbit is the singleton set $\{s\}$; if the stabilizer is the trivial subgroup consisting of the identity element alone, then the elements of the orbit of s are in one to one correspondence with the elements of G (since if $g, h \in G$ and $sg = sh$ then $s(gh^{-1}) = s$, which means that $gh^{-1} \in \text{Stab}_G(s) = \{1\}$, and hence $g = h$). In the general case, if we write $L = \text{Stab}_G(s)$ then $sg = sh$ if and only if $gh^{-1} \in L$, which is equivalent to $g \in Lh$, and this in turn is equivalent to equality of the right cosets Lg and Lh. (If we had started with a left action we would have obtained left cosets at this point: $gs = hs$ if and only if $gL = hL$.) So we conclude that there is a well defined bijective mapping

$$sg \mapsto Lg$$

from the orbit $\mathcal{O} = \{ sg \mid g \in G \}$ to the set $\{ Lg \mid g \in G \}$ (whose elements are the right cosets in G of the stabilizer of s). Thus if g_1, g_2, \ldots, g_m is a right transversal for L, so that

$$G = Lg_1 \cup Lg_2 \cup \cdots \cup Lg_m$$

(where “\cup” indicates disjoint union) then

$$\mathcal{O} = \{ sg_1, sg_2, \ldots, sg_m \},$$

and the sg_i are pairwise distinct.

There are two different ways to define right actions of a group G on G itself. Firstly, the group’s multiplication operation $G \times G \to G$ can be interpreted as a function $S \times G \rightarrow S$, where the set S is equal to G. The group axioms immediately imply that this function satisfies the defining properties of a right action. We shall call this the right multiplication action of G on itself. It is a transitive action—there is only one orbit—since if $s, t \in G$ are arbitrary then the element $g = s^{-1}t$ satisfies $sg = t$. Furthermore, the stabilizer of any element is trivial, since $sg = g$ implies $g = 1$. The other standard action of G on itself is the conjugacy action. To avoid confusion with the right multiplication action we use an exponential notation for the conjugacy action, and define
$x^g = g^{-1}xg$ for all $x, g \in G$. Note that whereas the right multiplication action is an action of G on G considered only as a set, the conjugacy action is an action of G on G considered as a group. For not only do we have $x^1 = 1^{-1}x1 = x$ and

$$x^gh = (gh)^{-1}x(gh) = h^{-1}(g^{-1}xg)h = (g^{-1}xg)^h = (x^g)^h,$$

for all $x, g, h \in G$, but also

$$(xy)^g = g^{-1}(xy)g = (g^{-1}xg)(g^{-1}yg) = x^g y^g$$

for all $x, y, g \in G$. The orbits of G under the conjugacy action of G are of course the conjugacy classes, as defined in Lecture 4.

Intertwining matrices

Let U and V be vector spaces over the complex field which are modules for the group G, and let $f: U \to V$ be a G-homomorphism. That is, f is a linear map which satisfies $g(fu) = f(gu)$ for all $u \in U$ and $g \in G$. Let $\rho: G \to \text{GL}(V)$ and $\sigma: G \to \text{GL}(U)$ be the representations of G on V and U respectively. That is, if $g \in G$ then ρg is the linear transformation of V given by $v \mapsto gv$ for all $v \in V$, and σg is the linear transformation of U given by $u \mapsto gu$ for all $u \in U$. For all $u \in U$ we have

$$(\rho g)f)(u) = (g(fu)) = f(gu) = f((\sigma g)u) = f(\sigma g)u,$$

and so $(\rho g)f = f(\sigma g)$. This holds for all $g \in G$. A function f which satisfies $(\rho g)f = f(\sigma g)$ is said to intertwine the representations ρ and σ. So here again we have two words being used to describe the same concept: an intertwining function is the same thing as a G-homomorphism.

Suppose that u_1, u_2, \ldots, u_n is a basis for U and v_1, v_2, \ldots, v_m is a basis for V, and let A be the matrix of f relative to these two bases. Thus A is the $m \times n$ matrix with (i, j)-entry a_{ij} satisfying $fu_j = \sum_{i=1}^{m} a_{ij}v_i$. For each $g \in G$ let $Rg \in \text{GL}(m, \mathbb{C})$ be the matrix relative to the basis v_1, v_2, \ldots, v_m of the transformation $v \mapsto gv$ of the space V, and let $Sg \in \text{GL}(n, \mathbb{C})$ be the matrix relative to the basis u_1, u_2, \ldots, u_m of the transformation $u \mapsto gu$ of the space U. So R and S are matrix versions of the representations ρ and σ. And the matrix version of the equation $(\rho g)f = f(\sigma g)$ is $(Rg)A = A(Sg)$.

Definition. If R and S are matrix representations of the group G of degrees m and n respectively then an $m \times n$ matrix A is said to intertwine R and S if $(Rg)A = A(Sg)$ for all $g \in G$.

So an intertwining matrix is the matrix version of a G-homomorphism.

