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Foreword. . .

The purpose of this book is to complement the lectures and thereby decrease,
but not eliminate, the necessity of taking lecture notes. Reading the appropri-
ate sections of the book before each lecture should enable you to understand
the lecture as it is being given, provided you concentrate! This is particularly
important in this course because, as theoretical machinery is developed, the
lectures depend more and more heavily upon previous lectures, and students
who fail to thoroughly learn the new concepts as they are introduced soon
become completely lost.

? ? ? Proofs of the theorems are an important part of this
course. You cannot expect to do third year Pure Mathematics
without coming to grips with proofs. Mathematics is about proving
theorems. You will be required to know proofs of theorems for the
exam. ? ? ?

It is the material dealt with in the lectures, not this book, which defines the
syllabus of the course. The book is only intended to assist, and how much
overlap there is with the course depends on the whim of the lecturer. There
will certainly be things which are in the lectures and not in the book, and
vice versa. The lecturer will probably dwell upon topics which are giving
students trouble, and omit other topics. However, the book will still provide
a reasonable guide to the course.

v



0
Prerequisites

Students will be assumed to be familiar with the material mentioned in this
preliminary chapter. Anyone who is not should inform the lecturer forthwith.

§0a Concerning notation

When reading or writing mathematics you should always remember that the
mathematical symbols which are used are simply abbreviations for words.
Mechanically replacing the symbols by the words they represent should result
in grammatically correct and complete sentences. The meanings of a few
commonly used symbols are given in the following table.

Symbols To be read as

{ . . . | . . . } the set of all . . . such that . . .
= is
∈ in or is in
> greater than or is greater than

Thus for example the following sequence of symbols

{x ∈ X | x > a } 6= ∅

is an abbreviated way of writing the sentence

The set of all x in X such that x is greater than a is not the empty set.

When reading mathematics you should mentally translate all symbols in this
fashion. If you cannot do this and obtain meaningful sentences, seek help
from your tutor. And make certain that, when you use mathematical symbols
yourself, what you write can be translated into meaningful sentences.

1



2 Chapter Zero: Prerequisites

§0b Concerning functions

The terminology we use in connection with functions could conceivably differ
from that to which you are accustomed; so a list of definitions of the terms
we use is provided here.

• The notation ‘f :A → B’ (read ‘f , from A to B’) means that f is a
function with domain A and codomain B. In other words, f is a rule which
assigns to every element a of the set A an element in the set B denoted
by ‘f(a)’.

• A map is the same thing as a function. The term mapping is also used.

• A function f :A→ B is said to be injective (or one-to-one) if and only
if no two distinct elements of A yield the same element of B. In other words,
f is injective if and only if for all a1, a2 ∈ A, if f(a1) = f(a2) then a1 = a2.

• A function f :A→ B is said to be surjective (or onto) if and only if for
every element b of B there is an a in A such that f(a) = b.

• If a function is both injective and surjective we say that it is bijective
(or a one-to-one correspondence).

• The image of a function f :A → B is the subset of B consisting of all
elements obtained by applying f to elements of A. That is,

im f = { f(a) | a ∈ A }.

An alternative notation is ‘f(A)’ instead of ‘im f ’. Clearly, f is surjective if
and only if im f = B.

• The notation ‘a 7→ b’ means ‘a maps to b’; in other words, the function
involved assigns the element b to the element a. Thus ‘a 7→ b under f ’ means
exactly the same as ‘f(a) = b’.

• If f :A → B is a function and C a subset of B then the inverse image
or preimage of C is the subset of A

f−1(C) = { a ∈ A | f(a) ∈ C }.

(The above line reads ‘f inverse of C, which is the set of all a in A such that
f of a is in C.’ Alternatively, one could say ‘The inverse image of C under
f ’ instead of ‘f inverse of C’.)
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§0c Concerning vector spaces

Vector spaces enter into this course only briefly; the facts we use are set out
in this section.

Associated with each vector space is a set of scalars. In the common
and familiar examples this is R, the set of all real numbers, but in general it
can be any field. (Fields are defined in Chapter 2.)

Let V be a vector space over F . (That is, F is the associated field of
scalars.) Elements of V can be added and multiplied by scalars:

(∗) If v, w ∈ V and λ ∈ F then v + w, λv ∈ V .

These operations of addition and multiplication by scalars satisfy the follow-
ing properties:

(i) (u+ v) + w = u+ (v + w) for all u, v, w ∈ V .
(ii) u+ v = v + u for all u, v ∈ V .
(iii) There exists an element 0 ∈ V such that v + 0 = v for all v ∈ V .
(iv) For each v ∈ V there exists an element −v ∈ V such that v+(−v) = 0.
(v) λ(µv) = (λµ)v for all λ, µ ∈ F and all v ∈ V .
(vi) 1v = v for all v ∈ V .
(vii) λ(v + w) = λv + λw for all λ ∈ F and all v, w ∈ V .
(viii) (λ+ µ)v = λv + µv for all λ, µ ∈ F and all v ∈ V .

The properties listed above are in fact the vector space axioms; thus in
order to prove that a set V is a vector space over a field F one has only to
check that (∗) and (i)–(viii) are satisfied.

Let V be a vector space over F and let v1, v2, . . . vn ∈ V . The elements
v1, v2, . . . vn are said to be linearly independent if the following statement is
true:

If λ1, λ2, . . . , λn ∈ F and λ1v1 + λ2v2 + · · · + λnvn = 0
then λ1 = 0, λ2 = 0, . . . , λn = 0.

The elements v1, v2, . . . vn are said to span the space V if the following
statement is true:

For every v ∈ V there exist λ1, λ2, . . . , λn ∈ F
such that v = λ1v1 + λ2v2 + · · · + λnvn.

A basis of a vector space V is a finite subset of V whose elements are linearly
independent and span V .
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We can now state the only theorem of vector space theory which is used
in this course.

0.1 Theorem If a vector space V has a basis then any two bases of V will
have the same number of elements.

Comment ...
0.1.1 If V has a basis then the dimension of V is by definition the
number of elements in a basis. ...

§0d Some very obvious things about proofs

When trying to prove something, the logical structure of what you are try-
ing to prove determines the logical structure of the proof. The following
observations seem trivial, yet they are often ignored.

• To prove a statement of the form
If p then q

your first line should be
Assume that p is true

and your last line
Therefore q is true.

• The statement
p if and only if q

is logically equivalent to
If p then q and if q then p,

and so the proof of such a statement involves first assuming p and proving q,
then assuming q and proving p.

• To prove a statement of the form
All xxxx’s are yyyy’s,

the first line of your proof should be
Let a be an xxxx

and the last line should be
Therefore a is a yyyy.

(The second line could very well involve invoking the definition of ‘xxxx’
or some theorem about xxxx’s to determine things about a; similarly the
second to last line might correspond to the definition of ‘yyyy’.)
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When trying to construct a proof it is sometimes useful to assume
the opposite of the thing you are trying to prove, with a view to obtaining
a contradiction. This technique is known as “indirect proof” (or “proof
by contradiction”). The idea is that the conclusion c is a consequence of
the hypotheses h1, h2, . . . , if and only if the negation of c is incompatible
with h1, h2, . . . . Hence we may assume the negation of c as an extra
hypothesis, along with h1, h2 etc., and the task is then to show that the
hypotheses contradict each other. Note, however, that although indirect
proof is a legitimate method of proof in all situations, it is not a good policy
to always use indirect proof as a matter of course. Most proofs are naturally
expressed as direct proofs, and to recast them as indirect proofs may make
them more complicated than necessary.

Examples

#1 Suppose that you wish to prove that a function λ:X → Y is injective.
Consult the definition of injective. You are trying to prove the following
statement:

For all x1, x2 ∈ X, if λ(x1) = λ(x2) then x1 = x2.

So the first two lines of your proof should be as follows:

Let x1, x2 ∈ X.
Assume that λ(x1) = λ(x2).

Then you will presumably consult the definition of the function λ to derive
consequences of λ(x1) = λ(x2), and eventually you will reach the final line

Therefore x1 = x2.

#2 Suppose you wish to prove that λ:X → Y is surjective. That is, you
wish to prove

For every y ∈ Y there exists x ∈ X with λ(x) = y.

Your first line must be

Let y be an arbitrary element of Y .

Somewhere in the middle of the proof you will have to somehow define an
element x of the set X (the definition of x is bound to involve y in some
way), and the last line of your proof has to be

Therefore λ(x) = y.
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#3 Suppose that A and B are sets, and you wish to prove that A ⊆ B.
(That is, A is a subset of or equal to B.) By definition the statement ‘A ⊆ B’
is logically equivalent to

All elements of A are elements of B.
So your first line should be

Let x ∈ A

and your last line should be
Therefore x ∈ B.

#4 Suppose that you wish to prove that A = B, where A and B are sets.
The following statements are all logically equivalent to ‘A = B’:

(i) For all x, x ∈ A if and only if x ∈ B.
(ii) (For all x)

(
(if x ∈ A then x ∈ B) and (if x ∈ B then x ∈ A)

)
.

(iii) All elements of A are elements of B and all elements of B are elements
of A.

(iv) A ⊆ B and B ⊆ A.

You must do two proofs of the general form given in #3 above.



1
Ruler and compass constructions

Abstract algebra is essentially a tool for other branches of mathematics.
Many problems can be clarified and solved by identifying underlying struc-
ture and focussing attention on it to the exclusion of peripheral information
which may only serve to confuse. Moreover, common underlying structures
sometimes occur in widely varying contexts, and are more easily identifiable
for having been previously studied in their own right. In this course we shall
illustrate this idea by taking three classical geometrical problems, translat-
ing them into algebraic problems, and then using the techniques of modern
abstract algebra to investigate them.

§1a Three problems

Geometrical problems arose very early in the history of civilization, presum-
ably because of their relevance to architecture and surveying. The most
basic and readily available geometrical tools are ruler and compass, for con-
structing straight lines and circles; thus it is natural to ask what geometrical
problems can be solved with these tools.†

It is said that the citizens of Delos in ancient Greece, when in the
grips of a plague, consulted an oracle for advice. They were told that a god
was displeased with their cubical altar stone, which should be immediately
replaced by one double the size. The Delians doubled the length, breadth
and depth of their altar; however, this increased its volume eightfold, and
the enraged god worsened the plague.

Although some historians dispute the authenticity of this story, the
so-called “Delian problem”

† Note that the ruler is assumed to be unmarked; that is, it is not a measuring

device but simply an instrument for ruling lines.

7



8 Chapter One: Ruler and compass constructions

(1) Given a cube, construct another cube with double the volume
is one of the most celebrated problems of ancient mathematics. There are
two other classical problems of similar stature:
(2) Construct a square with the same area as a given circle
(3) Trisect a given angle.

In this course we will investigate whether problems (1), (2) and (3) can be
solved by ruler and compass constructions. It turns out that they cannot.

We should comment, however, that although the ancient mathemati-
cians were unable to prove that these problems were insoluble by ruler and
compass, they did solve them by using curves other than circles and straight
lines.

§1b Some examples of constructions

Before trying to prove that some things cannot be done with ruler and com-
pass, we need to investigate what can be done with those tools. Much of
what follows may be familiar to you already.

#1 Given straight lines AB and AC intersecting at A the angle BAC can
be bisected, as follows. Draw a circle centred at A, and let X, Y be the
points where this circle meets AB, AC. Draw circles of equal radii centred
at X and Y , and let T be a point of intersection of these circles. (The radius
must be chosen large enough so that the circles intersect.) Then AT bisects
the given angle BAC.

#2 Given lines AB and AC intersecting at A and a line PQ, the angle
BAC can be copied at P , as follows. Draw congruent circles CA, CP centred
at A and P . Let CA intersect AB at X and AC at Y , and let CP intersect
PQ at V . Draw a circle with centre V and radius equal to XY , and let T
be a point of intersection of this circle and CP . Then the angle TPQ equals
the angle BAC.

#3 Given a point A and a line PQ, one can draw a line through A parallel
to PQ. Simply draw any line through A intersecting PQ at some point X,
and then copy the angle AXQ at the point A.

#4 Given a line AB one can construct a point T such that the angle TAB
equals π

3 radians (60 degrees). Simply choose T to be a point of intersection
of the circle centred at A and passing through B and the circle centred at B
and passing through A.
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#5 Given line segments of lengths r, s and t one can construct a line
segment of length rt/s, as follows. Draw distinct lines AP , AQ intersecting
at A and draw circles Cr, Cs and Ct of radii r, s and t centred at A. Let Cr

intersect AP at B and let Cs, Ct intersect AQ at X, Y . Draw a line through
Y parallel to XB, and let C be the point at which it intersects AP . Then
AC has the required length.

#6 There are simple constructions for angles equal to the sum and dif-
ference of two given angles, lengths equal to the sum and difference of two
given lengths, and for a/n and na, where a is a given length and n a given
positive integer. See the exercises at the end of the chapter.

#7 Given line segments of lengths a and b, where a ≥ b, it is possible
to construct a line segment of length

√
ab, as follows. First, construct line

segments of lengths r1 = 1
2 (a + b) and r2 = 1

2 (a − b), and draw circles of
radii r1 and r2 with the same centre O. Draw a line through O intersecting
the smaller circle at P , and draw a line through P perpendicular to OP . (A
right-angle can be constructed, for instance, by constructing an angle of π

3 ,
bisecting it, and adding on another angle of π

3 .) Let this perpendicular meet
the large circle at Q. Then PQ has the required length.

Further ruler and compass constructions are dealt with in the exercises.

§1c Constructible numbers

Consider the Delian Problem once more: we are given a cube and wish to
double its volume. We may as well choose our units of length so that the
given cube has sides of length one. Then our problem is to construct a line
segment of length 3

√
2. The other problems can be stated similarly. A circle of

unit radius has area π; to construct a square of this area one must construct
a line segment of length

√
π. A right-angled triangle with unit hypotenuse

and an angle θ has other sides cos θ and sin θ; to trisect θ one must construct
cos
(

θ
3

)
. So the problems become:

(1) Given a unit line segment, construct one of length
√
π.

(2) Given a unit line segment, construct one of length 3
√

2.

(3) Given line segments of lengths 1 and cos θ, construct one of length
cos
(

θ
3

)
.
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To show that Problem 3 cannot be solved by ruler and compass, it will
be sufficient to show that it cannot be done in the case θ = π

3 . In this case
cos θ = 1

2 . Since a line segment of length 1
2 can be constructed given a unit

line segment, it suffices to show that given only a unit line segment it is not
possible to construct one of length cos

(
π
9

)
. In other words, an angle of 20

degrees cannot be constructed.

So, assume that we are given a line segment of length one. We first
use this segment to define a coordinate system. Let one of the endpoints
of the segment be the origin (0, 0) and the other endpoint the point (1, 0).
After drawing a line through (0, 0) perpendicular to the x-axis we can find the
position of the point (0, 1) by drawing a circle of centre (0, 0) and radius 1. We
can now proceed to construct further points, lines and circles, in accordance
with the following rules. We can construct
(a) a line if it passes through two previously constructed points,
(b) a circle if its centre is a previously constructed point and its radius the

distance between two previously constructed points,
(c) a point if it is the point of intersection of two lines or circles or a circle

and a line constructed in accordance with (a) and (b).
We now a define a number to be constructible if it is a coordinate of a con-
structible point. (Note that since lines perpendicular to the axes can be
constructed, the point (a, b) can be constructed if and only if the points
(a, 0) and (0, b) can both be constructed. Furthermore, since a circle of ra-
dius a and centre O cuts the x-axis at (a, 0) and the y-axis at (0, a), a number
is constructible as an x-coordinate if and only if it is constructible as a y-
coordinate.) Our aim will be to describe completely the set of constructible
numbers and hence show that

√
π, 3
√

2 and cos
(

π
9

)
are not constructible.

1.1 Theorem If a and b are constructible numbers then so are a+ b, −a,
ab, a−1 (if a 6= 0) and

√
a (if a ≥ 0).

Proof. Let a and b be constructible numbers. Then the points (a, 0) and
(0, b) can be constructed in accordance with rules (a), (b) and (c) above.
The point (a + b, 0) is the point of intersection of the x-axis and a circle
centre (a, 0) and radius the distance between (0, 0) and (0, b); hence it is
constructible by rule (b) above. So a+ b is constructible.

Draw the line joining (0, b) and (1, 0). Using the process described in
§1b the line through (a, 0) parallel to this can be constructed. It meets the
y-axis at (0, ab). Hence ab is constructible.
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The proofs of the other parts are similarly based on constructions given
in §1b, and are omitted. �

Comment ...
1.1.1 Sometimes standard geometrical constructions include instruc-
tions like ‘Draw an arbitrary line through A’ or ‘Draw any circle with centre
B and radius large enough to intersect with PQ’. It is not immediately ob-
vious that the rules (a), (b) and (c) given above are strong enough to permit
constructions such as these. However, it follows from the above theorem
that every element of the set Q of all rational numbers (numbers of the form
n/m where n and m are integers) is constructible. When asked to draw an
arbitrary line through A we may as well join A to a point with rational co-
ordinates, and when asked to draw an arbitrary circle with centre B we may
as well draw one that has rational radius. There will always be a rational
number of suitable size, since rational numbers exist which are arbitrarily
close to any given real number. So in fact anything that can be constructed
with ruler and compass can be constructed by just following rules (a), (b)
and (c). ...

Obviously one cannot draw an infinite number of circles and/or lines;
so the number of points obtained in any geometrical construction is finite.
Suppose that α1, α2, . . . , αn are the points occurring in a given construc-
tion, listed in the order in which they are constructed, with α0 = (0, 0) and
α1 = (1, 0). Let the coordinates of αi be (ai, bi) (for each i). Suppose that
we now wish to construct another point. According to the rules we can draw
a circle with centre αi and radius equal to the distance between αj and αk

(for any choice of i, j and k) and we can draw a straight line joining αi and
αj (for any i and j). The points of intersection of such points and lines are
the only points that we can construct at the next stage. (We can, of course,
get further points by repeating the process.) The equation of such a circle is

(1) (x− ai)2 + (y − bi)2 = (aj − ak)2 + (bj − bk)2

and the equation of such a line is

(2) (bj − bi)x− (aj − ai)y = aibj − ajbi .

Hence the coordinates of the next point obtained can be found by solving
simultaneously two equations each having one or other of the above forms.
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1.2 Theorem Let α1, α2, . . . , αk be the points obtained in a ruler and
compass construction, listed in the order obtained. For each n let Sn be the
set of all real numbers obtainable from the coordinates of α1, α2, . . . , αn

by finite sequences of operations of addition, subtraction, multiplication and
division. Then there exists an ∈ Sn such that the coordinates of αn+1 lie in
the set Sn(

√
an) = { p+ q

√
an | p, q ∈ Sn }.

Proof. As described in the preamble, the coordinates of αn+1 are obtained
by solving simultaneously two equations like (1) or (2). There are three cases
to consider: both of the form (1), both of the form (2), and one of each. Let
us deal with the last case first.

On expanding, (1) has the form

(3) x2 + y2 + px+ qy + r = 0

with p, q, r ∈ Sn. Similarly, (2) has the form

(4) sx+ ty + u = 0

with s, t, u ∈ Sn and either s 6= 0 or t 6= 0. If s 6= 0, rewrite (4) as

(5) x = − t
s
y − u

s

and substitute into (3). This gives

(6) p′y2 + q′y + r′ = 0,

where in fact

p′ = 1 +
t2

s2

q′ = q − pt

s
+

2ut
s2

r′ = r − pu

s
+
u2

s2

,

but all that concerns us is that p′, q′, r′ ∈ Sn and p′ 6= 0. Let an = (q′)2−4p′r′,
an element of Sn. Using the quadratic formula to solve (6) shows that the
y-coordinate of αn+1 is in Sn(

√
an) and then (5) shows that the x-coordinate

is too.
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In the case that both equations have the form (1) (so that αn+1 is the
point of intersection of two circles) we must solve simultaneously equation
(3) and a similar equation

(7) x2 + y2 + lx+my + n = 0.

But subtracting (7) from (3) gives an equation of the form (4); so we can
proceed as before.

In the remaining case both equations have the form (4), with coeffi-
cients in the set Sn. To solve them just involves operations of addition,
subtraction, multiplication and division, and since by definition these oper-
ations cannot take us outside the set Sn it follows that the coordinates of
αn+1 lie in Sn = Sn(

√
0). �

What Theorems 1.1 and 1.2 show is, essentially, that with ruler and
compass one can add, subtract, multiply, divide and take square roots, and
nothing else. To solve the Delian Problem one must construct the cube root of
two. You may think that we have already settled the matter, since obviously
it is impossible to find a cube root by taking square roots. Unfortunately,
however, this is not obvious at all. How do you know, for instance, that the
following formula is not correct?

3
√

2 =
a3 + 4b3

3a2b− 2ab2 + 2b
√

2b4 + a2b2 − a3b

where
a = 8 + 5

√
10

b = −10 + 6
√

10 +
√

225− 40
√

10.

Or if you can show that it is not, how do you know that there is not some far
more complicated formula of the same kind which is correct? The algebraic
machinery which will be developed in the subsequent chapters will show that
there is not.

Exercises

1. Describe carefully how to perform the constructions mentioned in #6.
(Hint: For a/n and na use #5.)
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2. Given a line segment of length 1 unit, construct a line segment of each
of the following lengths:

(i)
√

2 (ii)
√

3 (iii)
√

3−
√

2

(iv)
√

2
√

3 (v)
√

3√
2

(vi)
√√

2 +
√

3.

Measure the line segments in each case to check the accuracy of your
constructions.

3. Let θ = 2π/5 and let α = eiθ = cos θ + i sin θ, where i is a complex
square root of −1. Thus α is a complex fifth root of 1. Show that

x4 + x3 + x2 + x+ 1 = (x− α)(x− α−1)(x− α2)(x− α−2)

= (x2 − 2(cos θ)x+ 1)(x2 − 2(cos 2θ)x+ 1).

Hence show that
cos θ + cos 2θ = −1

2

cos θ cos 2θ = −1
4

and solve to find cos θ.

4. Is it possible to construct an angle of 2π/5?

5. Let OAB be an isosceles triangle with OA = OB and the angle at O
equal to π/5. Let the bisector of the angle OBAmeet OA at the point P .

(i) Prove that the triangles OAB and BAP are similar.
(ii) Suppose that OA has length 1 and let AB have length x. Use the

first part to prove that x2 + x− 1 = 0.
(Hint: Prove that PA has length 1− x.)

(iii) Use the previous part to show that a regular decagon inscribed in
a unit circle has sides of length

√
5−1
2 , and hence devise a ruler and

compass construction for a regular decagon.