Recall that a linear map is invertible if and only if its matrix (relative to any bases) is invertible. Of course, a matrix A can only be invertible if it is square, and this corresponds to the fact that a linear map $U \to V$ can only be invertible if U and V have the same dimension. A G-homomorphism $U \to V$ is called a G-isomorphism if it is invertible. The matrix version of this is an intertwining matrix which is invertible. Now if A is invertible then the equation $(Rg)A = A(Sg)$ can be rewritten as $Rg = A(Sg)A^{-1}$, and, by a definition from Lecture 3, this means that the representations R and S are equivalent. Conversely, if R and S are equivalent, so that there exists an invertible intertwining matrix A, then the linear map $f: U \to V$ whose matrix relative to our two fixed bases is A is a G-isomorphism. So we can say that two G-modules are G-isomorphic if and only if the corresponding matrix representations (relative to any bases) are equivalent.

Quotient modules

If S and T are arbitrary subsets of the group G then it is customary to define their product ST by the rule that $ST = \{ st \mid s \in S, \text{ and } t \in T \}$. If H is a normal subgroup of G, so that $gH = Hg$
for all \(g \in G \), then \((xH)(yH) = (xy)H\) for all \(x, y \in G \). This yields a well-defined multiplication operation on the set \(G/H = \{ gH \mid g \in G \} \), and it can be checked that under this operation \(G/H \) is a group. The group \(G/H \) is called the quotient of \(G \) by \(H \).

If the group \(G \) is Abelian (commutative) then every subgroup \(H \) is normal, and so the quotient group always exists. In particular, if \(V \) is a vector space over a field \(F \) then \(V \) is an abelian group under the operation of vector addition, and since any vector subspace \(U \) of \(V \) is also an abelian subgroup of \(V \) it follows that the quotient group \(V/U \) can be formed. It is clear hat \(V/U \) is Abelian. Note that since the operation on \(V \) in this case is written as +, the coset of \(U \) containing the element \(v \in V \) is written as \(v + U \) rather than \(vu \), and the group operation on \(V/U \) is also written as +. We have \(V/U = \{ v + U \mid v \in V \} \),

\[
(x + U) + (y + U) = (x + y) + U \quad \text{for all } x, y \in U.
\]

We now give \(V/U \) some extra structure, by defining a scalar multiplication operation on it. The relevant formula is as follows:

\[
\lambda(v + U) = (\lambda v) + U \quad \text{for all } v \in V \text{ and } \lambda \in F.
\]

It is necessary to check that this is well-defined, since it is possible to have \(v_1 + U = v_2 + U \) without having \(v_1 = v_2 \). But if \(v_1 + U = v_2 + U \) then \(v_1 - v_2 \in U \), and since the subspace \(U \) has to be closed under scalar multiplication it follows that \(\lambda v_1 - \lambda v_2 = \lambda(v_1 - v_2) \in U \), and hence \(\lambda v_1 + U = \lambda v_2 + U \). This shows that \(\lambda v + U \) does not depend on the choice of the representative element \(v \) in the coset \(v + U \), but only on the coset \(v + U \) itself. In other words, the formula above does give a well-defined scalar multiplication operation on \(V/U \).

Recall that a vector space over \(F \) is a set—whose elements we call “vectors”—equipped with addition and scalar multiplication operations, such that the following eight axioms are satisfied:

(i) \((u + v) + w = u + (v + w)\) for all vectors \(u, v \) and \(w \);
(ii) \(u + v = v + u\) for all vectors \(u \) and \(v \);
(iv) each vector \(v \) has a negative, which is a vector \(-v\) satisfying \(v + (-v) = 0\);
(v) \(\lambda(\mu v) = (\lambda\mu)v\) for all scalars \(\lambda \) and \(\mu \) and all vectors \(v \);
(vi) \(1v = v\) for all vectors \(v \), where \(1 \) is the identity element of \(F \);
(vii) \(\lambda(u + v) = \lambda u + \lambda v\) for all vectors \(u \) and \(v \) and all scalars \(\lambda \);
(viii) \((\lambda + \mu)v = \lambda v + \mu v\) for all scalars \(\lambda \) and \(\mu \) and all vectors \(v \).

It is trivial to check that the addition and scalar multiplication operations we have defined on \(V/U \) satisfy these axioms. (Of course the first five of the axioms just say that a vector space is an abelian group under addition, and we had already noted above that \(V/U \) satisfies this.) It is left to the reader to check all the details. We call \(V/U \) a quotient (vector) space.

We proceed to embellish the above situation further by assuming that \(V \) and \(U \) are equipped with \(G \)-actions. More precisely, suppose that \(V \) is a \(G \)-module and \(U \) a submodule of \(V \). Then the quotient space \(V/U \) is also a \(G \)-module, with \(G \)-action satisying

\[
g(v + U) = (gv) + U \quad \text{for all } g \in G \text{ and } v \in V.
\]

As with addition and scalar multiplication, it is crucial to check that this \(G \)-action is well defined. The argument needed is totally analogous to the argument in the scalar multiplication case: if \(v_1 + U = v_2 + U \) then \(v_1 - v_2 \in U \), and since \(U \) is closed under the \(G \) action it follows that \(gv_1 - gv_2 = g(v_1 - v_2) \in U \), whence \(gv_1 + U = gv_2 + U \). It is again left to the reader to check the axioms.