6. Let θ = 2π/17 and let ω = eiθ = cos θ+ i sin θ, a complex 17th root of 1.
Prove that

x16 + x15 + x14 + · · ·+ x2 + x+ 1

= (x− ω)(x− ω−1)(x− ω2)(x− ω−2) . . . (x− ω8)(x− ω−8)

= (x2 − (2 cos θ)x+ 1)(x2 − (2 cos 2θ)x+ 1) . . . (x2 − (2 cos 8θ)x+ 1).
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7. Let

α1 =
−1 +

√
17

2
, α2 =

−1−
√

17
2

β1 =
1
2
(α1+

√
α2

1 + 4)

β2 =
1
2
(α1−

√
α2

1 + 4)

β3 =
1
2
(α2+

√
α2

2 + 4)

β4 =
1
2
(α2−

√
α2

2 + 4)

γ1 =
1
2
(β1 +

√
β2

1 − 4β3) γ5 =
1
2
(β3 +

√
β2

3 − 4β1)

γ2 =
1
2
(β1 −

√
β2

1 − 4β3) γ6 =
1
2
(β3 −

√
β2

3 − 4β1)

γ3 =
1
2
(β2 +

√
β2

2 − 4β4) γ7 =
1
2
(β4 +

√
β2

4 − 4β2)

γ4 =
1
2
(β2 −

√
β2

2 − 4β4) γ8 =
1
2
(β4 −

√
β2

4 − 4β2).

(i) Check that γ1 + γ2 = β1 and γ1γ2 = β3, and hence show that

(x2 − γ1x+ 1)(x2 − γ2x+ 1) = x4 − β1x
3 + (2 + β3)x2 − β1x+ 1.

Similarly
(x2 − γ3x+ 1)(x2 − γ4x+ 1) = x4 − β2x

3 + (2 + β4)x2 − β2x+ 1,
(x2 − γ5x+ 1)(x2 − γ6x+ 1) = x4 − β3x

3 + (2 + β1)x2 − β3x+ 1,
(x2 − γ7x+ 1)(x2 − γ8x+ 1) = x4 − β4x

3 + (2 + β2)x2 − β4x+ 1.

(ii) Check that

(x4−β1x
3 +(2+β3)x2−β1x+1)(x4−β2x

3 +(2+β4)x2−β2x+1)

= x8+
(

1−
√

17
2

)
x7+

(
5−

√
17

2

)
x6+

(
7−

√
17

2

)
x5+(2−

√
17)x4

+
(

7−
√

17
2

)
x3 +

(
5−

√
17

2

)
x2 +

(
1−

√
17

2

)
x+ 1.

The product of the other two quartics appearing in part (i) is
similar: just replace −

√
17 by

√
17.
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(iii) Multiply the eighth degree polynomial appearing in part (ii) by its
conjugate (obtained by replacing −

√
17 by

√
17) and show that the

result is x16 +x15 +x14 + · · ·+x2 +x+1. Comparing with the pre-
vious exercise, deduce that the numbers γ1, γ2, . . . , γ8 are equal to
2 cos θ, 2 cos 2θ, . . . , 2 cos 8θ (not necessarily in that order), where
θ = 2π/17.

(iv) Use the previous parts to deduce that a regular seventeen sided
polygon can be constructed with ruler and compass.



2
Introduction to rings

In this chapter we introduce the concepts which will be fundamental to the
rest of the course, and which are necessary to adequately understand the set
of constructible numbers.

§2a Operations on sets

If a and b are real numbers their sum a + b and product ab are also real
numbers. Addition and multiplication are examples of operations on the set
of real numbers. Operations can be defined in many different ways on many
different sets. For example, division of nonzero real numbers, addition and
multiplication of 2×2 matrices over R (where R is the set of all real numbers)
and so on. Let us state precisely what is meant by ‘operation’:

2.1 Definition An operation on a set S is a rule which assigns to each
ordered pair of elements of S a uniquely determined element of S.

Thus, for example, addition is the rule which assigns to the ordered
pair (a, b) of real numbers the real number a+ b. Since the set of all ordered
pairs of elements of S is usually denoted by ‘S × S’,

S × S = { (a, b) | a ∈ S and b ∈ S },

we could alternatively state Definition 2.1 as follows: an operation on S is
a function S × S −→ S. Addition on R is the function

R× R −→ R
(a, b) 7−→ a+ b.

In this course we will be concerned with many examples of sets equipped
with two operations which have properties resembling addition and multipli-
cation of numbers. The confusing thing is that sometimes some of the familiar

17
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properties are not satisfied. For example, addition and multiplication can be
defined on all the following sets:

R (real numbers)
Z (integers)
Mat(2,R) (2× 2 matrices whose entries are real numbers)
2Z (even integers)
R[X] (polynomials in X with real coefficients—expressions

like 2 + 5X +X2).
Each of these sets possesses a zero element; that is, an element 0 such that
α+ 0 = α = 0 + α for all elements α in the set. In four of the five examples
the product of two nonzero elements is nonzero; however, this property fails
for Mat(2,R). Similarly, in four of the examples there is an identity element;
that is an element 1 such that α1 = α = 1α for all α. However, this property
fails for 2Z (no even integer is an identity element). In R for any two nonzero
elements a and b there is another element c such that a = bc. None of the
other sets have this property. And the rule that αβ = βα for all α and β is
not satisfied in Mat(2,R) but is in all the others.

We attempt to bring some order to this chaos by listing the most im-
portant properties, investigating which properties are consequences of which
other properties, and classifying the various systems according to which prop-
erties hold.

§2b The basic definitions

2.2 Definition A ring is a set R together with two operations on R,
called addition

(
(a, b) 7→ a + b

)
and multiplication

(
(a, b) 7→ ab

)
, such that

the following axioms are satisfied:
(i) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.

(That is, addition is associative.)
(ii) There is an element 0 ∈ R such that a+ 0 = 0 + a = a for all a ∈ R.

(There is a zero element.)
(iii) For each a ∈ R there is a b ∈ R such that a+ b = b+ a = 0.

(Each element has a negative.)
(iv) a+ b = b+ a for all a, b ∈ R. (Addition is commutative.)
(v) (ab)c = a(bc) for all a, b, c ∈ R. (Multiplication is associative.)
(vi) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

(Both distributive laws hold.)
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Comment ...
2.2.1 The five examples mentioned in §2a above are all rings. ...

2.3 Definition A commutative ring is a ring which satisfies ab = ba for
all elements a, b.

That is, a commutative ring is a ring which satisfies the commutative law for
multiplication. (All rings satisfy the commutative law for addition.)

2.4 Definition If R is a ring an element e ∈ R is called an identity if
ea = ae = a for all a ∈ R.

Comment ...
2.4.1 We will almost always use the symbol ‘1’ rather than ‘e’ to denote
an identity element. Not all rings have identity elements—for example 2Z
does not have one. ...

2.5 Definition If R is a commutative ring and a ∈ R is such that a 6= 0
and ab = 0 for some nonzero b ∈ R then a is called a zero divisor.

2.6 Definition An integral domain is a commutative ring which has an
identity element which is nonzero (that is, 1 6= 0) and no zero divisors.

Thus, in an integral domain the following property holds:
2.6.1 For all a, b, if a 6= 0 and b 6= 0 then ab 6= 0.

2.7 Definition Let R be a ring with an identity and let a ∈ R. An element
b ∈ R is called a multiplicative inverse of a if ab = ba = 1.

Comment ...
2.7.1 It can be proved—see the exercises at the end of the chapter—that
if an element has a multiplicative inverse then the inverse is unique. That is,
if b, c ∈ R satisfy ab = ba = 1 and ac = ca = 1 then b = c. This fact means
that there is no ambiguity in using the usual notation ‘a−1’ for the inverse
of an element a which has an inverse. (Compare with the remarks following
Theorem 2.9 below.) ...
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2.8 Definition A field is a commutative ring in which there is a nonzero
identity element, and every nonzero element has a multiplicative inverse.

Thus, in a field the following property holds:

2.8.1 For all a 6= 0 there exists a b such that
ab = ba = 1 (where 1 is the identity element).

We wish to investigate properties of the set of constructible numbers,
which, as it happens, is a field. However, it turns out to be necessary to
study other rings first before we can adequately describe and understand the
relevant properties of constructible numbers. To familiarize ourselves with
the various concepts we start by considering some examples.

#1 Fields

By definition a field satisfies all the ring axioms, and also

(i) multiplication is commutative,

(ii) there exists an identity element 1 6= 0,

(iii) all nonzero elements have multiplicative inverses.

The following are fields:

R (the set of all real numbers),
Q (the set of all rational numbers),
C (the set of all complex numbers),
Q[
√

2] (the set of all numbers of the form a+b
√

2 for a, b ∈ Q),
Con (the set of all real numbers which are constructible—

that is, { a ∈ R | a is constructible }).
(It is straightforward to check that R and Q satisfy the field axioms; a little
more work is needed for the other two examples.)

#2 Integral domains

By definition an integral domain satisfies all the ring axioms, and also

(i) multiplication is commutative,

(ii) there exists an identity element 1 6= 0,

(iii) there are no zero divisors. (That is, there do not exist elements a, b
such that a 6= 0 and b 6= 0 but ab = 0.)
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The following are integral domains:
all the fields listed in #1 above,
Z (the set of all integers),
R[X] (the set of all polynomials in X with coefficients from

the field R),
Z[X] (the set of all polynomials in X with coefficients from

the integral domain Z).
We will prove in §2d below that all fields are integral domains.

#3 Other commutative rings

There exist commutative rings with no zero divisors which are not integral
domains because they do not have identity elements. Examples of this are
2Z (the set of all even integers), 3Z (the set of all integers divisible by 3),
and so on. In general, however, commutative rings are likely to have zero
divisors. An example is: {(

a 0
0 b

) ∣∣∣ a, b ∈ R
}
,

the set of all diagonal 2× 2 matrices over R. Further examples are provided
by the rings Zn (to be defined later).

#4 Other rings

Mat(2,R), Mat(3,R), . . . (that is, square matrices of a given size over R)
are examples of noncommutative rings. In fact, as we will see in the next
section, Mat(n,R) is a ring for any positive integer n and any ring R. Thus,
for instance, Mat(5, 2Z) and Mat(4,R[X]) are examples of rings. One can
also have matrices whose entries are matrices; thus Mat(2,Mat(2,R)) is the
ring of all 2× 2 matrices whose entries are 2× 2 matrices over R.

Of the different kinds of rings listed above, fields are the simplest, since
all of the usual properties of multiplication are satisfied. Next come integral
domains, which only lack multiplicative inverses, then arbitrary commutative
rings, and finally arbitrary rings, which are the most complicated since very
few requirements are placed upon the multiplicative structure.

§2c Two ways of forming rings

Our principal theoretical objective in this course is to understand field exten-
sions; that is, relationships that hold between a field and larger fields having
the given field as a subset. (As, for instance, Q ⊂ Con ⊂ R.) For this we
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need to study various methods for constructing new rings from old ones, and
this also increases our store of examples of rings. In this section we give two
such methods of constructing rings.

#5 Direct sums

If R and S are rings we may define operations of addition and multiplication
on the set D of all ordered pairs (r, s) with r ∈ R and s ∈ S. We define

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)
(r1, s1)(r2, s2) = (r1r2, s1s2).

(That is, the operations are defined “componentwise”.) With these opera-
tions D is a ring, called the direct sum R +̇ S of R and S.

To prove that the direct sum of R and S is a ring it is necessary to
prove that Axioms (i)–(vi) of Definition 2.2 are satisfied. In each case the
proof that R+̇S satisfies a given axiom simply involves using the same axiom
for R and S. We prove only the first three axioms here, leaving the others
as exercises.

Proof. (i) Let a, b, c ∈ R +̇ S. Then we have a = (r1, s1), b = (r2, s2)
and c = (r3, s3), for some r1, r2, r3 ∈ R and s1, s2, s3 ∈ S, and so
(a+ b) + c = ((r1, s1) + (r2, s2)) + (r3, s3)

= (r1 + r2 , s1 + s2) + (r3, s3) (by the definition of addition
in R +̇ S)

= ((r1 + r2) + r3 , (s1 + s2) + s3) (similarly)
= (r1 + (r2 + r3) , s1 + (s2 + s3)) (by Axiom (i) for R and S)
= (r1, s1) + (r2 + r3 , s2 + s3)
= (r1, s1) + ((r2, s2) + (r3, s3))
= a+ (b+ c)

as required.
(ii) Let 0R and 0S be the zero elements of R and S, and let a be any
element of R +̇ S. We have a = (r, s) for some r ∈ R, s ∈ S. Now

a+ (0R, 0S) = (r, s) + (0R, 0S) = (r + 0R, s+ 0S) = (r, s) = a,

and similarly (0R, 0S) + a = a. Thus (0R, 0S) is a zero element for R +̇ S.
(iii) Let a be an arbitrary element of R +̇ S. There exist r ∈ R and s ∈ S
with a = (r, s), and if we let b = (−r,−s) then

a+ b = (r, s) + (−r,−s) =
(
(r + (−r)) , (s+ (−s))

)
= (0R, 0S).

Similarly b + a = (0R, 0S), and since (0R, 0S) is the zero element of R +̇ S
this shows that b is a negative of a. �
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#6 Square matrices

Suppose that R is a ring and a1, a2, a3, . . . are elements of R. The axiom

(a+ b) + c = a+ (b+ c) for all a, b, c ∈ R

shows that the expression a+b+c is well defined. It makes no difference which
way parentheses are inserted: the additions can be done in either order. The
same obviously must apply for any number of terms; so there is no ambiguity
if the parentheses are omitted. That is, the expression a1 + a2 + · · ·+ an is
well defined. Moreover, the axiom

a+ b = b+ a for all a, b ∈ R

shows that the order of terms is immaterial. So there is no harm in using
sigma notation: a1 + a2 + · · ·+ an =

∑n
i=1 ai.

(CAUTION: Rings are not necessarily commutative; so the same kind of
thing does not apply for multiplication. In the expression a1a2 . . . an the
ordering of the factors must not be changed.)

The distributive laws a(b + c) = ab + ac and (a + b)c = ac + bc imply
that

b(a1 + a2 + · · ·+ an) = ba1 + ba2 + · · ·+ ban

and
(a1 + a2 + · · ·+ an)b = a1b+ a2b+ · · ·+ anb ,

or, in sigma notation,

b(
n∑

i=1

ai) =
n∑

i=1

bai

and

(
n∑

i=1

ai)b =
n∑

i=1

aib .

These formulae are known as the generalized distributive laws.

It is also worth noting that it is legitimate to interchange the order of
summation in double sums:

n∑
i=1

 m∑
j=1

aij

 =
m∑

j=1

(
n∑

i=1

aij

)
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where the aij are ring elements (for i = 1, 2, . . . , n and j = 1, 2, . . . , m).
This follows from the commutative law for addition—ring axiom (iv).

If n is a positive integer let Mat(n,R) be the set of all n × n matrices
with entries from R. If A ∈ Mat(n,R) and i, j ∈ {1, 2, . . . , n} let Aij be
the entry in the ith row and jth column of A. (Thus Aij ∈ R for each i, j.)
Define addition and multiplication on Mat(n,R) by

(A+B)ij = Aij +Bij

(AB)ij =
n∑

k=1

AikBkj .

That is, addition is defined componentwise, and for the product the (i, j)th

entry of AB is obtained by multiplying the ith row of A by the jth column
of B in the usual way.

It can be shown that, with these operations, Mat(n,R) is a ring. As
with direct sums, the verification that Mat(n,R) satisfies a given axiom is,
in most cases, a straightforward calculation based on the fact that R satisfies
the same axiom. We will only do axioms (i) and (v) (which is harder than
the others).

Proof. (i) Let A, B, C ∈ Mat(n,R). Then by the definition of addition
in Mat(n,R) and the associative law for addition in R we have

((A+B) + C)ij = (A+B)ij + Cij

= (Aij +Bij) + Cij

= Aij + (Bij + Cij)
= Aij + (B + C)ij

= (A+ (B + C))ij

and therefore (A+B) + C = A+ (B + C).
(ii) Let A, B, C ∈ Mat(n,R). Then

((AB)C)ij =
n∑

k=1

(AB)ikCkj

=
n∑

k=1

(
n∑

h=1

AihBhk

)
Ckj
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=
n∑

k=1

(
n∑

h=1

(AihBhk)Ckj

)

=
n∑

h=1

(
n∑

k=1

(AihBhk)Ckj

)
(by interchanging the order of summation)

=
n∑

h=1

(
n∑

k=1

Aih (BhkCkj)

)
(by associativity of multiplication in R)

=
n∑

h=1

Aih

(
n∑

k=1

BhkCkj

)

=
n∑

h=1

Aih(BC)hj

= (A(BC))ij

showing that (AB)C = A(BC), as required. �

§2d Trivial properties of rings

Let R be any ring. By Axiom (ii) in Definition 2.2 we know that there is an
element 0 ∈ R satisfying

($) a+ 0 = 0 + a = a for all a ∈ R.
Could there exist another element z ∈ R with the same property—that is,
satisfying

(£) a+ z = z + a = a for all a ∈ R ?

The answer is no. If z satisfies (£) then z = 0. To see this observe that
putting a = z in ($) gives z + 0 = z, while putting a = 0 in (£) gives
z + 0 = 0. Hence z must equal 0.

In the preceding paragraph we have proved that the zero element of any
ring is unique. There are a number of other properties which are trivially true
in the examples of rings familiar to us, and which are equally easily proved
to hold in any ring; some of these are listed in the theorems in this section.
Although they are trivial, it is necessary to prove that they are consequences
of the ring axioms if we wish to claim that they are true in all rings.
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2.9 Theorem In any ring R the zero element is unique, and each element
has a unique negative.

Proof. The first part has been proved above. For the second part, assume
that a ∈ R and that b, c ∈ R are both negatives of a. Using Definition 2.2
we have

b = b+ 0 (by Axiom (ii))
= b+ (a+ c) (since c is a negative of a)
= (b+ a) + c (Axiom (i))
= 0 + c (since b is a negative of a)
= c (Axiom (ii)).

Thus a cannot have two distinct negatives, which is what we had to prove.
�

In view of the preceding theorem there is no ambiguity in denoting the
negative of an element a by ‘−a’, as usual. It is customary also to write
‘x− y ’ for ‘x+ (−y) ’.

2.10 Theorem Let R be any ring and a, b, c ∈ R.

(i) If a+ b = a+ c then b = c.

(ii) −(a+ b) = (−a) + (−b).
(iii) −(−a) = a.

(iv) a0 = 0a = 0.

(v) a(−b) = −(ab) = (−a)b.
(vi) (−a)(−b) = ab.

(vii) a(b− c) = ab− ac.

Proof. (i) Assume that a+ b = a+ c. Then we have
(−a) + (a+ b) = (−a) + (a+ c)
((−a) + a) + b = ((−a) + a) + c (Axiom (i))

0 + b = 0 + c (by definition of ‘−a’)
b = c (Axiom (ii))

as required.

(ii) In view of the uniqueness of negatives it is sufficient to prove that
(−a) + (−b) is a negative of a+ b; that is, it is sufficient to prove that

((−a) + (−b)) + (a+ b) = 0 = (a+ b) + ((−a) + (−b)) .
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Furthermore, if we prove only the first of these equations, the other will follow
as a consequence of Axiom (iv) in Definition 2.2. But use of the first four
axioms readily gives

((−a) + (−b)) + (a+ b) = (−a) + ((−b) + (a+ b))
= (−a) + ((−b) + (b+ a))
= (−a) + (((−b) + b) + a)
= (−a) + (0 + a)
= (−a) + a

= 0.

(iii) By the definition, a negative of −a is any element b which satisfies
(−a) + b = 0 = b+ (−a). But these equations are satisfied if we put b = a;
so it follows that a is a negative of −a. (In other words, the equations that
say that x is a negative of y also say that y is a negative of x.) Since negatives
are unique, we have proved that −(−a) = a.

(iv) a0 + 0 = a0 (Axiom (i))
= a(0 + 0) (Axiom (ii))
= a0 + a0 (Axiom (vi)).

By part (i) above it follows that a0 = 0. The proof that 0a = 0 is similar.

The proofs of the other parts are left to the exercises. �

Our final result for this chapter gives a connection between two of the
concepts we have introduced.

2.11 Theorem Every field is an integral domain.

Proof. Comparing the definitions of ‘field’ and ‘integral domain’ we see
that this amounts to proving that there can be no zero divisors in a field. So,
let F be a field and let a ∈ F be a zero divisor. Then by definition a 6= 0 and
there exists b ∈ F with b 6= 0 and ab = 0. But since F is a field all nonzero
elements have multiplicative inverses; in particular there exists c ∈ F such
that ca = 1. Thus

b = 1b = (ca)b = c(ab) = c0 = 0

contradicting the fact that b 6= 0. So F can have no zero divisors. �
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Exercises

1. Prove parts (v), (vi) and (vii) of Theorem 2.10.

2. Prove that Ring Axioms (iv), (v) and (vi) hold in the direct sum R +̇ S
of two rings R and S.

3. Prove that Ring Axioms (ii), (iii) and (iv) are satisfied in Mat(n,R).
(Hint: The zero element of Mat(n,R) is the matrix all of whose
entries are zero, and the negative of a matrix A is the matrix
whose entries are the negatives of the entries of A.)

4. Prove that Ring Axiom (vi) is satisfied in Mat(n,R).

5. Let A be any set and R any ring, and let F(A,R) be the set of all
functions from A to R. Let addition and multiplication be defined on
F(A,R) by the rules

(f + g)(a) = f(a) + g(a)
(fg)(a) = f(a)g(a)

for all f , g ∈ F(A,R) and a ∈ A. Prove that with these operations
F(A,R) is a ring.

6. Suppose that e1 and e2 are both identity elements in the ring R. Prove
that e1 = e2. (Hint: Consider e1e2.)

7. Let R be a ring with an identity element 1. Prove that an element a ∈ R
can have at most one multiplicative inverse.

8. (i) Is the equation a2 − b2 = (a− b)(a+ b) valid in all rings?
(ii) Let R be a commutative ring and let x and y be elements of R hav-

ing the property that x2 = 0 and y2 = 0. Prove that (x+ y)3 = 0.
(iii) Give an example of a (noncommutative) ring R having elements x

and y such that x2 = 0 and y2 = 0 but (x+ y)3 6= 0.

(Hint: The matrix x =
(

0 1
0 0

)
satisfies x2 = 0.)

9. Suppose that R is a commutative ring and a ∈ R is nonzero and not a
zero divisor. Prove that if b, c ∈ R satisfy ab = ac then b = c.
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10. By imitating the construction in #5, describe how to construct the direct
sum A +̇B +̇ C of three rings A, B and C.

11. A ring R is said to be Boolean if a2 = a for all a ∈ R. Prove that if R
is Boolean then 2a = 0 for all a ∈ R. Prove also that all Boolean rings
are commutative.



3
The integers

In this chapter we will investigate divisibility and factorization in the ring Z.
These properties will be used in the next chapter in the construction of the
rings Zn, our first example of the important concept of a quotient of a ring.
Our treatment of Z and its quotients will be mimicked later in our discussion
of polynomial rings and their quotients, which are of central importance in
field extension theory.

§3a Two basic properties of the integers

We begin with a property of the set Z+ of positive integers which is equivalent
to the principle of mathematical induction. It should be regarded as an
axiom.

3.1 Least Integer Principle Every nonempty set of positive integers
has a least element.

Comment ...
3.1.1 To convince yourself that the principle of mathematical induction
follows from 3.1, it is worthwhile to try rewriting a simple proof by induction
as a proof by the Least Integer Principle. The idea is this. Suppose we wish
to prove that some statement P (n) is true for all positive integers n. We
check first that P (1) is true. Now let S be the set of all positive integers for
which P (n) is not true; we aim to prove that S is empty. If it is not then by
3.1 it has a least element, k, and k > 1 since 1 /∈ S. Thus k − 1 is positive
and not in S; so P (k− 1) is true. If we can prove that P (n) is true whenever
P (n − 1) is true it will follow that P (k) is true, contradicting k ∈ S, and
thereby showing that S = ∅. Thus although we have appealed to 3.1 rather
than induction, our task is the same: prove that P (1) is true and prove that
P (n) is true whenever P (n− 1) is true.

30
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As an illustration of this, let us rewrite the well known inductive proof
that

∑n
i=1 i

3 = (1/4)n2(n + 1)2 as a proof which appeals to 3.1 instead of
induction. (We have no use for this formula in this course, but we will make
use of the Least Integer Principle to prove other properties of Z.)

Let S = {n ∈ Z+ |
∑n

i=1 i
3 6= (1/4)n2(n + 1)2 } (the set of all in-

tegers for which the given formula is false. Our aim is to prove that S is
empty. Using indirect proof (see §0d), assume that S 6= ∅. By 3.1 it fol-
lows that S must have a least element. Let k be this least element. Since∑1

i=1 i
3 = 13 = (1/4)12(1 + 1)2 we see that 1 /∈ S, and so k 6= 1. Since

k ∈ Z+ and k 6= 1, it follows that k − 1 is also a positive integer. Since
k − 1 < k and k is the least positive integer in S, it follows that k − 1 /∈ S.
Thus

∑k−1
i=1 i

3 = (1/4)(k − 1)2k2. Adding k3 to both sides of this gives

∑k
i=1 i

3 = (1/4)(k − 1)2k2 + k3

= (1/4)((k2 − 2k + 1)k2 + 4k3)

= (1/4)(k4 − 2k3 + k2 + 4k3)

= (1/4)(k4 + 2k3 + k2)

= (1/4)k2(k + 1)2,

and by the definition of S we deduce that k /∈ S. But this is a contradiction,
since k ∈ S by the definition of k. This contradiction completes the proof
that S is empty, which is what we had to prove. ...

The illustrative proof in 3.1.1 above is somewhat convoluted, and is
more naturally expressed as a direct proof by induction, in the usual way. In
other cases, however, the Least Integer Principle may be more natural and
easier to use than induction. Indeed, our next proof is a case in point. We
use 3.1 to prove the Division Theorem for integers:

3.2 Theorem If a ∈ Z and n ∈ Z+ then there exist unique integers q and
r with a = qn+ r and 0 ≤ r < n.

Proof. Since r has to be a− qn, the theorem can be rephrased as follows:

(∗) If a ∈ Z and n ∈ Z+ then there exists a
unique integer q such that 0 ≤ a − qn < n.

Given a and n, we first prove the existence of such a q.
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Let S = {m ∈ Z+ | m = kn− a for some k ∈ Z }. If we put k = a2 + 1
then

kn− a = (a2 + 1)n− a ≥ a2 + 1− a > (a− 1

2
)2 > 0

and so kn − a ∈ S. Hence S 6= ∅, and by 3.1 it follows that S has a least
element.

Let k0 ∈ Z be chosen so that k0n − a is the least element of S. Then
we have

(1) k0n− a > 0.

Moreover, since (k0 − 1)n − a < k0n − a it follows that (k0 − 1)n − a /∈ S,
and therefore

(2) (k0 − 1)n− a ≤ 0.

Combining (1) and (2) yields

(k0 − 1)n ≤ a < k0n,

and, on subtracting (k0 − 1)n throughout,

0 ≤ a− qn < n

where q = k0 − 1. This establishes the existence part of (∗).
To prove the uniqueness assertion we must show that if q, q′ are integers

satisfying 0 ≤ a− qn < n and 0 ≤ a− q′n < n then q = q′.
Assume that q, q′ are such integers. Then

(q − q′)n = (a− q′n)− (a− qn) < n

since a− q′n < n and a− qn ≥ 0. Similarly,

(q′ − q)n = (a− qn)− (a− q′n) < n.

So we obtain
−n < (q − q′)n < n,

and, on dividing through by n,

−1 < q − q′ < 1.

Since q and q′ are integers it follows that q = q′, as required. �



Chapter Three: The integers 33

Comments ...
3.2.1 The integers q and r in 3.2 are called the quotient and remainder
when a is divided by n.

3.2.2 If the remainder r in 3.2 is zero, so that a = qn, we write ‘n|a’,
which should be read as ‘n is a factor of a’, or ‘n divides a’ (short for ‘n
divides a exactly’), or ‘n is a divisor of a’, or ‘a is a multiple of n’.

3.2.3 The integer 0 is divisible by all integers, since the equation 0 = 0n
is valid for all n.

3.2.4 Observe that if a is an integer then the set of all divisors of −a is
the same as the set of all divisors of a. ...

§3b The greatest common divisor of two integers

3.3 Theorem If a and b are integers which are not both zero then there
is a unique positive integer d such that

(a) d|a and d|b,
(b) if c is an integer such that c|a and c|b then c|d.

Furthermore, there exist integers m and n such that ma+ nb = d.

Comment ...
3.3.1 Part (a) says that d is a common divisor of a and b, while part (b)
says that any other common divisor of a and b is a divisor of d. So d is the
greatest common divisor of a and b:

d = gcd(a, b).
(A common notation is just d = (a, b). Some authors prefer the nomenclature
‘highest common factor’ to ‘greatest common divisor’.) ...

We give two proofs of the existence of a d with the properties described
in Theorem 3.3. The first, which is based on the Euclidean Algorithm, also
provides a method for calculating d.

If a and b be integers which are not both zero, define D = D(a, b) to
be the set of all common divisors of a and b:

D(a, b) = { c ∈ Z
∣∣ c|a and c|b }.

Our aim is to prove that there exists d ∈ D such that d is divisible by all
elements of D, and the strategy is to replace a and b by integers with smaller
absolute value without changing D.
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Observe first that by 3.2.4 we may replace a and b by |a| and |b| without
changing the set of common divisors. So we may assume that a ≥ 0 and b ≥ 0.
The next observation (Lemma 3.4 below) is that the set of common divisors
is unchanged if a is replaced by another integer which differs from a by a
multiple of b. The Euclidean Algorithm uses this fact repeatedly to replace
a and b by smaller numbers until one of them becomes zero.

3.4 Lemma If a, b, m ∈ Z then D(a, b) = D(b, a+mb).

Proof. Suppose that c ∈ D(a, b). Then a = rc and b = sc for some integers
r and s. Hence a +mb = (r +ms)c, and so c is a divisor of a +mb. Since
c is also a divisor of b it follows that c ∈ D(a + mb, b). This shows that
D(a, b) ⊆ D(a+mb, b).

Suppose, on the other hand, that e ∈ D(a+mb, b). Then a+mb = te
and b = ue for some integers t and u, and this gives a = (t−mu)e. Hence e
is a divisor of a as well as of b, and so e ∈ D(a, b). So D(a+mb, b) ⊆ D(a, b).

�

To find the greatest common divisor of two nonegative integers a and b,
proceed as follows. Without loss of generality we may assume that a ≥ b. If
b 6= 0 let b′ be the remainder on division of a by b, and define a′ = b. Since
b′ = a− qb for some q, Lemma 3.4 gives

D = D(a, b) = D(b, a− qb) = D(a′, b′).

So D is unchanged, and a′ and b′ are smaller than a and b were. If b′ 6= 0
we can replace a by a′ and b by b′ and repeat the process. Eventually, after
repeating the process often enough, the smaller of the two numbers will be
zero. Let d be the other number. Then the set D, which is unchanged
throughout, is equal to

D(d, 0) = { c ∈ Z
∣∣ c|d and c|0 } = { c ∈ Z

∣∣ c|d }.
So the set of all common divisors of the two numbers a and b that we started
with equals the set of all divisors of d. In particular, d itself is the greatest
common divisor of a and b, divisible by every other common divisor.

We can conveniently paraphrase the above description of the algorithm
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using terminology based on various computer programming languages:

Euclidean Algorithm.

while b 6= 0 do
[a, b] := [b, a− b ∗ (adiv b)]

enddo
return a

The “:=” sign in this means “becomes”. The pair of numbers a and b
are replaced by b and a− qb respectively, where q the quotient on dividing a
by b, and this is repeated until b = 0. The program then returns the other
number, which is the gcd of the initial two.

Using mathematical terminology of a more conventional kind, let a1 = a
and a2 = b, and (recursively) define ai+1 to be the remainder on dividing
ai−1 by ai, as long as ai 6= 0. This results in the following formulae:

a1 = q3a2 + a3

a2 = q4a3 + a4

...
ak−2 = qkak−1 + ak

ak−1 = qk+1ak

0 < a3 < a2

0 < a4 < a3

...
0 < ak < ak−1

ak+1 = 0.

Since (by 3.2) the remainder on dividing ai−1 by ai is a nonnegative integer
less than ai, the sequence a2, a3, . . . is a strictly decreasing sequence of
nonnegative integers. Any such sequence must eventually reach 0. So the
process must terminate. Now if D = D(a1, a2) then repeated application of
3.4 gives

D = D(a2, a3) = D(a3, a4) = · · · = D(ak, ak+1).

But D(ak, ak+1) = D(ak, 0) is just the set of all divisors of ak, and so putting
d = ak we conclude immediately that d ∈ D and c|d for all c ∈ D. That is,
(a) and (b) of 3.3 are satisfied. Summarizing:

3.4.1 The gcd of two integers is the last nonzero
remainder obtained in the Euclidean Algorithm.
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The equations above also show how to express gcd(a1, a2) in the form
ma1 + na2 with m, n ∈ Z. The idea is that a1 and a2 are trivially expressed
in this form, since we obtain

a1 = m1a1 + n1a2

a2 = m2a1 + n2a2

if we define m1 = 1, n1 = 0 and m2 = 0, n2 = 1, and the equations from
the algorithm permit one to successively express a3, a4, . . . , and eventually
ak = gcd(a1, a2), in the required form. Specifically, if we have expressions
for ai−1 and ai,

ai−1 = mi−1a1 + ni−1a2

ai = mia1 + nia2,

then the equation
ai−1 = qi+1ai + ai+1

(from the algorithm) gives

ai+1 = ai−1 − qi+1ai

= (mi−1a1 + ni−1a2)− qi+1(mia1 + nia2)
= mi+1a1 + ni+1a2,

where
mi+1 = mi−1 − qi+1mi

ni+1 = ni−1 − qi+1ni.

Thus we have an expression for ai+1 and can repeat the process. This even-
tually yields an expression of the required kind for ak = gcd(a1, a2).

Thus the full algorithm, for finding the gcd of a0 and b0 and expressing
it in the form ma0 + nb0, is as follows:

Begin with a = a0 and b = b0.
m := 1, n := 0, m′ := 0, n′ := 1
while b 6= 0 do

q := adiv b
[a, b] := [b, a− qb]
[m,m′] := [m′,m− qm′]
[n, n′] := [n′, n− qn′]

enddo
return a, m, n
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At the end of the process, a is the gcd of a0 and b0, and m and n satisfy
a = ma0 + nb0.

We have now proved most of Theorem 3.3, but we have still to prove
the uniqueness of the gcd. For this, assume that d1 and d2 are both gcd’s of
a and b; that is, (a) and (b) of 3.3 are satisfied with d replaced by d1 and
also with d replaced by d2. Now since d1|a and d1|b (by (a) for d1) it follows
from (b) for d2 that d1|d2. Hence d1 ≤ d2. But exactly the same reasoning,
using (a) for d2 and (b) for d1, gives d2 ≤ d1. So d1 = d2.

Example

#1 Compute gcd(84, 133) and find integers m and n such that

gcd(84, 133) = 84m+ 133n.

�−−. The steps in the Euclidean Algorithm are:

133 = 1× 84 + 49(1)
84 = 1× 49 + 35(2)
49 = 1× 35 + 14(3)
35 = 2× 14 + 7(4)
14 = 2× 7(5)

The last nonzero remainder is 7, and so 7 = gcd(84, 133).
Now (1) gives

49 = 133− 1× 84(6)

and substituting this into (2) we obtain an expression for 35 as a combination
of 84 and 133:

35 = 84− 1× 49(7)
= 84− (133− 1× 84)
= 2× 84− 133.

Substituting (6) and (7) into (3) gives an expression for 14:

14 = 49− 1× 35(8)
= (133− 1× 84)− (2× 84− 133)
= 2× 133− 3× 84.

Substitute (7) and (8) into (4):
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7 = 35− 2× 14(9)
= (2× 84− 133)− 2(2× 133− 3× 84)
= 8× 84− 5× 133.

So m = 8, n = −5 is a solution. /−−�

Now for the second proof of the existence of the gcd:

Proof. Let a and b be integers which are not both zero, and let

S = {ma+ nb | m,n ∈ Z } ∩ Z+.

Since a2 + b2 > 0 we see that a2 + b2 ∈ S, and so, by 3.1, S has a least
element. Let d be this least element. Then certainly there exist m, n ∈ Z
with d = ma+ nb.

Let d′ be the remainder on dividing a by d. Then 0 ≤ d′ < d, and, for
some q ∈ Z,

d′ = a− qd

= a− q(ma+ nb)
= (1− qm)a+ (−qn)b.

If d′ 6= 0 this shows that d′ ∈ S, contradicting the fact that d is the least
element of S. Hence d′ = 0; that is, d|a. The same reasoning with a replaced
by b shows that d|b. �

§3c Factorization into primes

3.5 Definition A nonnegative integer is said to be prime if it is strictly
greater than 1 and has no positive factors other than itself and 1.

3.6 Proposition If a|bc and gcd(a, b) = 1 then a|c.

Proof. Since gcd(a, b) = 1 there exist (by Theorem 3.1) integers m and n
such that ma + nb = 1. Multiplying through by c gives c(ma) + c(nb) = c,
which can be rewritten as (cm)a + (bc)n = c since multiplication in Z is
commutative. Now both terms on the left hand side are multiples of a (since
we are given that a|bc). Hence a|c. �
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3.7 Theorem Each integer n > 1 can be expressed as a product of primes.
(That is, n = p1p2 . . . pr for some r ≥ 1 and primes p1, p2, . . . , pr ∈ Z+.)

Proof. Assume that the above statement is false. By the Least Integer
Principle there exists a least integer n > 1 which is not expressible as a
product of primes. Then n itself is not prime (otherwise we could take r = 1
and p1 = n); so n = n1n2 with 1 < n1 < n and 1 < n2 < n. By the
minimality of n it follows that n1 and n2 are both expressible as products of
primes. Hence so is n, contradiction. �

3.8 Theorem The product in 3.7 is unique up to the order of the factors.
In other words, if p1, p2, . . . , pr and q1, q2, . . . , qs are positive prime integers
such that p1p2 . . . pr = q1q2 . . . qs then r = s, and, for some permutation σ of
{1, 2, . . . , r}, we have pi = qσ(i) for i = 1, 2, . . . , r.

Proof. We have p1|p1p2 . . . pr = q1(q2q3 . . . qs). Observe that since the only
positive divisors of a prime are itself and 1, two distinct primes can have no
positive common divisors other than 1. So if p1 6= q1 then gcd(p1, q1) = 1,
and by 3.6 it follows that p1|q2q3 . . . qs. If p1 6= q2 the same argument gives
p1|q3 . . . qs. Thus if p1 6= qj for each j we get successively p1|q2q3 . . . qs,
p1|q3q4 . . . qs, p1|q4 . . . qs, . . . , and eventually p1|qs. But this is contrary
to the assumption that p1 6= qj for each j. So p1 = qj1 for some j1. Now
cancelling gives p2p3 . . . pr = q1 . . . qj1−1qj1+1 . . . qs, and repeating the argu-
ment gives p2 = qj2 for some j2 6= j1. We can continue in this way cancelling
factors until one side or the other is reduced to 1. But since 1 cannot equal
a product of primes greater than 1 it follows that when all the factors have
been cancelled from one side all the factors have been cancelled from the
other side too. So we must have r = s and pi = qji

for i = 1, 2, . . . r,
where j1, j2, . . . , jr are all distinct—that is, pi = qσ(i) where σ(i) = ji is a
permutation of {1, 2, . . . , r}. �

Example

#2 Prove that
√

3 is irrational.

�−−. We prove first that if a and b are integers such that a2− 3b2 = 0 then
a = b = 0.

Suppose to the contrary that there exists a nontrivial integral solution
to a2 − 3b2 = 0. Replacing a and b by their absolute values we may assume
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that a and b are both in Z+. By Theorem 3.7 both a and b can be expressed
as products of primes; say

a = p1p2 . . . pn and b = q1q2 . . . qm.

Now a2 = 3b2 gives

(∗∗) p2
1p

2
2 . . . p

2
n = 3q21q

2
2 . . . q

2
m.

But by Theorem 3.8 prime factorizations are unique up to ordering of the
factors; hence the number of times 3 occurs on the left hand side of (∗∗)
equals the number of times it occurs on the right hand side. But 3 occurs an
even number of times on the left hand side (twice the number of i such that
pi = 3) and an odd number of times on the right hand side (one plus twice
the number of j such that qj = 3). This contradiction shows that no such a
and b exist.

We can now see that
√

3 is irrational, for if
√

3 = a/b with a, b ∈ Z
then b 6= 0 and a2 − 3b2 = 0. But the Lemma shows that this is impossible.

Of course, similar proofs apply for
√

2,
√

5,
√

6, 3
√

2, and so on.
/−−�

Exercises

1. In each case compute the gcd of the given integers a and b and find
integers m and n such that gcd(a, b) = ma+ nb:

(i) a = 420, b = 2079 (ii) a = 1188, b = 4200.

2. Prove that 3
√

2 is irrational.

3. Show that if a|b and b|c then a|c.

4. Show that if a|r and b|s then gcd(a, b)| gcd(r, s).

5. Let a, b and c be integers, and let d = gcd(a, gcd(b, c)). Show that
d = gcd(gcd(a, b), c). Show also that d is the largest positive integer
which is a divisor of all of a, b and c, and that there exist integers l, m
and n with d = la+mb+ nc.
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6. Let a, b be positive integers and M the set of positive integers which
are multiples of both a and b. The least element of M is called the least
common multiple of a and b and is denoted by lcm(a, b).

(i) Show that if a|c and b|c then ab|cd, where d = gcd(a, b).
(ii) Show that lcm(a, b) = ab

/
gcd(a, b).

7. Let a, b and e be integers and let d = gcd(a, b). Prove that there exist
integers m and n such that ma + nb = e if and only if e is a multiple
of d.

8. (i) Find an integral solution (m,n) to the equation
4641m + 2093n = 364.

(ii) Prove that there is no integral solution to the equation
91m + 63n = 6.

9. Let a and b be integers, and let m = m0, n = n0 be an integral solution
to the equation

($) ma+ nb = d

where d = gcd(a, b). Prove that for any k ∈ Z

m = m0 + k(b/d)
n = n0 − k(a/d)

is another solution to ($). Prove also that every integral solution to ($)
has this form.

10. Let m be a positive integer. Show that there exist unique integers
a0, a1, . . . , ar such that ar 6= 0,

m = a0 + 8a1 + 82a2 + · · ·+ 8rar

and 0 ≤ ai < 8 for i = 0, 1, . . . , r.
(Hint: Use the Division Theorem repeatedly.)



4
Quotients of the ring of integers

Our primary objective in this chapter is the construction of the rings Zn.
We start with a preliminary section which will also be needed later in our
discussion of quotient rings in general.

§4a Equivalence relations

Sometimes when considering elements of some set S it is convenient to lump
together various elements of S if they are equivalent to one another, by some
criterion of equivalence. For example, if S is the set of all cars in Sydney we
may wish to regard two elements of S as equivalent if they are of the same
make. (That is, all Holdens are equivalent, all Fords are equivalent, and so
on.) Obviously the set of all equivalence classes will be much smaller than
the set S itself. One can easily invent various other equivalence relations,
but to justify the term ‘equivalence’ the following properties should hold:

(i) Every element should be equivalent to itself.
(ii) If a is equivalent to b then b should be equivalent to a.
(iii) If a is equivalent to b and b is equivalent to c then a should be equivalent

to c.

4.1 Definition Let ∼ be a relation on a set S. That is, for every pair a,
b of elements of S either a ∼ b (a is related to b) or a 6∼ b (a is not related to
b). Then ∼ is called an equivalence relation if the following hold for all a, b,
c ∈ S:

(i) a ∼ a. (reflexive law)
(ii) If a ∼ b then b ∼ a. (symmetric law)
(iii) If a ∼ b and b ∼ c then a ∼ c. (transitive law)

If ∼ is an equivalence relation on the set S and a ∈ S define

a = { b ∈ S | b ∼ a }.

42
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That is, a is the subset of S consisting of all elements equivalent to a. The
subset a is called the equivalence class of a.

4.2 Theorem If ∼ is an equivalence relation on S and a, b ∈ S then

(i) a = b if and only if a ∼ b,

(ii) if a 6∼ b then a ∩ b = ∅.

Proof. (i) Suppose that a ∼ b. By the Symmetric Law we also have that
b ∼ a. Now for x ∈ S the Transitive Law gives us the following facts:

(∗) If x ∼ a then x ∼ a and a ∼ b; so x ∼ b.
If x ∼ b then x ∼ b and b ∼ a; so x ∼ a.

By (∗) we see that x ∼ a if and only if x ∼ b. Hence

a = {x ∈ S | x ∼ a } = {x ∈ S | x ∼ b } = b

Conversely, suppose that a = b. Since a ∼ a we have

a ∈ {x ∈ S | x ∼ a } = a.

Hence
a ∈ b = {x ∈ S | x ∼ b }.

So a ∼ b.
(ii) Suppose that a 6∼ b and a ∩ b 6= ∅. Let c ∈ a ∩ b. Then we have c ∈ a
and c ∈ b; so c ∼ a and c ∼ b. By the Symmetric Law we deduce that a ∼ c
and c ∼ b, so that the Transitive Law gives a ∼ b, contradicting our initial
assumption. �

Comment ...
4.2.1 Theorem 4.2 shows us that the equivalence classes form a partition
of the set S—that is, every element of S lies in exactly one equivalence class.

...

We now define
S = { ā | a ∈ S }.

That is, S is the set of all equivalence classes of elements of S.

By 4.2, a and b are the same if a ∼ b. So when we deal with equivalence
classes we are, so to speak, amalgamating equivalent elements. Intuitively,
we pretend that we cannot tell the difference between equivalent elements.
Then all equivalent elements combine to be one single element (which, strictly
speaking, is an equivalence class) of a set S which is smaller than our original
set S.
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4.3 Definition The set S̄ defined above is called the quotient of S by the
equivalence relation ∼.

§4b Congruence relations on the integers

Throughout this section let n be a fixed positive integer.

4.4 Definition Let ≡ be the relation defined on Z by the rule
a ≡ b if and only if a − b is a multiple of n.

The relation ≡ is called congruence modulo n.

Comment ...
4.4.1 We usually write ‘ a ≡ b (mod n) ’ rather than just ‘ a ≡ b ’, unless
there is no possible confusion. ...

For example, 11 ≡ 3 (mod 8), and −6 ≡ 40 (mod 23), and so on.

4.5 Theorem (i) Congruence modulo n is an equivalence relation on Z.

(ii) For every integer m there is exactly one integer r in the range 0 ≤ r < n
such that m is congruent to r modulo n.

Proof. (i) Let a, b, c ∈ Z be such that a ≡ b (mod n) and b ≡ c (mod n).
Then, by the definition, n

∣∣(b− a) and n
∣∣(c− b). That is,

b− a = nr and c− b = ns

for some r, s ∈ Z. Now

c− a = (c− b) + (b− a)
= ns+ nr

= n(s+ r).

So n
∣∣(c − a), and we have proved that congruence modulo n is a transitive

relation.
The proofs that congruence is reflexive and symmetric are left to the

exercises.
(ii) By definition, m ≡ r (mod n) if and only if n

∣∣(m− r). That is, m ≡ r
(mod n) if and only if m− r = qn for some q ∈ Z. But by Theorem 3.2 the
equation m = qn+ r has exactly one integral solution with 0 ≤ r < n. �
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Comments ...
4.5.1 By Theorem 4.5 the equivalence classes 0, 1, 2, . . . , n− 1 are all
the equivalence classes for the relation congruence modulo n, and these classes
are all distinct from one another.

4.5.2 We will use the notation ‘ Zn’ rather than ‘ Z ’ for the set of all
equivalence classes. The equivalence classes for the congruence relation are
usually called ‘congruence classes’. ...

§4c The ring of integers modulo n

Let n be a fixed positive integer. In the last section we defined the equivalence
relation ‘congruence modulo n’ on Z and defined Zn to be the set of all
congruence classes. By Theorem 4.5

Zn = {0, 1, 2, . . . , n− 1}

(where by definition r = {m ∈ Z | m ≡ r (mod n) }). Intuitively, we have
amalgamated into one object all integers which leave the same remainder on
division by n. For example, if n = 5 we have

Z5 = {0, 1, 2, 3, 4}
where

0 = { . . . ,−5, 0, 5, 10, . . . }
1 = { . . . ,−4, 1, 6, 11, . . . }
2 = { . . . ,−3, 2, 7, 12, . . . }
3 = { . . . ,−2, 3, 8, 13, . . . }
4 = { . . . ,−1, 4, 9, 14, . . . }.

Intuitively, the integers . . . , −6, −1, 4, 9, 14, 19, . . . become a single object,
as do . . . , −2, 3, 8, . . . and so on. That is, these numbers are all regarded
as equal when working modulo 5. What this means strictly is that

· · · = −6 = −1 = 4 = 9 = · · ·
and so on. In other words we have many different names for the same con-
gruence class.

Observe that in the above example the sum of any element in set 3 and
any element in the set 4 gives an element in the set 7 = 2. Thus, for instance,
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−2 ∈ 3, 19 ∈ 4, and −2 + 19 = 17 ∈ 2. So it seems reasonable to define the
sum of the sets 3 and 4 to be equal to the set 2. That is,

3 + 4 = 2.
Similarly the product of any element in the set 2 and any element in the set
3 gives an element in the set 1. For example

2× 3 = 6 ∈ 1, 7× (−2) = −14 ∈ 1, (−8)× 13 = −104 ∈ 1.
So we define

2 × 3 = 1.
This suggests the following general rule for addition and multiplication of
congruence classes. To add (or multiply) two classes pick one element from
each class and add (or multiply) the elements. The congruence class in which
the answer lies is then defined to be the sum (or product) of the two given
classes. We must show, however, that you get the same answer whichever
elements you choose. Fortunately that is not hard to prove.

4.6 Lemma Let n be a positive integer. If a, a′, b, b′ are integers such that
a ≡ a′ (mod n) and b ≡ b′ (mod n) then

a+ b ≡ a′ + b′ (mod n) and ab ≡ a′b′ (mod n).

Proof. Assume that a ≡ a′ and b ≡ b′. Then n|a−a′ and n|b− b′. That is,
a′ = a + rn and b′ = b + sn for some r, s ∈ Z.

This gives
a′ + b′ = (a+ rn) + (b+ sn) = (a+ b) + (r + s)n ≡ a+ b (mod n)

and similarly
a′b′ = ab+ (rb+ as+ rsn)n ≡ ab (mod n).

�

Comment ...
4.6.1 In view of 4.2, an alternative formulation is this:

If a = a′ and b = b′ then a+ b = a′ + b′ and ab = a′b′.
...

4.7 Theorem Addition and multiplication can be defined on Zn in such a
way that a+ b = a+ b and a b = ab for all a, b ∈ Z.

Proof. Given α and β in Zn there are uniquely determined integers r and
s such that 0 ≤ r < n, 0 ≤ s < n and r = α, s = β. Define α + β = r + s
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and αβ = rs. We have now defined addition and multiplication on Zn; it
remains to check that the formulae in the theorem statement are satisfied.

Let a, b ∈ Z, and let r, s ∈ Z be such that 0 ≤ r < n, 0 ≤ s < n and
r = a, s = b. By the definitions just given, a + b = r + s and a b = rs, and
by 4.6.1 the required result follows. �

It is now trivial to verify that these operations of addition and multi-
plication on Zn satisfy the ring axioms.

4.8 Theorem The set Zn forms a ring with respect to the operations of
addition and multiplication as defined in 4.7.

Proof. It is necessary to check all of the axioms (i)–(vi) of Definition 2.2.
In each case one simply appeals to the same property of Z and the formulae
in 4.7. We will do only the first three axioms, leaving the others as exercises.
(i) Let α, β, γ ∈ Zn. Then there exist a, b, c ∈ Z with a = α, b = β, c = γ,
and we have

(α+ β) + γ = (a+ b) + c

= a+ b+ c (by the definition of addition in Zn)
= (a+ b) + c (similarly)
= a+ (b+ c) (since addition in Z is associative)
= a+ b+ c (by the definition of addition in Zn)
= a+ (b+ c) (similarly)
= α+ (β + γ).

(ii) We will prove that 0 is a zero element in Zn. Let α be any element of
Zn, and choose any a in Z with a = α. Then

α+ 0 = a+ 0 = a+ 0 = a = α.

Similarly, 0 + α = α.
(iii) Let α ∈ Zn and let a ∈ Z with a = α. Then

α+−a = a+−a = a+ (−a) = 0

and similarly −a+ α = 0. Since 0 is the zero element of Zn this shows that
−a is a negative of α. �
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§4d Properties of the ring of integers modulo n

Since multiplication in Z is commutative we have in Zn that

a1 a2 = a1a2 = a2a1 = a2 a1

for all a1, a2 ∈ Z. Since every element of Zn is of the form a for some a ∈ Z
this shows that multiplication in Zn is commutative. We also have

1 a = 1a = a1 = a 1

for all a ∈ Z, and it follows that 1 is a multiplicative identity for Zn. Thus
we have proved

4.9 Theorem The ring Zn is commutative and has an identity element.

The ring Z itself, as well as being commutative and having an identity
element, has the property that there are no zero divisors. Hence Z is an
integral domain. However the ring Zn usually has got zero divisors. For
instance in Z6 we have 3 6= 0 and 2 6= 0 but 3 × 2 = 6 = 0. Hence we see
that Zn is not generally an integral domain. A little thought shows that it
is not possible to find zero divisors in Zn in this way if n is prime. In fact:

4.10 Theorem The ring Zn is an integral domain if and only if n is prime.

Proof. If n is not prime then there exist r, s ∈ Z with 1 < r < n, 1 < s < n
and rs = n. This gives

r s = rs = n = 0

although r 6= 0 and s 6= 0. Since 0 is the zero element of Zn it follows that
Zn has zero divisors and is therefore not an integral domain.

On the other hand, suppose that n is prime and suppose that r s = 0.
Then rs = 0; that is, rs ≡ 0 (mod n). So n is a divisor of rs. But if
r and s are expressed as products of primes and these two expressions are
multiplied together, the result is an expression for rs as a product of primes.
By Theorem 3.8 we deduce that the prime divisors of rs are precisely the
prime divisors of r together with the prime divisors of s. Since n is a prime
it follows that n must be either a prime divisor of r or a prime divisor of
s. Hence either r ≡ 0 (mod n) or s ≡ 0 (mod n); that is, either r = 0 or
s = 0. Thus we have proved that it is impossible for the product of two
nonzero elements of Zn to be zero. So Zn has no zero divisors. Since also Zn

is commutative and has an identity element (Theorem 4.9), Zn is an integral
domain. �
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So if p is prime Zp is an integral domain. However even more is true—in
fact Zp is a field in this case. To prove this one must show that each element
of Zp has a multiplicative inverse. (Observe, for instance, that this is true
in Z5. Since 2 × 3 = 6 = 1 it can be seen that 2 and 3 are multiplicative
inverses of each other, while similar calculations show that 1 and 4 are each
their own inverse.)

We prove a slightly more general statement, namely:

4.11 Theorem Suppose that D is an integral domain which has only a
finite number of elements. Then D is a field.

Proof. Recall that an integral domain is a commutative ring with identity
with no zero divisors, while a field is a commutative ring with identity for
which all nonzero elements have multiplicative inverses. So it suffices to prove
that if a ∈ D and a 6= 0 then there exists b ∈ D with ab = 1.

Let a ∈ D with a 6= 0. Define a mapping λ:D → D by

λ(b) = ab for all b ∈ D.

We will show that λ is injective. That is, we show that λ(b) and λ(c) can
only be equal if b = c.

Suppose that λ(b) = λ(c). Then ab = ac, and so ab − ac = 0. By the
distributive law we obtain a(b − c) = 0. But D has no zero divisors (since
it is an integral domain), and since a 6= 0 it follows that b − c = 0 ; that is,
b = c. Hence λ is injective, as claimed above.

Now suppose that b1, b2, . . . , bk are all the distinct elements of D.
Then λ(b1), λ(b2), . . . , λ(bk) are all distinct (since λ(bi) = λ(bj) would imply
that bi = bj). But D has only k elements altogether; so each element of D
is equal to some λ(bi). In particular the identity element 1 equals λ(bi) for
some i. That is, 1 = λ(b) = ab for some b ∈ D. So a has a multiplicative
inverse, namely b. This argument applies to any nonzero element a of D, and
so it follows that D is a field. �

Note also that even if n is not prime an element a of Zn will have a
multiplicative inverse if gcd(a, n) = 1. This is so since by Theorem 3.3 there
will exist integers r and s with ra+ sn = 1, giving

ra = 1− sn ≡ 1 (mod n)

so that r a = 1, and r is the inverse of a.
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Example

#1 Calculate the inverse of the element 24 in Z1001

�−−. Apply the Euclidean Algorithm to find integers r and s which satisfy
24r + 1001s = 1:

1001 = 41× 24 + 17
24 = 1× 17 + 7
17 = 2× 7 + 3
7 = 2× 3 + 1

Substituting back gives

1 = 7− 2× 3 = 7− 2(17− 2× 7) = 5(24− 17)− 2× 17
= 5× 24− 7(1001− 41× 24) = 292× 24− 7× 1001.

Thus 292 is the required inverse. /−−�

Exercises

1. Prove that congruence modulo n is reflexive and symmetric.

2. Prove that Zn satisfies Axioms (iv), (v) and (vi) of Definition 2.2.

3. Use mathematical induction to show that 6n ≡ 6 (mod 10) for every
positive integer n.

4. Let m be an odd positive integer. Show that

(i) m2 ≡ m (mod 2m)
(ii) m2 ≡ 1 (mod 4).

5. Find all solutions of the congruence 54x ≡ 13 (mod 37).

6. Find the remainder when 1915 is divided by 36.

7. Find all the zero divisors in the rings Z8 and Z2 +̇ Z2 +̇ Z2.

8. Show that an integer is divisible by four if and only if the sum of the
units digit and twice the tens digit is divisible by four.
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9. Suppose that m is a positive integer, and let C be one of the con-
gruence classes modulo m. Prove that if a ∈ C and b ∈ C then
gcd(a,m) = gcd(b,m).

10. Determine if the elements 13 and 14 have inverses in the ring Z22, and
find the inverses if they exist.

11. Prove that if m|n and a ≡ b (mod n) then a ≡ b (mod m).

12. Let X = {−1, 0, 1} and define the relation ∼ on Z+ by the rule
a ∼ b if a − b ∈ X.

Show that ∼ satisfies two of the properties of an equivalence relation,
and give an example to indicate why the third property in not satisfied.

13. Define the relation ∼ on R by the rule
x ∼ y if and only if y − x ∈ Z.

Prove that ∼ is an equivalence relation and describe the eqivalence
classes.

14. For the given set and relation below, determine which define equivalence
relations, giving proofs or counterexamples:

(i) S is the set of all people living in Australia; a ∼ b if a lives within
100 km of b.

(ii) S is the set of all integers; a ∼ b if a ≥ b.
(iii) S is the set of all subsets of a finite set T ; a ∼ b if a and b have

the same number of elements.



5
Some Ring Theory

In this chapter we introduce some of the concepts which are needed to study
abstract rings, and prove the first theorems of the subject.

§5a Subrings and subfields

5.1 Definition (i) A subset S of a ring R is called a subring if S is itself
a ring with respect to the operations of R.
(ii) A subset S of a field F is called a subfield if S is itself a field with respect
to the operations of F .

For example, the ring Z is a subring of the field R, but not a subfield.
The rational numbers, Q, form a subfield of R, which is in turn a subfield of
C. The even integers, 2Z, form a subring of Z.

5.2 Theorem Let R be a ring and S a subset of R such that

(i) S is nonempty,

(ii) S is closed under multiplication (that is, ab ∈ S for all a, b ∈ S),

(iii) S is closed under addition (a+ b ∈ S for all a, b ∈ S),

(iv) S is closed under forming negatives (−a ∈ S for all a ∈ S).

Then S is a subring of R.

Conversely, any subring of R has these four properties.

Proof. Assume first that S is a subring of R. We must prove that the four
properties above are satisfied.

Since S is a ring it must have a zero element. So S 6= ∅, and the first
of the properties holds. Note also that if z is the zero of S and 0 the zero of
R then z + z = z (by the defining property of the zero of S) and z + 0 = z

52
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(by the defining property of the zero of R), so that by Theorem 2.10 (i) we
must have z = 0.

Now let a and b be arbitrary elements of S. Since the operations of
addition and multiplication in R define operations on S we must have that
a+b and ab are elements of S. So properties (ii) and (iii) hold. Furthermore,
since a must have a negative in S there must exist x ∈ S such that

a+ x = z = x+ a.

But since z = 0 these equations also say that x is a negative of a in R. By
Theorem 2.9 it follows that x = −a, and we have proved that −a ∈ S, as
required.

For the converse we must assume that S satisfies properties (i)–(iv)
and prove that it satisfies Definition 2.2. Observe that properties (ii) and
(iii) guarantee that the sum and product in R of two elements of S are
actually elements of S; hence the operations of R do give rise to operations
on S. It remains to prove that Axioms (i)–(vi) of Definition 2.2 are satisfied
in S. In each case the proof uses the fact that since R is a ring the same
axiom is satisfied in R. The hardest part is to prove that the zero element of
R is actually in S; so let us do this first.

We are given that S is nonempty; hence there exists at least one element
s ∈ S. By property (iv) it follows that −s ∈ S, and so by property (iii)

0 = s+ (−s) ∈ S.

Let a, b, c ∈ S. By Axioms (i), (iv), (v) and (vi) in R we have

(a+ b) + c = a+ (b+ c)
a+ b = b+ a

(ab)c = a(bc)
a(b+ c) = ab+ ac

(a+ b)c = ac+ bc

and so it follows that Axioms (i), (iv), (v) and (vi) are satisfied in S.
We proved above that 0 ∈ S. Now if a is any element of S we have (by

Axiom (ii) in R) that a+0 = a = 0+ a, and therefore 0 is a zero element for
S. Moreover by property (iv) we have that −a ∈ S; thus each element of S
has a negative in S. So S satisfies Axioms (ii) and (iii). �
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Comments ...
5.2.1 In the above proof we have also shown that every subring contains
the zero element of the ring.

5.2.2 The point of proving theorems is that the work which goes into
proving them never has to be repeated. One has simply to check that the
hypotheses of the theorem are satisfied to be able to assert that its conclusion
is satisfied, without repeating the steps of the proof. In particular, if we have
to prove that something is a ring we can usually contrive to use a theorem
(such as the above) in whose proof the tedium of checking the axioms one by
one has already been dealt with. ...

Examples

#1 Prove that S = { a+ b
√

3 | a, b ∈ Z } is a subring of R.

�−−. By Theorem 5.2 it is sufficient to check that S is nonempty and sat-
isfies the three closure properties.

It is obvious that S is nonempty—for example 0 = 0 + 0
√

3 ∈ S.

Let α, β ∈ S. We must show that αβ, α + β and −α are all in S. By
definition of S we have α = a+ b

√
3 and β = c+d

√
3 for some a, b, c, d ∈ Z.

Thus
α+ β = (a+ c) + (b+ d)

√
3

αβ = (ac+ 3bd) + (ad+ bc)
√

3

−α = (−a) + (−b)
√

3.

In each case the right hand side has the form (integer)+(integer)
√

3, and so
α+ β, αβ and −α are all in S, as required. /−−�

#2 Prove that

S =
{(

a b
0 c

) ∣∣∣ a, b, c ∈ Z
}
.

is a subring of Mat(2,Z).

�−−. S 6= ∅ since
(

0 0
0 0

)
∈ S.
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Let α =
(
a b
0 c

)
and β =

(
d e
0 f

)
be arbitrary elements of S. Then

α+ β =
(
a+ d b+ e

0 c+ f

)
∈ S,

αβ =
(
ad ae+ bf
0 cf

)
∈ S,

−α =
(
−a −b
0 −c

)
∈ S.

Hence the closure properties hold. /−−�

#3 Let S =
{( 0 a

b c

) ∣∣∣ a, b, c ∈ Z
}
. Prove that S is not a subring of

Mat(2,Z).

�−−. The multiplication operation on Mat(2,Z) does not yield an operation
on S, since the product of two elements of S need not be in S. For example,(

0 1
1 0

)
∈ S and

(
0 1
1 0

)
∈ S,

but (
0 1
1 0

)(
0 1
1 0

)
=
(

1 0
0 1

)
6∈ S.

/−−�

#4 Let R = Z8 and let S ⊆ R be given by

S = {0̄, 2̄, 4̄, 6̄}.

Prove that S is a subring of Z8.

�−−. Observe that S = { 2r | r ∈ Z }. Obviously S 6= ∅.
Since

2r + 2s = 2r + 2s ∈ S,
and

2r 2s = 4rs = 2(2rs) ∈ S,
and

−
(
2r
)

= 2(−r) ∈ S,
the required closure properties hold. /−−�
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#5 The subset {1̄, 3̄, 5̄, 7̄} of Z8 is not a subring. It is closed under multi-
plication but not addition.

5.3 Theorem Let F be a field and S a subset of F such that

(i) 0 ∈ S and 1 ∈ S,

(ii) if a ∈ S and b ∈ S then a+ b ∈ S and ab ∈ S,

(iii) if a ∈ S then −a ∈ S,

(iv) if a ∈ S and a 6= 0 then a−1 ∈ S.

Then S is a subfield of F .

Conversely, any subfield of F satisfies these properties.

Proof. Since F is a field it is certainly a ring. Suppose that S is a subset
of F satisfying the properties above. Then S satisfies properties (i)–(iv) of
Theorem 5.2, and so by Theorem 5.2 it follows that S is a subring of F .
Hence S is a ring.

We are given that the identity element of F is in the subset S; hence
S has an identity element. The identity element is nonzero, since by Defi-
nition 2.8 applied to F we know that 1 6= 0. Furthermore, ab = ba for all
a, b ∈ S, since by Definition 2.8 the same is true for all a, b ∈ F . Finally, if
a is a nonzero element of S then property (iv) above guarantee that a has an
inverse in S. We have now checked that all the requirements of Definition 2.8
are satisfied; thus S is a field, and therefore a subfield of F .

The proof of the converse (that any subfield has the listed properties)
is similar to the first part of the proof of Theorem 5.2, and is left to the
exercises. �

Example

#6 S = { a+ b
√

3 | a, b ∈ Q } is a subfield of R.

The hardest part of the proof is to show that S is closed under forming
inverses of its nonzero elements—part (iv) of 5.3.

Suppose that a, b ∈ Q and that a + b
√

3 6= 0. Then a2 − 3b2 6= 0 (by
§3c#2), and we find that

(a+ b
√

3)−1 =
a

a2 − 3b2
+

−b
a2 − 3b2

√
3.
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Since the coefficients on the right hand side are rational numbers, the result
follows.

§5b Homomorphisms

5.4 Definition Let R and S be rings. A mapping θ:R → S is called a
ring homomorphism if

θ(a+ b) = θ(a) + θ(b)
and

θ(ab) = θ(a)θ(b)

for all a and b in R.

Definition 5.4 is sometimes expressed as follows:

A ring homomorphism from R to S is a mapping
which preserves addition and multiplication.

Some elementary properties of homomorphisms are listed in the next
theorem.

5.5 Theorem If θ:R→ S is a ring homomorphism then

(i) θ(0R) = 0S (where ‘ 0R’ means ‘zero element of R’ and ‘ 0S’ means
‘zero element of S’),

(ii) θ(−a) = −θ(a) for all a ∈ R,

(iii) θ(a− b) = θ(a)− θ(b) for all a, b ∈ R,

(iv) θ(a1a2 . . . an) = θ(a1)θ(a2) . . . θ(an) for all a1, a2, . . . , an ∈ R,

(v) θ(a1 + a2 + · · ·+ an) = θ(a1) + θ(a2) + · · ·+ θ(an) for all ai ∈ R.

Proof. (i) Using the defining properties of 0R and 0S and the fact that θ
preserves addition we have

θ(0R) + θ(0R) = θ(0R + 0R) = θ(0R) = θ(0R) + 0S
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and by Theorem 2.10 (i) it follows that θ(0R) = 0S .
(ii) Let a ∈ R. Since θ preserves addition

θ(a) + θ(−a) = θ(a+ (−a)) = θ(0R) = 0S

by part (i). Applying the commutative law for addition we obtain that
θ(−a) + θ(a) = 0S also. By Theorem 2.9 (uniqueness of negatives) it fol-
lows that θ(−a) = −θ(a).
(iii) Let a, b ∈ R. We have

θ(a− b) = θ(a+ (−b)) = θ(a) + θ(−b) = θ(a) + (−θ(b)) = θ(a)− θ(b).

(iv) If n = 1 this is immediate. Proceding by induction we assume that
n > 1 and the statement holds with n − 1 in place of n. Let a1, a2, . . . ,
an ∈ R. Using the fact that θ preserves multiplication and the induction
hypothesis we obtain

θ(a1a2 . . . an) = θ
(
(a1a2 . . . an−1)an

)
= θ(a1a2 . . . an−1)θ(an)

=
(
θ(a1)θ(a2) . . . θ(an−1)

)
θ(an)

= θ(a1)θ(a2) . . . θ(an)

as required.
(v) The proof of this is similar to the proof of (iv) and is omitted. �

Comment ...
5.5.1 If R has an identity element 1 then it is not necessarily true that
θ(1) is an identity element of S. If θ is surjective (onto), however, then θ(1)
must be an identity. See the exercises at the end of the chapter.

5.5.2 If S is a subring of the ring R and θ:R → T is a homomorphism
then the restriction of θ to S—the mapping φ:S → T given by φ(s) = θ(s)
for all s ∈ S—is clearly a homomorphism. ...

Examples

#7 Define θ: Z → Zn by θ(a) = a for all a ∈ Z. (That is, θ takes any
integer to its congruence class modulo n.) By definition of addition and
multiplication of congruence classes

θ(a+ b) = a+ b = ā+ b̄ = θ(a) + θ(b)
θ(ab) = ab = āb̄ = θ(a)θ(b)
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So θ is a homomorphism. (This is an example of a homomorphism from a
ring to a quotient ring of itself. Whenever a quotient ring can be formed such
a homomorphism exists.)

#8 Let

θ(a+ bi) =
(
a b
−b a

)
.

define a map θ: C → Mat(2,R). Since we have†

θ
(
(a+ bi) + (c+ di)

)
= θ
(
(a+ c) + (b+ d)i

)
=
(

a+ c b+ d
−(b+ d) a+ c

)
=
(
a b
−b a

)
+
(

c d
−d c

)
= θ(a+ bi) + θ(c+ di),

and
θ
(
(a+ bi)(c+ di)

)
= θ
(
(ac− bd) + (ad+ bc)i

)
=
(

ac− bd ad+ bc
−(ad+ bc) ac− bd

)
=
(
a b
−b a

)(
c d
−d c

)
= θ(a+ bi)θ(c+ di)

it follows that θ is a homomorphism.

If a homomorphism θ:R→ S is bijective (one-to-one and onto) then it
sets up a one-to-one correspondence between elements of R and elements of
S such that the sum of the elements of S corresponding to two given elements
a, b ∈ R is the element corresponding to a+ b, and similarly their product is
the element of S corresponding to ab. Thus the rings R and S are essentially
the same as one another—although they have different elements, R and S
have the same underlying additive and multiplicative structure.

† Here and subsequently the boldface letter i denotes a complex square root

of −1
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5.6 Definition A ring homomorphism which is bijective is called an iso-
morphism. If there exists an isomorphism θ:R → S then R and S are said
to be isomorphic, and we write ‘R ∼= S ’.

Examples

#9 The map

θ: a+ bi 7−→
(
a b
−b a

)
provides an isomorphism from C to the subring S of Mat(2,R) consisting of

all matrices of the form
(
a b
−b a

)
.

To prove this one must prove first that S is a subring of Mat(2,R), then
prove that θ preserves addition and multiplication and is bijective. We omit
the proof that S is a subring since it is similar to the proofs in #1 and #2
above.

Let α, β ∈ C with θ(α) = θ(β). We have α = a + bi, β = c + di for
some a, b, c, d ∈ R, and since(

a b
−b a

)
= θ(a+ bi) = θ(c+ di) =

(
c d
−d c

)
we see that a = c and b = d, whence α = β. Thus θ is injective.

Let A be an arbitrary element of S. Then A =
(
a b
−b a

)
for some

a, b ∈ R, and so A = θ(a + bi). Hence θ is surjective. This completes
the proof, since we have already seen in #8 that θ preserves addition and
multiplication.

Note that the fact that θ preserves addition and multiplication, together
with the fact that S = im θ, can be used to prove that S is closed under
addition and multiplication, as follows. Let A, B ∈ S. Then A = θ(α),
B = θ(β) for some α, β ∈ C, and so

A+B = θ(α) + θ(β) = θ(α+ β) ∈ im θ = S

AB = θ(α)θ(β) = θ(αβ) ∈ im θ = S
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#10 If R is any ring the direct sum R +̇ R is isomorphic to the subring of
Mat(2, R) consisting of all diagonal matrices. The map

(a, b) 7−→
(
a 0
0 b

)
is an isomorphism.

Let ψ be the given map. By the definition of addition and multiplication
in R +̇R we have

(a, b) + (c, d) = (a+ c, b+ d)
(a, b)(c, d) = (ac, bd)

so that

ψ((a, b) + (c, d)) = ψ(a+ c, b+ d) =
(
a+ c 0

0 b+ d

)
=
(
a 0
0 b

)
+
(
c 0
0 d

)
= ψ(a, b) + ψ(c, d),

and ψ((a, b)(c, d)) = ψ(ac, bd) = ψ(a, b)ψ(c, d) similarly.

We have shown that ψ preserves addition and multiplication. It is also
necessary to show that ψ is bijective and that the set of all diagonal matrices
is a subring of Mat(2, R). These proofs are straightforward and are omitted.

#11 Prove that if F is a field and R a ring is isomorphic to F then R is
also a field.

�−−. We must show that R is commutative and has a nonzero identity
element, and that all nonzero elements of R have inverses.

Let φ:F → R be an isomorphism, and let x, y ∈ R. Since φ is surjective
there exist a, b ∈ F with φ(a) = x and φ(b) = y. Multiplication in F is
commutative (since F is a field); so ab = ba, and

xy = φ(a)φ(b) = φ(ab) = φ(ba) = φ(b)φ(a) = yx

showing that R is commutative.
By Exercise 2 at the end of the chapter, φ(1) is an identity for R. Since

φ(0) = 0 and 1 6= 0 the fact that φ is injective shows that φ(1) is nonzero.
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Suppose that x is a nonzero element of R. Then x = φ(a) for some
a ∈ F , and since

φ(0) = 0 6= x = φ(a)

injectivity of φ gives a 6= 0. Since F is a field it follows that a has an inverse,
and

xφ(a−1) = φ(a−1)x = φ(a−1)φ(a) = φ(a−1a) = φ(1).

Thus φ(a−1) is an inverse for x; so all nonzero elements of R have inverses.
/−−�

§5c Ideals

5.7 Definition A subring I of a ring R is called an ideal of R if ar ∈ I
and ra ∈ I for all a ∈ I and r ∈ R.

Comment ...
5.7.1 If I is an ideal in R then multiplying an element of I by any
element of R and must give an element of I. Note that this is a more
stringent requirement than closure under multiplication, which merely says
that the product of two elements of I lies in I. An ideal must be closed under
multiplication by arbitrary elements of the ring. ...

Example

#12 Let R = Z and I = 2Z. Then I is nonempty (0 ∈ 2Z), closed under
addition (the sum of two even integers is even), closed under multiplication
(the product of two even integers is even), and closed under forming nega-
tives (the negative of an even integer is even). So I is a subring of R. To
observe that in fact it is an ideal it remains to show that I is closed under
multiplication by arbitrary elements of R—that is, show that the product of
an even integer and an arbitrary integer gives an even integer. But this is
obvious.

Note that in the above example it was not really necessary to prove
closure under multiplication separately since it follows from closure under
multiplication by ring elements. This observation yields the following propo-
sition:
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5.8 Proposition A subset I of a ring R is an ideal if and only if the
following all hold:

(i) I is nonempty.

(ii) For all x and y, if x ∈ I and y ∈ I then x+ y ∈ I.
(iii) For all x, if x ∈ I then −x ∈ I.
(iv) For all x and y if x ∈ I and y ∈ R then xy ∈ I and yx ∈ I.

Proof. Suppose first that I is an ideal of R. Then I is a subring of R, and
by Theorem 5.2 properties (i), (ii) and (iii) above all hold. Property (iv)
holds too since it is explicitly assumed in the definition of an ideal.

Conversely, assume that I satisfies properties (i)–(iv). As remarked
above it follows from property (iv) that I is closed under multiplication; thus
all the requirements of Theorem 5.2 are satisfied, and it follows that I is a
subring of R. This together with property (iv) shows that I is an ideal. �

Example

#13 Let

R =
{(

a b
0 c

) ∣∣∣ a, b, c ∈ Z
}

and

I =
{( 0 d

0 0

) ∣∣∣ d ∈ Z
}
.

Prove that R is a subring of Mat(2,Z) and I is an ideal of R.

�−−. That R is a subring of Mat(2,Z) was proved in #2. Clearly I is

nonempty—for instance,
(

0 0
0 0

)
∈ I. Let x and y be arbitrary elements of

I and r an arbitrary element of R. Then for some integers a, b, c, d, e,

x =
(

0 a
0 0

)
y =

(
0 b
0 0

)
r =

(
c d
0 e

)
giving

x+ y =
(

0 a+ b
0 0

)
−x =

(
0 −a
0 0

) rx =
(

0 ac
0 0

)
xr =

(
0 ae
0 0

)
and since these are all in I it follows that I is an ideal. /−−�
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§5d The characteristic of a ring

Let R be any ring. If a ∈ R we define

1a = a

2a = a+ a

3a = a+ a+ a

and so on. In general, if m is any positive integer,

ma = a+ a+ · · ·+ a︸ ︷︷ ︸
m terms

.

If m is a negative integer we define

ma = −
(
(−m)a

)
observing that (−m)a has already been defined since −m is positive. And
for the case m = 0 we define 0a = 0. We have now defined ma whenever
m ∈ Z and a ∈ R. This is a method of multiplying ring elements by integers,
and is not to be confused with the multiplication operation within R itself.
(But—fortunately—the value 0a is the same whether 0 is interpreted as an
integer or the zero of the ring, and the same applies to 1a if R has an identity
element.)

Similarly we define am = aa . . . a (m factors) if m ∈ Z+; if R has an
identity element 1 we define a0 = 1 for all a ∈ R ; if m is negative and a ∈ R
has an inverse we define am = (a−1)−m. The following should be clear:

5.9 Proposition Let R be any ring, a ∈ R and m, n ∈ Z. Then

(i) m(na) = (mn)a and (m+ n)a = ma+ na,

(ii) (am)n = amn and am+n = aman.

(If either m or n is negative the second part is only applicable if a has an
inverse; similarly, if either m or n is zero it is only applicable if R has an
identity.)

5.10 Definition Let R be a ring. If there is a positive integer n such that
na = 0 for all a ∈ R then the least such n is called the characteristic of R.
If there is no such n then R is said to have characteristic 0.
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Examples

#14 The characteristic of Z2 is 2, the characteristic of Z3 is 3, and so on.

#15 Let S be the subring of Z8 given by S = {0̄, 2̄, 4̄, 6̄}. Observe that

2̄ 6= 0̄, 2̄ + 2̄ = 4̄ 6= 0̄, 2̄ + 2̄ + 2̄ = 6̄ 6= 0̄.

So the characteristic of S is not 1, 2, or 3. But

2̄ + 2̄ + 2̄ + 2̄ = 8̄ = 0̄
4̄ + 4̄ + 4̄ + 4̄ = 16 = 0̄
6̄ + 6̄ + 6̄ + 6̄ = 24 = 0̄
0̄ + 0̄ + 0̄ + 0̄ = 0̄.

So S has characteristic 4. (This shows that the characteristic of a subring
can be less than the characteristic of the ring, since Z8 has characteristic 8.)

If a ring R has an identity element, 1, then na = 0 for all a ∈ R if and
only if n1 = 0. From this we can deduce the following proposition:

5.11 Proposition If R is a ring with identity element 1 then the charac-
teristic of R is the least positive integer n such that n1 = 0, or zero if there
is no such n.

Proof. Define
H = {m ∈ Z+ | m1 = 0 }

and
K = {m ∈ Z+ | ma = 0 for all a ∈ R }.

We prove that H = K.
Let m ∈ H. Then m1 = 0, and so for all a ∈ R we have

ma = a+ a+ · · ·+ a︸ ︷︷ ︸
m terms

= a(1 + 1 + · · ·+ 1︸ ︷︷ ︸
m terms

) = a(m1) = a0 = 0.

Hence m ∈ K.
Conversely, if m ∈ K then ma = 0 for all a ∈ R, and, in particular,

m1 = 0, whence m ∈ H. Thus m ∈ K if and only if m ∈ H, and so H = K,
as claimed.

By Definition 5.10 the characteristic of R is the least element of K, or
zero if K = ∅. Since H = K this shows that the characteristic of R is the
least element of H, or zero if H = ∅, and this is precisely the assertion of
Proposition 5.11. �
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5.12 Theorem Let R be a ring with identity 1 6= 0 and let S be the subset
of R given by S = {n1 | n ∈ Z }. Then S is a subring of R and

(i) if R has characteristic 0 then S ∼= Z,

(ii) if R has characteristic m 6= 0 then S ∼= Zm.

Proof. S is nonempty since, for instance, 1 ∈ S. Let a, b ∈ S. Then
a = n1, b = m1 for some n, m ∈ Z, and, by Proposition 5.9,

a+ b = n1 +m1 = (n+m)1 ∈ S
ab = (n1)(m1) = (nm)1 ∈ S
−a = −(n1) = (−n)1 ∈ S

so that by Theorem 5.2 it follows that S is a subring of R.
(i) Assume that R has characteristic 0.

Define a function ψ: Z → S by

ψ(r) = r1 for all r ∈ Z.

We have

ψ(r + s) = (r + s)1 = r1 + s1 = ψ(r) + ψ(s)
ψ(rs) = (rs)1 = (r1)(s1) = ψ(r)ψ(s)

so that ψ is a homomorphism. To show that S ∼= Z it remains to show that
ψ is bijective.

Let a ∈ S. Then, for some n ∈ Z, a = n1 = ψ(n). Thus ψ is surjective.
Let r, s ∈ Z be such that ψ(r) = ψ(s). Then r1 = s1, and hence

(r − s)1 = 0. But since R has characteristic 0 we know by Proposition 5.11
that there is no positive integer n such that n1 = 0. So r − s ≤ 0, and by
the same reasoning s − r ≤ 0. Hence r = s, and we have shown that ψ is
injective.
(ii) Suppose that the characteristic of R is m > 0. Then m is the least
positive integer which annihilates 1 (in the sense that m1 = 0). We show
first that if r, s ∈ Z then r1 = s1 if and only if r ≡ s (mod m).

If r ≡ s (mod m) then r − s = tm for some t ∈ Z, and
r1 = (s+ tm)1 = s1 + (tm)1 = s1 + t(m1) = s1 + t0 = s1 + 0 = s1.
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Suppose, conversely, that r1 = s1. Then (r − s)1 = 0, and, by what we
have just proved, k1 = 0 for all k ∈ Z with k ≡ (r − s) (mod m). By
Theorem 4.5 (ii) we may choose such a k with 0 ≤ k < m. But since there
is no positive integer less than m which annihilates 1 it follows that k = 0.
Thus (r − s) ≡ 0, and therefore r ≡ s.

We now define a function θ: Zm → S by θ(r) = r1 for all r ∈ Z; this is
unambiguous since if r = s then r ≡ s and hence r1 = s1, and it defines θ
on all elements of Zm since every element of Zm is of the form r.

By the definitions of addition and multiplication in Zm we find that

θ(r + s) = θ(r + s) = (r + s)1 = r1 + s1 = θ(r) + θ(s)
θ(r s) = θ(rs) = (rs)1 = (r1)(s1) = θ(r)θ(s)

so that θ is a homomorphism. Since every element of S is of the form
r1 = θ(r) for some r ∈ Z it follows that θ is surjective. If θ(r) = θ(s)
then r1 = s1 so that, as shown above, r ≡ s, and r = s. Thus θ is injective
also, and S ∼= Zm. �

Example

#16 In this example we will be dealing simultaneously with rings Z2, Z3

and Z6. To avoid confusion we will use the following notation (for a ∈ Z):

‘ â ’ denotes the congruence class of a modulo 2,
‘ ã ’ denotes the congruence class of a modulo 3,
‘ ā ’ denotes the congruence class of a modulo 6.

(Obviously it would not be suitable to use ‘ ā ’ for all of these three!)
We have that

Z2 = {0̂, 1̂}
Z3 = {0̃, 1̃, 2̃}
Z6 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄}.

Consider now the ring Z2 +̇ Z3, which consists of all pairs (a, b) with
a ∈ Z2 and b ∈ Z3. It has six elements, since there are two choices for a and
three choices for b. The element (1̂, 1̃) is easily seen to be an identity element
(since 1̂ is an identity for Z2 and 1̃ is an identity element for Z3) and to be
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nonzero. For any n ∈ Z+ we have

n(1̂, 1̃) = (1̂, 1̃) + · · ·+ (1̂, 1̃)︸ ︷︷ ︸
n terms

= (n1̂, n1̃)
= (n̂, ñ)

and this equals the zero element (0̂, 0̃) if and only if n̂ = 0̂ and ñ = 0̃. But
n̂ = 0̂ if and only if n is even, and ñ = 0̃ if and only if n is divisible by three.
So n(1̂, 1̃) = (0̂, 0̃) if and only if n is divisible by six. Hence the characteristic
of Z2 +̇ Z3 is six.

By Theorem 5.12 the set {n(1̂, 1̃) | n ∈ Z } is a subring of Z2 +̇ Z3

isomorphic to Z6. However, Z2 +̇ Z3 has only six elements altogether, and so
this subring must equal the whole of Z2 +̇ Z3. So we have shown that

Z2 +̇ Z3
∼= Z6.

The proof of Theorem 5.12 can be used to write down an explicit isomorphism
φ: Z6 → Z2 +̇ Z3. We obtain:

1̄ 7→ (1̂, 1̃)
2̄ 7→ (1̂, 1̃) + (1̂, 1̃) = (0̂, 2̃)
3̄ 7→ (1̂, 1̃) + (1̂, 1̃) + (1̂, 1̃) = (1̂, 0̃)
4̄ 7→ 4(1̂, 1̃) = (4̂, 4̃) = (0̂, 1̃)
5̄ 7→ 5(1̂, 1̃) = (5̂, 5̃) = (1̂, 2̃)
6̄ 7→ 6(1̂, 1̃) = (6̂, 6̃) = (0̂, 0̃).

(Note that 6̄ = 0̄.)

Exercises

1. Complete the proof of Theorem 5.3.

2. Let R and S be rings and let θ:R → S be a surjective ring homomor-
phism. Let R have an identity element 1. Prove that θ(1) is an identity
element in S.
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3. In the ring Z find:

(i) the smallest subring containing 7,

(ii) the smallest subring containing 5 and 7.

4. Prove that Con (the constructible numbers) is a subfield of R.
(Hint: Use Theorems 5.3 and 1.1.)

5. Suppose K is a subfield of C (the complex numbers) which contains R
(the real numbers). Show that either K = R or K = C.

(Hint: Assume that K contains R and some complex number not
in R, and show that K contains all complex numbers.)

6. Let C be the field of complex numbers and let θ: C → C be defined by
the formula

θ(a+ ib) = a− ib for all a, b ∈ R.

Show that θ is a ring isomorphism from C to C.

7. Prove that isomorphic rings have the same characteristic.

8. Let D be an integral domain with nonzero characteristic m. Prove that
m is a prime. (Hint: If m = rs then (r1)(s1) = 0.)

9. Let R and S be rings, and let θ:R→ S be an isomorphism. Prove that
a ∈ R is a zero divisor if and only if θ(a) ∈ S is a zero divisor. Deduce
that isomorphic rings have the same number of zero divisors.

10. Prove that Z12 and Z6 +̇ Z2 are not isomorphic.

11. Define

Q[ 3
√

2] = { a+ b
3
√

2 + c
(

3
√

2
)2 ∣∣ a, b, c ∈ Q }.

Prove that Q[ 3
√

2] is a subring of R, and prove also that it is an integral
domain.

12. Let Q2 =
{

m
2k

∣∣ m ∈ Z and k ∈ Z+
}
, the set of all rational numbers

with denominator a power of 2. Show that Q2 is a subring of Q but not
a subfield.
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13. Let

R =

{  a b c
0 d e
0 f g

 ∣∣∣∣∣ a, b, c, d, e, f, g ∈ Z

}
.

Is R a ring with respect to the operations of addition and multiplication
defined as usual for matrices?

Let θ:R→ Mat(2,Z) be the mapping defined by

θ

 a b c
0 d e
0 f g

 =
(
d e
f g

)
.

(i) Is θ injective?
(ii) Is θ surjective?
(iii) Is θ a homomorphism?
(iv) Define a relation ∼ on R by a b c

0 d e
0 f g

 ∼

 p q r
0 s t
0 u v

 if and only if
(
d e
f g

)
=
(
s t
u v

)
.

Is ∼ an equivalence relation?
(v) Define ≈ on R by a b c

0 d e
0 f g

 ≈

 p q r
0 s t
0 u v

 if and only if b = q and c = r.

Is ≈ an equivalence relation?
(vi) Suppose that X, Y , Z, W ∈ R are such that X ∼ Y and Z ∼ W .

Is it true that X + Z ∼ Y +W? Is it true that XZ ∼ YW?
(vii) The same as (vi) with ∼ replaced by ≈.
(viii)Let R be the set of all the equivalence classes into which R is

partitioned by the relation ∼. Show that there is a one to one
correspondence between R and Mat(2,Z).



6
Polynomials

Given a ring R it is possible to form new rings containing R as a subring
by “adjoining” new elements to R. The simplest example of this is the
ring of polynomials in X with coefficients from R, and it is necessary to
study polynomial rings before dealing with the general problem of adjoining
elements. The study of geometrical constructions leads naturally to this
problem. For, suppose that α1, α2, . . . , αn are the points obtained in a
geometrical construction, and let Si be the smallest subring of R containing
the coordinates of α1, α2, . . . , αi. Then Si+1 can be thought of as obtained
from Si by adjoining the coordinates of αi+1.

§6a Definitions

6.1 Definition Let R be a commutative ring which has a nonzero identity
element 1. A polynomial in the indeterminate X over R is an expression of
the form

(∗) a0 + a1X + · · ·+ anX
n

where n is a positive integer and a0, a1, a2, . . . , an ∈ R. We call ai the ith

coefficient of the polynomial.

Comments ...
6.1.1 It is possible to define polynomials over arbitrary rings, but in this
course we will only talk about polynomials over commutative rings with 1.

6.1.2 The coefficients of the polynomial are elements of the ring R, but
X is not. In fact X, X2, X3, . . . are nothing more than symbols written
alongside the coefficients to enable us to see which is the 0th, which the 1st,
which the 2nd, and so on. Indeed, in some treatments of the topic the symbols

71
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X, X2, . . . are not used in the definition, and a polynomial is defined to be a
sequence of ring elements (a0, a1, . . . , an, 0, 0, . . .). So a polynomial is nothing
more than its coefficients. Accordingly, to say that two polynomials p and q
are equal is to say that for each i the ith coefficient of p is equal to the ith

coefficient of q.

6.1.3 The terms in the expression (∗) above may be written in any order,
and if ai = 0 the corresponding term may be omitted. Similarly we may omit
unnecessary coefficients equal to 1 (writing ‘X’ instead of ‘1X’, and so on).
Thus if

p = 2 +X3 − 5X

then the 0th coefficient of p is 2, the 1st coefficient is −5, the 2nd is 0, the
3rd is 1. It is also convenient to say that the 4th, 5th, . . . coefficients are zero
(rather than saying that they do not exist). Thus a polynomial always has
an infinite sequence of coefficients, one for each nonnegative integer, but all
the coefficients beyond some point must be zero. ...

6.2 Definition The polynomial all of whose coefficients are zero is called
the zero polynomial.

6.3 Definition If p is a polynomial the largest i for which the ith coef-
ficient is nonzero is called the degree of p, and this coefficient is called the
leading coefficient of p.

So if p = a0 + a1X + · · · + anX
n with an 6= 0 then an is the leading

coefficient and deg(p) = n. Note that we do not define the degree of the zero
polynomial. In some treatments the zero polynomial is said to have degree
−∞. It would not be suitable to define the degree of the zero polynomial to
be zero.

If p is a polynomial in the indeterminateX we often write ‘p(X)’ instead
of just ‘p’ to remind ourselves that p is a polynomial or to remind ourselves
that the indeterminate is X.

Notation. The set of all polynomials over R in the indeterminate X is
denoted by ‘R[X]’.
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§6b Addition and multiplication of polynomials

6.4 Definition Let R be a commutative ring with 1 and let a, b ∈ R[X].
Let ai, bi be the ith coefficients of a, b (for i = 0, 1, 2, . . . ). Define a+b to be
the polynomial with ith coefficient ai +bi, and define ab to be the polynomial
with ith coefficient aib0 + ai−1b1 + · · ·+ a0bi (for i = 0, 1, 2, . . . ).

By Definition 6.4, if

a = a0 + a1X + · · ·+ anX
n

b = b0 + b1X + · · ·+ bmX
m

then

a+ b = (a0 + b0) + (a1 + b1)X + (a2 + b2)X2 + · · ·
ab = a0b0 + (a1b0 + a0b1)X + (a2b0 + a1b1 + a0b2)X2 + · · · .

Note that the formula for ab is obtained by multiplying out the expressions for
a and b and collecting like terms in the usual way. (In particular, therefore,
the ith coefficient is zero for all i sufficiently large.)

6.5 Theorem If R is a commutative ring with 1 and X is an indeterminate
then R[X] is a commutative ring with 1.

Proof. We must check the axioms in Definition 2.2 and the commutative
law for multiplication, and find an identity element. It will be convenient to
use the same notation as in the definition above: if p is a polynomial, then
pi is the ith coefficient of p.

Let a, b, c ∈ R[X]. Then for all i

((a+ b) + c)i = (a+ b)i + ci = (ai + bi) + ci

= ai + (bi + ci) = ai + (b+ c)i = (a+ (b+ c))i

and so (a+ b) + c = a+ (b+ c). The proof that a+ b = b+ a is similar.
The ith coefficient of ab is the sum of all terms arbs with r+ s = i; that

is,
(ab)i =

∑
r+s=i

arbs
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in a convenient notation. We find that

((ab)c)i =
∑

r+s=i

(ab)rcs

=
∑

r+s=i

( ∑
u+v=r

aubv

)
cs

=
∑

u+v+s=i

(aubv)cs

=
∑

u+v+s=i

au(bvcs)

=
∑

u+t=i

au

( ∑
v+s=t

bvcs

)
=
∑

u+t=i

au(bc)t

= (a(bc))i

and therefore (ab)c = a(bc). Similarly

(a(b+ c))i =
∑

r+s=i

ar(b+ c)s =
∑

r+s=i

ar(bs + cs)

=
∑

r+s=i

arbs + arcs =
∑

r+s=i

arbs +
∑

r+s=i

arcs = (ab)i + (ac)i

Similar proofs also apply for the other distributive law and the commutativity
of multiplication.

If we define z to be the polynomial for which zi = 0 for all i then it is
readily checked that (a+ z)i = ai = (z + a)i for all a ∈ R[X], so that z is a
zero element for R[X]. It is also easily seen that −a defined by (−a)i = −(ai)
for all i satisfies a+ (−a) = z = (−a) + a; so each a ∈ R[X] has a negative.
Finally, define e to be the polynomial for which the 0th coefficient is the
identity element of R and all the other coefficients are equal to zero. That
is, e = 1 + 0X + 0X2 + · · ·. Then for all a ∈ R[X],

(ae)i = aie0 + ai−1e1 + · · ·+ a0ei = ai

since e0 = 1 and ej = 0 for j 6= 0. Thus ae = a, and since also ea = a
(similarly, or by commutativity of multiplication) it follows that e is an iden-
tity. �
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Comment ...
6.5.1 In accordance with the rules described in 6.1.3 above, the zero
and identity polynomials are usually denoted by ‘0’ and ‘1’, but for the proof
of Theorem 6.5 we needed to distinguish them from the zero and identity of
R. See also §6c below. ...

6.6 Theorem (i) Let R be an integral domain and a and b nonzero poly-
nomials over R. Then the leading coefficient of ab is the product of the
leading coefficients of a and b, and deg(ab) = deg(a) + deg(b).
(ii) If R is an integral domain then so is R[X].

Proof. (i) Let n be the degree of a and m the degree of b. If r+s > n+m
then necessarily either r > n or s > m, and so either ar = 0 or bs = 0. Hence
if i > n+m then

(ab)i =
∑

r+s=i

arbs = 0.

Similarly
(ab)n+m =

∑
r+s=n+m

arbs = anbm

since all other terms have either r > n or s > m. Since an 6= 0 and bm 6= 0
and R is an integral domain it follows that (ab)n+m 6= 0. Thus n+m is the
largest value of i for which (ab)i 6= 0, and so

deg(ab) = n+m = deg(a) + deg(b).

Moreover, the leading coefficient of ab is (ab)n+m, and, as we have seen, it is
equal to anbm, the product of the leading coefficients of a and b.
(ii) We have already proved that R[X] is a commutative ring with 1; so it
remains to prove that it has no zero divisors. But the first part of this proof
shows that if the polynomials a and b each have a nonzero coefficient then
so too does ab. That is, if a 6= 0 and b 6= 0 then ab 6= 0, as required. �

§6c Constant polynomials

Let R be a commutative ring with 1. For each a ∈ R there is a polynomial
for which the 0th coefficient is a and all the other coefficients are zero. Using
the notation described in 6.1.3 this polynomial would be denoted by ‘a’ ;
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our notation does not distinguish between elements of R and these so-called
constant polynomials. However, for the purposes of the next theorem we
need a notation which does distinguish; so, temporarily, we will denote the
constant polynomial a by ‘c(a)’. (That is, c(a) = a+ 0X + 0X2 + · · · .)

6.7 Theorem The set S = { c(a) | a ∈ R } of constant polynomials is
a subring of R[X] isomorphic to R, and the function c:R → S defined by
a 7→ c(a) is an isomorphism.

Proof. As in the proof of 6.5, denote the ith coefficient of p by pi. Then
for all a ∈ R we have c(a)0 = a and c(a)i = 0 for all i > 0.

Let a, b ∈ R with c(a) = c(b). Then a = c(a)0 = c(b)0 = b. Thus c is
injective. Since every constant polynomial is of the form c(a) for some a ∈ R,
c is surjective also. Furthermore, c preserves addition and multiplication,
since

c(a+ b)0 = a+ b = c(a)0 + c(b)0 = (c(a) + c(b))0

c(ab)0 = ab = c(a)0c(b)0 =
∑

r+s=0

c(a)rc(b)s = (c(a)c(b))0

and for i > 0

c(a+ b)i = 0 = 0 + 0 = c(a)i + c(b)i = (c(a) + c(b))i

c(ab)i = 0 =
∑

r+s=i

c(a)rc(b)s = (c(a)c(b))i

(since in each term of the sum either c(a)r = 0 or c(b)s = 0).
It remains to check that S is indeed a subring of R[X]. Now clearly S

is nonempty, since it contains the zero polynomial. If x and y are arbitrary
elements of S then x = c(a), y = c(b) for some a, b ∈ R, and

x+ y = c(a) + c(b) = c(a+ b) ∈ S
xy = c(a)c(b) = c(ab) ∈ S
−x = −c(a) = c(−a) ∈ S

(the last line following from the fact that the negative of a polynomial is
obtained by taking the negatives of all the coefficients). By Theorem 5.2, S
is a subring. �
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Comment ...
6.7.1 Since the constant polynomials form a ring isomorphic to R no
harm will come if we identify constant polynomials with the corresponding
elements of R. In other words, we regard the ring S of 6.7 as being equal to
R, so that R is a subring of R[X]. (This fits nicely with our notation which
does not distinguish between constant polynomials and elements of R.) Now
R[X] can be thought of as a ring obtained by adjoining to R a new element
X which satisfies no more equations than it is forced to satisfy to make R[X]
a commutative ring. ...

§6d Polynomial functions

Any polynomial p(X) = a0+a1X+· · ·+anX
n in R[X] determines a function

R→ R by the rule
c 7−→ a0 + a1c+ · · ·+ anc

n

for all c ∈ R.

Polynomial functions are no doubt very familiar to the reader, but
for us it is important to distinguish between polynomials, sometimes called
polynomial forms, and polynomial functions. Note, for instance, that two
distinct polynomials can give the same function. For example, if p(X) = X2

and q(X) = X in Z2[X] then

p(0) = ( 0 )2 = 0 = q(0) and p(1) = ( 1 )2 = 1 = q(1),

so that p(c) = q(c) for all c ∈ Z2. So the functions c 7→ p(c) and c 7→ q(c)
are equal. However the polynomials p and q themselves are not equal since
they have different coefficients.

§6e Evaluation homomorphisms

If c is any element of R there is a function

ec :R[X] −→ R

defined by
p(X) 7−→ p(c)

for all p ∈ R[X]. In other words, ec

(
p(X)

)
= p(c) for all polynomials p.
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6.8 Theorem For each c ∈ R the map ec :R[X] → R is a homomorphism.

Proof. Let c ∈ R and let p, q ∈ R[X]. Then, in the notation we have been
using for the ith coefficient of a polynomial,

ec(pq) = (pq)0 + (pq)1c+ (pq)2c2 + · · ·
= p0q0 + (p0q1 + p1q0)c+ (p0q2 + p1q1 + p2q0)c2 + · · ·
= (p0 + p1c+ p2c

2 + · · ·)(q0 + q1c+ q2c
2 + · · ·)

= ec(p)ec(q)

and similarly

ec(p+ q) = (p+ q)0 + (p+ q)1c+ (p+ q)2c2 + · · ·
= (p0 + q0) + (p1 + q1)c+ (p2 + q2)c2 + · · ·
= (p0 + p1c+ p2c

2 + · · ·)(q0 + q1c+ q2c
2 + · · ·)

= ec(p) + ec(q).

�

Comments ...
6.8.1 The function ec is called an evaluation homomorphism since it
maps p(X) ∈ R[X] to p(X) evaluated at c (that is, to p(c)).

6.8.2 To say that ec preserves addition is to say that the result of adding
two polynomials and then putting X = c is the same as first putting X = c
in each and then adding. A similar statement applies for multiplication. The
reason it works is because we have defined addition and multiplication of
polynomials to make it work—when adding or multiplying polynomials the
indeterminate X is treated as though it is an element of R.

6.8.3 If R is a subring of a ring S then R[X] is a subring of S[X]. For
instance, the set of all polynomials with rational coefficients is a subring of
the set of all polynomials with real coefficients. Hence if c is any element
of S the homomorphism ec:S[X] → S may be restricted to R[X] to yield a
homomorphism from R[X] to S. Thus, for instance, the map φ: Q[X] → R
given by φ(p(X)) = p( 3

√
2) is a homomorphism. ...
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§6f The division algorithm for polynomials over a field

Our chief application of polynomials in this course will be to study field
extensions. Roughly speaking, if F is a field we wish to be able to make
a larger field by adjoining extra elements to F , in much the way that the
complex numbers are obtained from the real numbers by adjoining a square
root of −1. We have already seen how F [X] can be regarded as a ring
obtained by adjoining the element X to F . However, F [X] is not a field,
and to obtain fields extending F we will have to deal with quotient rings of
F [X]—rings obtained from F [X] in the same way as Zn is obtained from
Z. Once we have developed the theory of field extensions we will be able
to prove things about the field Con of constructible numbers, which is an
extension field of Q (rational numbers).

We start by investigating properties of divisibility and factorization for
polynomials—properties analogous to those properties of Z which were used
in our construction of Zn.

6.9 Theorem Let F be a field and f(X), g(X) elements of F [X], with
g(X) 6= 0. Then there exist unique q(X) and r(X) in F [X] such that both
the following hold:

(i) f(X) = q(X)g(X) + r(X).
(ii) Either r(X) = 0 or deg

(
r(X)

)
< deg

(
g(X)

)
.

Proof. We first prove the existence of such polynomials q(X) and r(X).
Let S = { f(X) − k(X)g(X) | k(X) ∈ F [X] }. If 0 ∈ S then there

is a polynomial k(X) ∈ F [X] with f(X) = k(X)g(X), and we may take
q(X) = k(X) and r(X) = 0. Assume therefore that 0 /∈ S. The set of non-
negative integers K = {deg(p(X)) | p(X) ∈ S } is nonempty, and therefore
has a least element d. Let r(X) ∈ S be such that deg(r(X)) = d, and let
q(X) be such that f(X)− q(X)g(X) = r(X) (possible since r(X) ∈ S).

It suffices to prove that d < deg(g(X)); so suppose that this is not true.
Let deg(g(X)) = m and let the leading coefficients of r(X) and g(X) be a
and b respectively. Now ab−1Xd−mg(X) has degree (d−m)+deg(g) = d and
leading coefficient (ab−1)(leading coefficient of g) = a; thus it has the same
degree and leading coefficient as r(X). It follows that the dth and all higher
coefficients of s(X) = r(X)− ab−1Xd−mg(X) are zero. Moreover,

s(X) = f(X)− q(X)g(X)− ab−1Xd−mg(X) = f(X)− k(X)g(X) ∈ S
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where k(X) = q(X)+ab−1Xd−mg(X). Thus s(X) is a element of S of smaller
degree than r(X), contradicting the choice of r(X). Thus the assumption
that d ≥ m leads to a contradiction, and d < m, as required.

We have still to prove the uniqueness of q and r; so assume that q1 and
r1 satisfy the same two properties; that is, f = q1g+ r1 and either r1 = 0 or
deg(r1) < deg(g). Then q1g + r1 = qg + r, and so r1 − r = (q − q1)g. Now if
q − q1 6= 0 then by Theorem 6.6 (i)

deg(r1 − r) = deg(q − q1) + deg(g) ≥ deg(g)

which is impossible since the ith coefficients of both r1 and r are zero for
i > deg(g). Hence q1 = q, and this gives r1 = f − q1g = f − qg = r also.

�

Comment ...
6.9.1 The polynomial q(X) is called the quotient and r(X) the remain-
der. They can be calculated by a process called the division algorithm, as
follows. Firstly, if deg(f) < deg(g) then the quotient is 0 and the remainder
is equal to f . Otherwise we subtract from f a multiple of g with the same
leading coefficient as f—that is, ab−1Xn−mg(X) where a, b are the lead-
ing coefficients of f , g and n = deg(f), m = deg(g)—thereby reducing the
degree, add the term ab−1Xn−m to the quotient, and repeat the process:

b−1
m anX

n−m + · · ·
bmX

m + bm−1X
m−1 + · · ·+ b0 anX

n + an−1X
n−1 + · · ·+ a0

(subtract) anX
n + bm−1b

−1
m anX

n−1 + · · ·
a′n−1X

n−1 + · · ·
(
= new a(X)

)
—repeat.

...

As a corollary of Theorem 6.9 we obtain the Remainder Theorem, which
provides a quick method for calculating remainders on dividing by polyno-
mials of degree one.

6.10 The Remainder Theorem Let c ∈ F and f(X) ∈ F [X], where F
is a field. Then the remainder in the division of f(X) by X − c is f(c).

Proof. By 6.9 we have f(X) = (X − c)q(X) + r, where either r = 0 or
deg(r) < 1. In either case r must be a constant polynomial; that is, an
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element of F . Evaluating at c gives

f(c) = ec(f(X)) = ec(X − c)ec(q(X)) + ec(r) = 0q(c) + r = r.
�

Notation. If a(X), b(X) ∈ F [X] then ‘a(X)
∣∣b(X)’ means ‘there exists

q(X) ∈ F [X] with b(X) = a(X)q(X)’. If this holds we say that a(X) is a
factor of b(X).

By Theorem 6.9, a(X) is a factor of b(X) if and only if the remainder
on dividing b(X) by a(X) is zero.

As an immediate consequence of 6.10 we have the Factor Theorem,
which provides an easy method for determining whether or not a given poly-
nomial of degree 1 is a factor of f(X).

6.11 The Factor Theorem If f(X) ∈ F [X] then X − c is a factor of
f(X) if and only if f(c) = 0.

Proof. Since (X − c)
∣∣f(X) if and only if the remainder on dividing f(X)

by X − c is zero, 6.10 yields that (X − c)
∣∣f(X) if and only if f(c) = 0. �

§6g The Euclidean Algorithm

Throughout this section, F will be a field.

6.12 Definition (i) Two polynomials f(X) and g(X) in F [X] are said to
be associates if f(X) = cg(X) for some nonzero c ∈ F .

(ii) A polynomial f(X) ∈ F [X] is said to be monic if it is nonzero and has
leading coefficient 1.

Comment ...
6.12.1 Obviously for any nonzero polynomial f(X) there is a unique
monic polynomial which is an associate of f(X)—namely, a−1f(X), where a
is the leading coefficient of f(X). ...
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6.13 Proposition Nonzero polynomials f(X) and g(X) in F [X] are asso-
ciates if and only if f(X)|g(X) and g(X)|f(X).

Proof. If f and g are associates then for some c ∈ F we have f = cg and
g = c−1f , so that g|f and f |g. Conversely, assume that f |g and g|f . Then
f = q1g and g = q2f for some q1, q2 ∈ F [X], both of which are nonzero since
f and g are. Thus by Theorem 6.6 (i) we have

deg(f) = deg(q1) + deg(g) ≥ deg(g) = deg(q2) + deg(f).

Hence deg(q2) = 0, and therefore q2 is a nonzero element of F , showing that
f and g are associates. �

6.14 Theorem If a(X) and b(X) are polynomials in F [X] which are not
both zero then there exists a unique monic polynomial d(X) ∈ F [X] such
that both the following conditions are satisfied:

(i) d(X)|a(X) and d(X)|b(X).
(ii) If c(X)|a(X) and c(X)|b(X) then c(X)|d(X).

Moreover, there exist m(X), n(X) ∈ F [X] with

d(X) = m(X)a(X) + n(X)b(X).

Proof. Let a(X) and b(X) be elements of F [X] which are not both zero.
We first prove the existence of a d(X) with the required properties.

Define S to be the set of all nonzero polynomials p(X) in F [X] such
that p(X) = m(X)a(X) + n(X)b(X) for some m(X), n(X) ∈ F [X], and
observe that S 6= ∅ since it must contain either a(X) or b(X). Hence the set
of nonnegative integers

K = {deg(p(X)) | p(X) ∈ S }
is nonempty, and must therefore contain a least element, k. Let d(X) be an
element of S which is monic and has degree k. (By 6.12.1 we can choose
d(X) to be monic, since associates of elements of S are also in S.)

Since d(X) ∈ S the definition of S yields the existence m(X) and
n(X) with d(X) = m(X)a(X) + n(X)b(X), and from this it follows that
if c(X)|a(X) and c(X)|b(X) then c(X)

∣∣(m(X)a(X) + n(X)b(X)) = d(X).
Thus we have established two of the properties of d(X) and have only to
prove that d(X)|a(X) and d(X)|b(X).

Suppose that d(X)/| a(X), and let r(X) be the remainder on division
of a(X) by d(X). Then r(X) 6= 0, and since r(X) = a(X) − q(X)d(X) for
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some q(X), we obtain

r(X) = a(X)− q(X)(m(X)a(X) + n(X)b(X))
= (1− q(X)m(X))a(X)− q(X)b(X)

so that r(X) ∈ S. But this contradicts the definition of k, since the degree
of r(X) is less than deg(d(X)) = k. Thus d(X)|a(X) and, by a similar
argument, d(X)|b(X) also.

It remains to prove uniqueness. So, let d1 and d2 be monic polynomials
such that conditions (i) and (ii) are satisfied with d replaced by d1 and also
with d replaced by d2. By (i) for d1 and (ii) for d2 it follows that d1|d2, and
by (i) for d2 and (ii) for d1 it follows that d2|d1. By 6.13 we deduce that d1

and d2 are associates of each other, and hence, by 6.12.1, d1 = d2. �

Comment ...
6.14.1 The polynomial d(X) in 6.14 is called the greatest common divisor
of a(X) and b(X). ...

As in the case of integers, the greatest common divisor of two polyno-
mials can be calculated by use of the Euclidean Algorithm (which is almost
exactly the same for polynomials as integers):

Given a, b ∈ F [X] with a 6= 0, b 6= 0 and deg(a) ≥ deg(b) (or b = 0, a 6= 0),

while b 6= 0 do
[a, b] := [b, a− b ∗ (adivb)]

enddo
α := leading coefficient of a
a := 1

αa
end

At the end of the process, a is the gcd of the initial two polynomials.

Alternatively, let a1, a2 be the initial polynomials, and define a3, a4, . . .
by

a1 = q3a2 + a3

a2 = q4a3 + a4

...
ak−2 = qkak−1 + ak

ak−1 = qk+1ak

deg(a3) < deg(a2)
deg(a4) < deg(a3)

deg(ak) < deg(ak−1)
(ak+1 = 0).
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The algorithm must terminate eventually since the remainder on di-
viding ai−1 by ai is either zero or a polynomial of degree strictly less than
that of ai. Since the degree of a nonzero polynomial is always a nonnega-
tive integer, and it is impossible to have an infinite decreasing sequence of
nonnegative integers, it must eventually happen that we get a remainder of
zero. (For instance, if deg(ai) = 0 then we will certainly find that ai+1 = 0 ;
a polynomial of degree 0 is always a divisor of any other polynomial.)

As for integers, the set of common divisors of ai−1 and ai remains
unchanged throughout the algorithm, and hence

gcd(a1, a2) = gcd(a2, a3) = · · · = gcd(ak, ak+1).

But gcd(ak, ak+1) = gcd(ak, 0), which is the unique monic associate of ak.
(The greatest common divisor is always monic, by definition; so, for instance,
gcd(2X+ 3, 0 ) = X + 3

2 .) Thus we conclude that the gcd of a1 and a2 is
the unique monic associate of the last nonzero remainder obtained in the
Euclidean Algorithm.

Example

#1 Find m, n ∈ R[X] such that

(∗) m(X)
(
X3 +X − 1

)
+ n(X)

(
X2 + 4

)
= 1.

�−−. By division we find

X3 +X − 1 = X(X2 + 4) + (−3X − 1)
X2 + 4 = (− 1

3X + 1
9 )(−3X − 1) + 37

9 .

(The Euclidean Algorithm terminates at the next step, since 37
9

∣∣ −3X − 1.)
So we have

37
9 = (X2 + 4) + ( 1

3X − 1
9 )(−3X − 1)

= (X2 + 4) + ( 1
3X − 1

9 )[(X3 +X − 1)−X(X2 + 4)]
= [1−X( 1

3X − 1
9 )](X2 + 4) + ( 1

3X − 1
9 )(X3 +X − 1)

= (− 1
3X

2 + 1
9X + 1)(X2 + 4) + ( 1

3X − 1
9 )(X3 +X − 1).

Thus
1 = (− 3

37X
2 + 1

37X + 9
37 )(X2 + 4) + ( 3

37X − 1
37 )(X3 +X − 1).
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So if we define
m0(X) = 3

37X − 1
37

n0(X) = − 3
37X

2 + 1
37X + 9

37

then m(X) = m0(X), n(X) = n0(X) is a solution to (∗).
Notice that the solution is not unique. In fact, for any p(X) ∈ R[X] we

can obtain another solution by putting

m(X) = m0(X) + p(X)
(
X2 + 4

)
n(X) = n0(X)− p(X)

(
X3 +X − 1

)
.

/−−�

§6h Irreducible polynomials

Let F be a field and let p ∈ F [X]. Then for any nonzero c ∈ F the equation
p(X) = c

(
c−1p(X)

)
shows that c is a divisor of p. Similarly all associates of

p are divisors of p. Polynomials which have only these trivial divisors are of
considerable theoretical importance.

6.15 Definition A polynomial p ∈ F [X] is said to be irreducible (or
prime) if deg(p) ≥ 1 and the only divisors of p in F [X] are polynomials
of degree 0 and associates of p.

Comments ...
6.15.1 If p is irreducible and p(X) = d1(X)d2(X) then either d1 is an
associate of p, in which case deg(d2) = 0, or deg(d1) = 0, in which case d2 is
an associate of p.

6.15.2 If p is reducible (that is, not irreducible) and deg(p) ≥ 1 then p
has a divisor d1 satisfying

(i) deg(d1) ≥ 1
(ii) d1 is not an associate of p.

Since d1 is a divisor of p we have p(X) = d1(X)d2(X) for some d2, and
(ii) above implies that deg(d2) ≥ 1. This combined with (i) above and the
equation

deg(p) = deg(d1) + deg(d2)
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yields that
1 ≤ deg(di) ≤ deg(p) − 1

for i = 1 and i = 2.

6.15.3 If deg(p) = 1 then it follows from 6.15.2 above that p is irreducible.
For if p were reducible we could find d1 and d2 with p(X) = d1(X)d2(X)
and 1 ≤ deg(di) ≤ deg(p) − 1 (for i = 1, 2). But this is impossible since
deg(p)−1 = 0. (The point is that if neither d1 nor d2 is a constant polynomial
then deg(p) = deg(d1) + deg(d2) ≥ 1 + 1 = 2.)

6.15.4 If deg(p) is 2 or 3 and p is reducible then p has a zero in F . For
it follows from 6.15.2 that p(X) = d1(X)d2(X) with

deg(d1) + deg(d2) = deg(p) (= 2 or 3)
and

deg(di) ≥ 1 for i = 1 and i = 2.
Now if both deg(d1) ≥ 2 and deg(d2) ≥ 2 then deg(d1) + deg(d2) ≥ 4,
contradiction. So either d1 or d2 has degree 1. So p has a factor of the form
aX + b with a, b ∈ F and a 6= 0. Thus, for some d ∈ F [X],

p(X) = (aX + b)d(X)

= a
(
X − (−a−1b)

)
d(X).

By the Factor Theorem, −a−1b is a zero of p(X). ...

§6i Some examples

It will be convenient in the future to denote the elements of Zn by ‘0’, ‘1’, ‘2’,
. . . and so on, instead of ‘0̄’, ‘1̄’, ‘2̄’, . . . , since it becomes rather clumsy to
have bars over all the coefficients when dealing with polynomials over Zn. Of
course we will have to be careful to remember things like 7=2 in Z5, −1 = +1
in Z2, and so on.

#2 In Z3[X] the polynomial p(X) = X2 − X − 1 is irreducible. For by
6.15.4 above, if X2 −X − 1 were reducible it would have a zero in Z3. But

p(0) = −1 = 2 6= 0
p(1) = −1 = 2 6= 0
p(2) = 1 6= 0,
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and since 0, 1, 2 are the only elements of Z3 we see that p(X) has no zeros
in Z3.

#3 In R[X] the polynomial X2 −X − 1 is reducible. Indeed

X2 −X − 1 = (X − α)(X − β)

where α = 1+
√

5
2 and β = 1−

√
5

2 .

#4 In R[X] the polynomial X2 + 1 is irreducible. For if it were reducible
it would have a factor of degree 1, and hence a zero in R. But a2 + 1 6= 0 for
all a ∈ R.

#5 In C[X] the polynomial X2 + 1 is reducible. Indeed we have the
factorization X2 + 1 = (X − i)(X + i).

#6 In R[X] we have X2 − 3 = (X −
√

3)(X +
√

3), and so X2 − 3 is
reducible. But in Q[X] the polynomial X2 − 3 is irreducible, since it has no
zeros in Q. (There is no rational number α such that α2 − 3 = 0.)

#7 Polynomials of degree four or more may have no zeros and yet be
reducible. For instance, X4 +X2 + 1 has no zeros in R but is nevertheless a
reducible element of R[X]. In fact X4 +X2 +1 = (X2 +X+1)(X2−X+1).

#8 Irreducibles in C[X]
The “Fundamental Theorem of Algebra” states that every polynomial p in
C[X] of degree at least one has a zero in C. By the Factor Theorem it
follows that p(X) = (X − c)q(X) for some c ∈ C and q(X) ∈ C[X]. So if p
is irreducible the degree of q must be zero, making X − c an associate of p.
It follows that the only irreducible polynomials in C[X] are the polynomials
of degree one.

#9 Irreducibles in R[X]
Suppose that p ∈ R[X], p is irreducible, and deg(p) > 1. Since p has no
factors of degree 1 in R[X] it has no zeros in R. But by the Fundamental
Theorem of Algebra p(X) has a zero a+ bi in C. We must have b 6= 0 since
this zero is not in R. Observe that a + bi is also a zero of the polynomial
X2 − 2aX + a2 + b2 ∈ R[X]. By Theorem 6.9

p(X) = q(X)
(
X2 − 2aX + a2 + b2

)
+ (r0 + r1X)
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for some r0, r1 ∈ R. Substituting X = a+ bi gives

0 = p(a+ bi) = q(a+ bi)0 +
(
r0 + r1(a+ bi)

)
= (r0 + r1a) + (r1b)i.

Equating real and imaginary parts gives r1b = 0 and r0 + r1a = 0. Since
b 6= 0 this gives r1 = 0, and hence r0 = 0. Thus X2 − 2aX + a2 + b2 is
a factor of p(X), and since p(X) is irreducible it must be an associate of
X2 − 2aX + a2 + b2. Hence all irreducibles in R[X] are of degree 1 or 2.

#10 In Q[X] there are irreducibles of all degrees. In fact Eisenstein’s Cri-
terion, to be proved in §6k below, shows that Xn − 2 is irreducible in Q[X]
for all n ∈ Z.

§6j Factorization of polynomials

The proofs of the following facts are very similar to the corresponding proofs
for Z, and are omitted.

6.16 Theorem Let a, b, p be polynomials over the field F , and suppose
that p is irreducible and p|ab. Then p|a or p|b.

6.17 Lemma Suppose that p, q1, q2, . . . qs are monic irreducible polynomi-
als in F [X] and that for some nonzero d ∈ F we have

p(X)
∣∣dq1(X)q2(X) . . . qs(X).

Then p(X) = qj(X) for some j.

6.18 Unique Factorization Theorem (i) Suppose that f(X) is a poly-
nomial of degree greater than one with coefficients in the field F , and let c be
the leading coefficient of f . Then there exist monic irreducible polynomials
p1(X), p2(X), . . . , pr(X) in F [X] such that

f(X) = cp1(X)p2(X) . . . pr(X).

(ii) If cp1(X)p2(X) . . . pr(X) = dq1(X)q2(X) . . . qs(X) where c, d are nonzero
elements of F and the pi, qj are monic irreducible polynomials, then c = d,
r = s, and

p1 = qi1 , p2 = qi2 , . . . , pr = qir

where i1, i2, . . . ir are the numbers 1, 2, . . . r in some order.



Chapter Six: Polynomials 89

Examples

#11 Since Z17 is a field (because 17 is prime) the Unique Factorization
Theorem holds in Z17[X]. So, for instance, X2 − 6X + 5 = (X − 1)(X − 5),
and this is the unique way of writing X2−6X+5 as a product of irreducibles.
On the other hand, Z16 is not a field, and in Z16[X] we find that

(X − 1)(X − 5) = X2 − 6X + 5

= X2 + 10X + 21
= (X + 7)(X + 3).

Unique factorization does not hold in Z16[X].

#12 In Z2[X] there are eight polynomials of degree three. We list them all
and express each as a product of irreducibles:

X3 = XXX

X3 + 1 = (X + 1)(X2 +X + 1)

X3 +X = X(X + 1)(X + 1)

X3 +X + 1 is irreducible

X3 +X2 = XX(X + 1)

X3 +X2 + 1 is irreducible

X3 +X2 +X = X(X2 +X + 1)

X3 +X2 +X + 1 = (X + 1)(X + 1)(X + 1).

§6k Irreducibility over the rationals

6.19 Proposition Suppose that f(X), g(X) ∈ Z[X] and p ∈ Z is a prime
integer which divides all the coefficients of f(X)g(X). Then either p divides
all the coefficients of f(X) or all the coefficients of g(X).

Proof. Let

f(X) = a0 + a1X + · · ·+ anX
n

g(X) = b0 + b1X + · · ·+ bmX
m.

and define
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φ(X) = a0 + a1X + · · ·+ anX
n ∈ Zp[X]

γ(X) = b0 + b1X + · · ·+ bmX
m ∈ Zp[X]

where we have reverted to the bar notation for elements of Zp to avoid con-
fusion. Then

f(X)g(X) = a0b0 + (a0b1 + a1b0)X + (a0b2 + a1b1 + a2b0)X2 + · · ·

and by a similar calculation

φ(X)γ(X) = a0 b0 + (a0 b1 + a1 b0)X + (a0 b2 + a1 b1 + a2 b0)X2 + · · ·
= a0b0 + (a0b1 + a1b0)X + (a0b2 + a1b1 + a2b0)X2 + · · ·
= 0

since all the coefficients of f(X)g(X) are divisible by p. But Zp is an integral
domain (by Theorem 4.10) and so Zp[X] is also an integral domain (by Theo-
rem 6.6), and therefore has no zero divisors. It follows that either φ(X) = 0,
in which case a0, a1, . . . are all zero, and a0, a1, . . . are all divisible by p, or
γ(X) = 0, in which case all the coefficients of g(X) are divisible by p. �

6.20 Gauss’ Lemma Suppose that a(X) ∈ Q[X] is reducible and has all
its coefficients in Z. Then a(X) has a nontrivial factorization in Z[X].

Proof. Let a(X) = f(X)g(X), where f(X), g(X) ∈ Q[X] and both f and
g have degree less than the degree of a. Observe that there exist integers
m and n such that all the coefficients of mf(X) and ng(X) lie in Z—for
instance, if f(X) = (r0/s0) + (r1/s1)X + · · · + (rd/sd)Xd with the ri and
si in Z, then taking m = s0s1 . . . sd would suffice. Hence if k = mn the
following property is satisfied:

(P)
There exist polynomials f1 and g1 which have
integral coefficients and are associates of f and
g respectively, such that ka(X) = f1(X)g1(X).

Let K be the set of all positive integers k for which (P) is satisfied.
Since K is nonempty it has a least element, h. It suffices to prove that

h = 1, for then (P) shows that a(X) has a factorization of the required kind.
So, suppose that h > 1. By Theorem 3.7 there exists a prime p which is a fac-
tor of h, and since the coefficients of a(X) are integral it follows that the coef-
ficients of ha(X) are all divisible by p. Since h ∈ K there exist f1, g1 ∈ Z[X]
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with deg(f1) = deg(f), deg(g1) = deg(g) and ha(X) = f1(X)g1(X), and by
Proposition 6.19 either (1/p)f1 has integral coefficients or (1/p)g1 does. It
follows that (h/p) is in K, since

(h/p)a(X) =
(
(1/p)f1(X)

)
g1(X) = f1(X)

(
(1/p)g1(X)

)
.

This contradicts the fact that h is the smallest element in K, proving that
h = 1, as required. �

As a corollary of Theorem 6.20 we obtain an easy way of listing all
rational numbers which can possibly be roots of a given integral polynomial.

6.21 Rational Roots Theorem If a0 + a1X + · · ·+ adX
d ∈ Z[X] then

all zeros of a(X) in Q have the form ±(m/n) where m and n are integers
such that m|a0 and n|ad.

Proof. If a(X) has a zero in Q it has a linear factor m−nX in Q[X]. Thus
there is a factorization

(m− nX)(b0 + b1X + · · ·+ bd−1X
d−1) = a0 + a1X + · · ·+ adX

d

and by Theorem 6.20 we may assume that all the coefficients of both factors
are integral. But since a0 = mb0 and ad = −nbd−1 we deduce that m|a0

and n|ad. This proves the claim, since the zero corresponding to the linear
factor m − nX is (m/n). (The ± appears in the theorem statement merely
to emphasize that m and n may be negative.) �

Example

#13 By Theorem 6.20 the only rational numbers which can be zeros of
3−13X−7X2 +2X3 are ±1, ±3, ±(1/2), ±(3/2). Trying them all one finds
that in fact −(3/2) is the only rational zero.

6.22 Eisenstein’s Irreducibility Criterion If p is a prime integer and
a(X) = a0 + a1X + · · · + adX

d ∈ Z[X] is such that p|ai for all i 6= d, p/| ad

and p2/| a0, then a(X) is irreducible in Q[X].

Proof. Suppose that there is a nontrivial factorization of a(X) in Q[X]:

(∗) a0 +a1X+ · · ·+adX
d = (b0 + b1X+ · · ·+ brX

r)(c0 + c1X+ · · ·+ csX
s)
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where r ≥ 1, s ≥ 1 and r + s = d. By 6.20 we may assume that bi, ci ∈ Z.
On expanding (∗) we obtain the equations

a0 = b0c0

a1 = b0c1 + b1c0

a2 = b0c2 + b1c1 + b2c0

...

and in Zp we therefore have similar equations

a0 = b0 c0

a1 = b0 c1 + b0 c1

a2 = b0 c2 + b1 c1 + b2 c0

...

which in Zp yield the factorization

(∗∗) a0 +a1X+ · · ·+adX
d = (b0 +b1X+ · · ·+brXr)(c0 +c1X+ · · ·+csXs).

But a0 = a1 = · · · = ad−1 = 0 and ad 6= 0; so the left hand side above
is an associate of Xd. But Zp is a field, and so the Unique Factorization
Theorem 6.18 applies to Zp[X]. The only monic irreducible factor of Xd

is X; so it follows that the factors in (∗∗) are associates of powers of X.
Moreover, the right hand side of (∗∗) cannot have degree less than d = r+ s;
so br 6= 0 and cs 6= 0. Thus

b0 + b1X + · · ·+ brX
r = λXr

c0 + c1X + · · ·+ csX
s = µXs

for some λ, µ ∈ Zp. Since r ≥ 1 and s ≥ 1 it follows that b0 = 0 and c0 = 0.
Thus for some integers h and k we have b0 = ph and c0 = pk, giving

a0 = b0c0 = p2hk

contrary to the assumption that p2/| a0. �
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For example, application of Eisenstein’s Criterion with p = 3 shows
that X4 − 9X2 − 36X − 33 is irreducible over Q, but gives no information
about X4 − 9X2 − 36X − 36.

Examples

#14 Prove that 3
√

2 is irrational.

�−−. By Eisenstein’s Criterion with p = 2 we see that X3− 2 is irreducible
in Q[X] and so, by the Factor Theorem, it has no zeros in Q. Hence 3

√
2 /∈ Q.

Alternatively, by the Rational Roots Theorem the only possible rational
roots of X3−2 are ±1 and ±2. Since 3

√
2 is a root, it is not rational. /−−�

#15 Let a, b, c be rational numbers which are not all zero, and let

t = a+ b
3
√

2 + c
(

3
√

2
)2

.

Prove that t 6= 0.

�−−. If c and b are both zero then a cannot be zero, and t = a 6= 0. If c = 0
and b 6= 0 then t = 0 would give 3

√
2 = −(a/b), contradicting the irrationality

of 3
√

2. Thus we may assume that c 6= 0.

Let p(X) = a + bX + cX2, and let r(X) be the remainder obtained
when X3 − 2 is divided by p(X). Thus

($) X3 − 2 = p(X)q(X) + r(X)

for some q(X) ∈ Q[X], and by Theorem 6.9 r(X) = c+dX for some c, d ∈ Q.
If t = 0 then substitutingX = 3

√
2 in ($) gives r( 3

√
2) = 0, and this contradicts

the irrationality of 3
√

2 unless c = d = 0. Hence X3 − 2 is divisible by p(X).
But this contradicts the fact that X3 − 2 is irreducible in Q[X], proved in
#14 above. Hence t 6= 0. /−−�

Exercises

1. Find the greatest common divisor d(X) of the polynomials

and
f(X) = X3 − 6X2 +X + 4

g(X) = X5 − 6X + 1
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in Q[X], as well as polynomials s(X) and t(X) such that

d(X) = s(X)f(X) + t(X)g(X)

2. Find the greatest common divisor d(X) of

and
f(X) = X5 +X4 + 2X3 −X2 −X − 2

g(X) = 2X4 + 4X3 + 3X + 3

where f(X), g(X) ∈ Z5[X]. Also find polynomials s(X), t(X) ∈ Z5[X]
such that

d(X) = s(X)f(X) + t(X)g(X).

3. Write X4 + 2X3 + X2 + 2X + 2 over Z3 as a product of irreducible
polynomials.

4. Let f(X) = a0+a1X+ · · ·+an−1X
n−1+Xn ∈ Q[X] be a monic polyno-

mial with integral coefficients. Show that if a0 +a1X+ · · ·+Xn ∈ Zp[X]
is irreducible (for some prime p), then f(X) is irreducible over Q.

5. List all the polynomials of degree 4 in Z2[X], and express them as prod-
ucts of irreducibles.

6. Test the following polynomials for irreducibility over Q:

(i) 5X3 +X2 +X − 4
(ii) 3X5 + 2X3 − 6X + 6
(iii) X4+7X3−10X2+2X+5 (Hint: Apply Exercise 4 with p = 2.)
(iv) 2X4 + 7X3 − 15X2 + 3X + 6

7. Give an example of a quadratic polynomial in Z6[X] which has more
than two roots.

8. Prove that 5
√

6 is irrational.

9. Find all monic irreducible quadratic polynomials over Z5.

10. Let R[X] be a commutative ring with 1. Prove that the polynomial ring
R[X] cannot be a field.

(Hint: Show that X does not have an inverse.)



Chapter Six: Polynomials 95

11. Let f(X) and g(X) be monic polynomials of degree 5 in Z7[X] with the
property that f(c) = g(c) for all c ∈ Z7. Show that f(X) = g(X).

12. Let F be a field and f(X), g(X) and h(X) distinct monic polynomials
in F [X] with f(X) and g(X) irreducible. Show that the gcd of h(X)
and f(X)g(X) is 1 if h(X) is irreducible, but need not be 1 otherwise.

13. Prove that ψ: R[X] → Mat(3,R) defined by

ψ(a0 + a1X + · · ·+ anX
n) =

 a0 a1 a2

0 a0 a1

0 0 a0


is a homomorphism.



7
More Ring Theory

In this chapter we return to the general setting and develop the remaining
theory which will be needed in this course. Our principal objectives are the
definition of quotient rings and the Fundamental Homomorphism Theorem.

§7a More on homomorphisms

It will be convenient for us to temporarily generalize slightly the concept of
a homomorphism. Suppose that S and T are sets each equipped with oper-
ations called addition and multiplication, about which nothing is assumed.
(Thus, in particular, S and T need not be rings.) We still refer to a map
θ:S → T satisfying θ(xy) = θ(x)θ(y) and θ(x+ y) = θ(x) + θ(y) as a homo-
morphism.

7.1 Lemma Let R be a ring and T any set equipped with addition and
multiplication, and suppose that θ:R→ T is a homomorphism. Then

S = { θ(x) | x ∈ R }
is a subset of T which forms a ring under the operations of T , and

K = {x ∈ R | θ(x) = θ(0) }
is an ideal of R.

Proof. Let a, b, c ∈ S. Then there exist x, y, z ∈ R such that a = θ(x),
b = θ(y) and c = θ(z), and the associativity of addition in R together with
the fact that θ preserves addition gives

(a+ b) + c =
(
θ(x) + θ(y)

)
+ θ(z) = θ(x+ y) + θ(z) = θ

(
(x+ y) + z

)
= θ
(
x+ (y + z)

)
= θ(x) + θ(y + z) = θ(x) +

(
θ(y) + θ(z)

)
= a+ (b+ c).

Similar arguments show that a+ b = b+ a, (ab)c = a(bc), a(b+ c) = ab+ ac
and (a + b)c = ac + bc. Hence S satisfies Axioms (i), (iv), (v) and (vi) of
Definition 2.2.

96



Chapter Seven: More Ring Theory 97

The element θ(0) ∈ S is a zero element for S, since if a ∈ S is arbitrary
then (for some x ∈ R)

and
a = θ(x) = θ(x+ 0) = θ(x) + θ(0) = a+ θ(0)
a = θ(x) = θ(0 + x) = θ(0) + θ(x) = θ(0) + a.

Furthermore, since

and
a+ θ(−x) = θ(x) + θ(−x) = θ(x+ (−x)) = θ(0)
θ(−x) + a = θ(−x) + θ(x) = θ((−x) + x) = θ(0)

we see that a has a negative. Thus Axioms (ii) and (iii) are satisfied.
To prove that K is an ideal we use Proposition 5.8. Since 0 ∈ K we

have that K 6= ∅. Now if x, y ∈ K and r ∈ R then

θ(x+ y) = θ(x) + θ(y) = θ(0) + θ(0) = θ(0 + 0) = θ(0)
θ(−x) = θ(−x+ 0) = θ(−x) + θ(0) = θ(−x) + θ(x) = θ(−x+ x) = θ(0)

θ(xr) = θ(x)θ(r) = θ(0)θ(r) = θ(0r) = θ(0)
θ(rx) = θ(r)θ(x) = θ(r)θ(0) = θ(r0) = θ(0)

so that x+y, −x, rx and xr are all inK. So all the required closure properties
hold. �

Comment ...
7.1.1 Since the element θ(0) of S is the zero of S the definition of K is,
effectively,

K = {x ∈ R | θ(x) = 0 }.

The set K is usually called the ‘kernel’ of θ. (The set S is called the ‘image’
of θ—see §0b.) ...

7.2 Definition If R and S are rings and θ:R→ S a homomorphism, then
the kernel of θ is the subset of R

ker θ = θ−1(0S) = {x ∈ R | θ(x) = 0S }

where 0S is the zero of S.

From Lemma 7.1 we have immediately:
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7.3 Theorem The kernel of a ring homomorphism θ:R→ S is an ideal of
R, the image a subring of S.

It is trivial that a homomorphism θ:R → S is surjective if and only if
im θ = S. The next result provides an analogous criterion for injectivity:

7.4 Theorem A ring homomorphism θ:R → S is injective if and only if
ker θ = {0R}.

Proof. Suppose that θ is injective. It follows from Theorem 5.5 (i) that
0R ∈ ker θ. Suppose that x is another element of ker θ. Then

θ(x) = 0S = θ(0R)
and injectivity of θ gives x = 0R. Thus 0R is the only element of ker θ, as
required.

Conversely, suppose that ker θ = {0R}, and let x and y be elements of
R with θ(x) = θ(y). Then by Theorem 5.5

θ(x− y) = θ(x)− θ(y) = 0S

and therefore x − y ∈ ker θ. Hence x − y = 0R, and x = y. Thus θ is
injective. �

7.5 Theorem If θ:R → S and ψ:S → T are ring homomorphisms, then
the composite map ψθ:R→ T defined by

(ψθ)(x) = ψ
(
θ(x)

)
for all x ∈ R

is also a homomorphism.

The proof of this is left to the exercises.

Example

#1 Define f : Z[X] → Z by

f(a0 + a1X + · · ·+ anX
n) = a0.

Observe that f coincides with the evaluation map e0 (see §6e): the result of
putting X = 0 in a0 + a1X + · · · + anX

n is a0. So f is a homomorphism.
Now let g: Z → Z3 be the natural homomorphism (given by a 7→ ā for all
a ∈ Z (see §5b#7)). The composite map gf : Z[X] → Z3 is given by

a0 + a1X + · · ·+ anX
n 7−→ a0
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and by 7.5 it is a homomorphism. By 7.3 the kernel of this homomorphism
is an ideal of Z[X]. It can be seen that this ideal consists of all polynomials
over Z with constant term divisible by three.

§7b More on ideals

If R is any ring then the subsets {0} and R are ideals. For some rings these
are the only ideals; for instance, fields have no ideals other than these trivial
ones.

Let I be an ideal of R, and suppose that a ∈ I. Then I contains every
element of the form ra for r ∈ R. In particular, if R has an identity and a
has an inverse then I contains t = (ta−1)a for any t ∈ R. This observation
gives us the following theorem:

7.6 Theorem (i) An ideal which contains an element with an inverse must
be the whole ring.

(ii) If F is a field then the only ideals in F are {0} and F .

Proof. The first part is immediate from the preceding remarks, and the
second part follows from the first since all nonzero elements of fields have
inverses. �

Notation. If R is a commutative ring the set { ar | r ∈ R } will be denoted
by ‘aR ’ or ‘Ra’.

7.7 Theorem If R is a commutative ring and a ∈ R then aR is an ideal
of R.

Proof. Since a0 ∈ aR it is immediate that aR 6= ∅. Now let x, y ∈ aR and
r ∈ R. Then x = as, y = at for some s, t ∈ R, and hence

x+ y = as+ at = a(s+ t) ∈ aR
−x = −(as) = a(−s) ∈ aR
xr = (as)r = a(sr) ∈ aR.

Since R is commutative we deduce also that rx = xr ∈ aR. By Proposi-
tion 5.8 it follows that aR is an ideal. �
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Comment ...
7.7.1 The above proof uses commutativity of R, and it is impossible to
avoid this. If R is not commutative then aR is not necessarily an ideal.

...

7.8 Definition Let R be a commutative ring with 1 and let a ∈ R. Then
aR is called the principal ideal generated by a.

Examples

#2 Let φ: Z → Zn be the homomorphism given by φ(a) = ā (see §5b#7).
The kernel of φ must be an ideal of Z (by 7.3), and in fact

kerφ = { a ∈ Z | ā = 0̄ }
= { a ∈ Z | a ≡ 0 (mod n) }
= { a ∈ Z | a = nk for some k ∈ Z }
= nZ.

That is, kerφ is the principal ideal generated by n.

#3 Define σ: R[X] → R by σ
(
f(X)

)
= f(3) for all f ∈ R[X]. (That is, in

the notation of §6e, σ = e3.) Then

kerσ = { f(X) | f(3) = 0 }
= { f(X) | X − 3 is a factor of f(X) } (by Theorem 6.11)
= { (X − 3)g(X) | g ∈ R[X] }
= (X − 3)R[X].

That is, kerσ is the principal ideal generated by X − 3.

#4 There are ideals which are not principal. We saw in #1 that the subset
I of Z[X] consisting of those polynomials which have constant term divisible
by three is an ideal of Z[X]. However, I is not a principal ideal: there is no
p ∈ Z[X] such that I = p(X)Z[X]. For suppose that such a p exists. Then
since 3 ∈ I we have 3 = p(X)q(X) for some q ∈ Z[X]. By Theorem 6.6

deg(p) + deg(q) = deg(3) = 0

and so deg(p) = deg(q) = 0. So p and q are constant polynomials; that
is, p and q are elements of Z (regarding Z as a subring of Z[X]—see 6.7.1).



Chapter Seven: More Ring Theory 101

Since 3 is the product of p and q and since 3 is prime we see that the only
possibilities for p are ±1 and ±3. But if p = ±1 then pZ[X] = Z[X] 6= I,
and if p = ±3 then pZ[X] = 3Z[X] consists of those polynomials for which
every coefficient is divisible by three, not just the 0th. So our assumption
that pZ[X] = I is contradicted, showing that no such p can exist.

#5 There is a homomorphism ρ: R[X] → C given by

ρ
(
p(X)

)
= p(i) for all p ∈ R[X].

By Theorem 6.9, for any p ∈ R[X] there exists q ∈ R[X] and a, b ∈ R with

p(X) = q(X)
(
X2 + 1

)
+ bX + a,

and putting X = i we get p(i) = bi + a. So if p(i) = 0 we must have both
a = 0 and b = 0, in which case X2 + 1 is a factor of p(X). Thus the kernel
of ρ is the set of all p which have X2 + 1 as a factor:

ker ρ = (X2 + 1)R[X].

§7c Congruence modulo an ideal

If n is a positive integer then, as we have seen, the set nZ of all integers
divisible by n is an ideal of Z, and on Z there is an equivalence relation
‘congruence modulo n’ given by

a ≡ b (mod n ) if and only if a − b ∈ nZ.
The same works for any ideal in any ring.

7.9 Theorem Let I be an ideal in a ring R, and define a relation on R by

a ≡ b (mod I ) if and only if a− b ∈ I.

The relation so obtained is an equivalence relation.

Proof. For all x ∈ R we have x− x = 0 ∈ I, since I is a subring and must
therefore contain the zero of R (by 5.2.1). Hence x ≡ x (mod I), and the
Reflexive Law is satisfied.
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Suppose that x, y ∈ I and x ≡ y. Then x− y ∈ I, and so

y − x = −(x− y) ∈ I
by Proposition 5.8. Thus y ≡ x, and the Symmetric Law is satisfied.

Finally, suppose that x, y, z ∈ R and x ≡ y and y ≡ z. Then x− y ∈ I
and y − z ∈ I, and so

x− z = (x− y) + (y − z) ∈ I
by Proposition 5.8. Thus x ≡ z, and the Transitive Law holds. �

The relation defined in 7.9 is called congruence modulo I. By the results
of §4a we see that it partitions R into equivalence classes. These equivalence
classes are called the cosets of I. Reformulating this slightly gives the fol-
lowing:

7.10 Definition If I is an ideal in the ring R and a ∈ R then the coset of
I containing a is the set I + a = { b | b ∈ R and a− b ∈ I }.

Comment ...
7.10.1 The notation ‘I+a’ derives from the fact that the coset containing
a is alternatively described as the set {x+ a | x ∈ I }. ...

Occasionally we will use the same notation as we used in §4a for equiv-
alence classes, and write ‘ā’ for ‘I + a’. The advantage of the bar notation
is that it is shorter, the disadvantage that it suppresses any mention of I, so
that the reader has to remember which ideal is being used.

§7d Quotient rings

If I is an ideal in the ring R define

R
/
I = { I + a | a ∈ R }.

In other words, R
/
I is the set of all equivalence classes of R under the relation

of congruence modulo I. That is, in accordance with Definition 4.3, R
/
I is

the quotient of R by this equivalence relation. We wish to define operations
of addition and multiplication on R

/
I to make R

/
I into a ring. We do this

in exactly the same way as we did it for Zn.
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7.11 Theorem Let I be an ideal in the ring R. Then there exist well-
defined operations of addition and multiplication on R

/
I such that

(I + a) + (I + b) = I + (a+ b)
(I + a)(I + b) = I + ab

for all a, b ∈ R.

Proof. Since every element of R
/
I has the form I + a for some a ∈ R,

the given equations define the sum and product of every pair of elements
of R

/
I. The problem is that since elements of R

/
I may be expressible in

this form in several ways the equations may be inconsistent. We must prove,
therefore, that if I + a′ = I + a and I + b′ = I + b then I + a′b′ = I + ab and
I + (a′ + b′) = I + (a+ b).

Assume that I + a′ = I + a and I + b′ = I + b. Then a ≡ a′ and b ≡ b′

(mod I), and so a′ = a+ x, b′ = b+ y for some x, y ∈ I. Now

a′ + b′ = (a+ x) + (b+ y) = (a+ b) + (x+ y) ≡ a+ b (mod I)
a′b′ = (a+ x)(b+ y) = ab+ (xb+ ay + xy) ≡ ab (mod I)

since by 5.8 the fact that x, y ∈ I gives that x + y, xb, ay, xy and hence
xb+ay+xy are all in I. Thus I+(a′+ b′) = I+(a+ b) and I+a′b′ = I+ab,
as required. �

Comment ...
7.11.1 By these definitions, to add or multiply two cosets one picks ele-
ments in the cosets and adds or multiplies the elements. The theorem shows
that the coset containing the result is independent of the elements chosen.

...

7.12 Theorem Let I be an ideal in the ring R. Then R
/
I is a ring under

the operations of addition and multiplication defined in 7.11. Furthermore,
the map ν:R → R

/
I defined by ν(a) = I + a (for all a ∈ R) is a surjective

homomorphism.

Proof. The definitions of addition and multiplication yield immediately
that

ν(a)ν(b) = (I + a)(I + b) = I + ab = ν(ab)
ν(a) + ν(b) = (I + a) + (I + b) = I + (a+ b) = ν(a+ b)
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and therefore ν is a homomorphism. It is trivial that ν is surjective, since
every element of R

/
I has the form I + a with a ∈ R. Since by Lemma 7.1

the image of ν is a ring we deduce also that R
/
I is a ring. �

7.13 Definition The map ν:R → R
/
I defined in Theorem 7.12 is called

the natural homomorphism from R to the quotient ring R
/
I.

Examples

#6 If R = Z and I = nZ (where n ∈ Z+) then the cosets nZ+a (a ∈ Z)
are exactly the congruence classes ā (a ∈ Z) as defined in §4b, and the
quotient ring Z

/
nZ is exactly the same as the ring Zn.

#7 Let R = R[X] and I = (X2 + 1)R[X]. As we have seen (#5 above),
for each p ∈ R[X] there exists q ∈ R[X] and a, b ∈ R with

p(X) = (X2 + 1)q(X) + bX + a.

This gives
p(X) ≡ bX + a (mod I)

and shows that every equivalence class contains a polynomial of the form
bX + a. Thus

R
/
I = { I + (bX + a) | a, b ∈ R }.

Observe that

(I + bX + a)(I + dX + c) = I + (bX + a)(dX + c)

= I +
(
bdX2 + (ad+ bc)X + ac

)
= I + bd(X2 + 1) + (ad+ bc)X + (ac− bd).

But since
bd(X2 + 1) + (ad+ bc)X + (ac− bd)

is congruent to
(ad+ bc)X + (ac− bd)

modulo the ideal I = (X2 + 1)R[X], this gives

(♠)
(
I + (a+ bX)

)(
I + (c+ dX)

)
= I +

(
(ac− bd) + (ad+ bc)X

)
.
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We also have

(♥)
(
I + (a+ bX)

)
+
(
I + (c+ dX)

)
= I +

(
(a+ c) + (b+ d)X

)
.

Comparing (♠) and (♥) with the rules for multiplication and addition of
complex numbers,

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i
(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

we see readily that the ring R
/
I = R[X]

/
(X2 + 1)R[X] is isomorphic to C.

From an intuitive point of view the construction of a quotient ring
R
/
I amounts to regarding all elements of I as being equal to zero. As a

consequence of this we must regard two elements as equal if they differ by an
element of I; that is, if they are in the same coset. This process is sometimes
called “factoring out I”.

§7e The Fundamental Homomorphism Theorem

7.14 The Fundamental Homomorphism Theorem Let R and S be
rings and let θ:R→ S be a homomorphism. Then

R
/
ker θ ∼= im θ.

Indeed there is an isomorphism

ψ:R
/
ker θ −→ im θ

satisfying

ψ(ker θ + a) = θ(a)

for all a ∈ R.

Proof. Since every element of R
/
ker θ is expressible in the form ker θ + a,

possibly in more than one way, the formula ψ(ker θ + a) = θ(a) will de-
fine a function from R to R

/
ker θ provided that it is consistent with itself.
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Thus we must show that if ker θ + a′ = ker θ + a then θ(a′) = θ(a). But if
ker θ + a′ = ker θ + a then a′ − a ∈ ker θ, and hence, by 5.5,

θ(a′)− θ(a) = θ(a′ − a) = 0

giving the result. So ψ is well defined.
If α, β ∈ R

/
ker θ then there exist a, b ∈ R such that α = ker θ+ a and

β = ker θ + b, and we obtain

ψ(α)ψ(β) = ψ(ker θ + a)ψ(ker θ + b)
= θ(a)θ(b)
= θ(ab) (since θ preserves multiplication)
= ψ(ker θ + ab)
= ψ

(
(ker θ + a)(ker θ + b)

)
= ψ(αβ).

A similar argument based on the fact that θ preserves addition shows that
ψ(α)+ψ(β) = ψ(α+β). Thus ψ is a homomorphism, and it remains to show
that ψ is bijective.

Let x ∈ im θ. Then x = θ(a) for some a ∈ R, and from this it follows
that ψ(ker θ+a) = θ(a) = x. Hence ψ is a surjective mapping from R

/
ker θ to

im θ. Now suppose that ψ(α) = ψ(β) for some α and β in R
/
ker θ. Choosing

a and b in R with α = ker θ + a and β = ker θ + b we find that

θ(a− b) = θ(a)− θ(b) = ψ(α)− ψ(β) = 0

and therefore a− b ∈ ker θ. That is, a ≡ b (mod ker θ), and

α = ker θ + a = ker θ + b = β.

Therefore ψ is injective. �

Comment ...
7.14.1 If θ:R → S is a homomorphism with ker θ = I then θ maps two
elements of R to the same element of im θ ⊆ S if and only if the two given
elements of R differ by an element of I. Since factoring out I amounts to
regarding two elements of R as equal if and only if they differ by an element
of I, this means that each element of im θ corresponds to just one element of
R
/
I. So the homomorphism R→ im θ becomes an isomorphism R

/
I → im θ.

...
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Examples

#8 For any ring R the identity map ι:R → R (given by ι(x) = x for
all x ∈ R) is a homomorphism. Clearly ker ι = {0} and im ι = R, and
so the Fundamental Homomorphism Theorem says that R

/
{0} ∼= R. The

isomorphism guaranteed by 7.14 is {0}+ a 7→ ι(a) = a.

#9 For any rings R and S the zero map R → S, defined by x 7→ 0S (for
all x ∈ R), is a homomorphism. Its kernel is the whole of R and its image is
the zero subring of S. By 7.14,

R
/
R ∼= {0}.

(Note that R
/
R has just one element, since R+ x = R for all x ∈ R.)

#10 Let ρ: R[X] → C be the homomorphism considered in #5 above,
namely

ρ
(
p(X)

)
= p(i) for all p ∈ R[X].

Clearly ρ is surjective (since every element of C is of the form a + bi for
some a, b ∈ R, and a + bi = ρ(a + bX)

)
. So im ρ = C. As we saw in #5,

ker ρ = (X2 + 1)R[X]. Hence 7.14 gives

R[X]
/

(X2 + 1)R[X] ∼= C.

Furthermore there is a isomorphism

ψ: R[X]
/

(X2 + 1)R[X] −→ C

satisfying
ψ
(
I + p(X)

)
= ρ
(
p(X)

)
= p(i)

for all p ∈ R[X] (where we have written ‘I’ for ‘ (X2+1)R[X] ’). In particular
this says

ψ
(
I + (a+ bX)

)
= a+ bi,

in agreement with #7 above.

#11 Let R and S be rings. Recall that the direct sum R +̇ S of R and
S is the set { (r, s) | r ∈ R, s ∈ S } under componentwise addition and
multiplication (see §2c#5).

There is a homomorphism η:R → R +̇ S given by η(r) = (r, 0) for all
r ∈ R. Since ker η = {0} it follows that im θ ∼= R

/
{0} ∼= R (by #8 above).
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The image of θ is the set R′ = { (r, 0) | r ∈ R }; we have thus shown that R′

is a subring of R +̇S isomorphic to R. Similarly the set S′ = { (0, s) | s ∈ S }
is a subring of R +̇ S isomorphic to S.

Now define π:R +̇ S → R by π(r, s) = r. It is easily seen that π is a
homomorphism and that imπ = R and kerπ = { (0, s) | s ∈ S } = S′. So in
fact S′ is an ideal of R +̇ S, and R +̇ S

/
S′ ∼= R. Similarly, R′ is an ideal and

R +̇ S
/
R′ ∼= S.

The isomorphism ψ:R +̇ S
/
S′ −→ R given by 7.14 can be described

explicitly in the following way. If (r, s) ∈ R +̇ S then the coset S′ + (r, s) is

{ (x, y) | x ∈ R, y ∈ S and (x, y)− (r, s) ∈ S′ }
= { (x, y) | x ∈ R, y ∈ S and (x− r, y − s) ∈ S′ }
= { (x, y) | x ∈ R, y ∈ S and x− r = 0 }
= { (r, y) | y ∈ S }.

By 7.14 we have ψ
(
S′ + (r, s)

)
= π(r, s); that is,

ψ
({

(r, y) | y ∈ S
})

= r.

In other words, what we have shown is this:

For each r ∈ R there is a coset of S′ consisting of all ordered
pairs (x, y) in R +̇ S such that the first component, x, is equal
to r. This gives a one-to-one correspondence between elements

of R and cosets of S′; that is, between elements of R and
elements of R +̇ S

/
S′. This correspondence is an isomorphism.

Exercises

1. (i) Prove that Q[ 3
√

2] as defined in Exercise 11 of Chapter Five is a
subfield of R.

(Hint: By Exercise 11 of Chapter Five, Q[ 3
√

2] is an integral
domain. To prove that all nonzero elements of Q[ 3

√
2] have
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inverses in Q[ 3
√

2] use §6k#15 of Chapter 6 and prove the
formula(
a+ b

3
√

2 + c
( 3
√

2
)2)−1

= (e/d) + (f/d) 3
√

2 + (g/d)
( 3
√

2
)2

where
d = a3 + 2b3 + 4c3 − 6abc

e = a2 − 2bc

f = 2c2 − ab

g = b2 − ac

for inverses of elements of Q[ 3
√

2].)
(ii) Prove that Q[ 3

√
2] is isomorphic to the quotient ring Q[X]

/
K,

where K is the set of all p(X) ∈ Q[X] such that p( 3
√

2) = 0.
(Hint: Use the Fundamental Homomorphism Theorem and
the evaluation homomorphism p(X) 7→ p( 3

√
2).)

2. Calculate the kernel and image of the homomorphism ψ in Exercise 13
of Chapter Six.

3. Prove Theorem 7.5.

4. Let R be a commutative ring with 1. For x, y ∈ R let ‘x|y’ mean ‘there
exists z ∈ R with y = xz’. Prove that if a, b ∈ R then aR = bR if and
only if a|b and b|a.

5. Let θ be the homomorphism defined in Exercise 13 of Chapter Five:

θ

 a b c
0 d e
0 f g

 =
(
d e
f g

)

where the domain R of θ is a subring of Mat(3,Z) and the codomain is
Mat(2,Z). Prove that the kernel of θ is equal to the set I of all matrices of

the form

 a b c
0 0 0
0 0 0

 with a, b, c ∈ Z. Deduce that R
/
I ∼= Mat(2,Z),

and give an explicit isomorphism.
(Hint: R

/
I is the set of equivalence classes of the relation ∼ defined

in Exercise 13 of Chapter Five.)
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6. In each case show that I is an ideal of the given ring R, and find a
homomorphism which has kernel equal to I:

(i) R = Z, I = 5Z

(ii) R =
{(

a 0
b c

) ∣∣∣ a, b, c ∈ R
}
, I =

{(
a 0
b 0

) ∣∣∣ a, b ∈ R
}

(iii) R = Z[X]
I = { a0 + a1X + · · ·+ anX

n | ai ∈ Z,
∑n

i=0 ai = 0 }
(iv) R = Z[X]

I = { a0 + a1X + · · ·+ anX
n | ai ∈ Z,

∑n
i=0 ai ≡ 0 (mod 2) }

(v) R = Z[X]
I = { a0 +a1X+ · · ·+anX

n | ai ∈ Z,
∑n

i=0(−1)iai ≡ 0 (mod 3) }.

7. Let I be an ideal and S a subring in the ring R.

(i) Show that S + I = { s+ x | s ∈ S, x ∈ I } is a subring of R.
(ii) Show that I is an ideal in S + I.
(iii) Show that θ:S → (S + I)

/
I given by θ(s) = I + s is a homomor-

phism.
(iv) Deduce that S ∩ I is an ideal in S and S

/
(S ∩ I) is isomorphic to

(S + I)
/
I. (Hint: Use 7.14 and 7.3.)

(v) Prove directly that S ∩ I is an ideal in S.

8. Prove that if A = nZ and B = mZ then A + B = dZ and A ∩ B = lZ,
where d = gcd(n,m) and l = lcm(n,m) and A + B is as defined in the
previous exercise.



8
Field Extensions

In §7d#7 we saw that the polynomial ring R[X] has a quotient ring isomor-
phic to the field C of complex numbers. This is an example of a phenomenon
we wish to study in more detail, as a method of constructing fields containing
a given field F as a subfield. The fields to be constructed will be quotient
rings of F [X]. Our first step in this program is to study ideals in F [X].

§8a Ideals in polynomial rings

From now on we will only be concerned with polynomials over fields.

8.1 Theorem Let F be a field and let I be an ideal of F [X]. Then there
exists a polynomial f(X) such that I = f(X)F [X].

Proof. By 5.2.1 we know that 0 ∈ I. If 0 is the only element of I then the
assertion of the theorem holds with f(X) = 0. Thus we may assume that I
contains nonzero elements.

Of all nonzero elements of I choose f(X) to be one of minimal degree,†
and let J = f(X)F [X]. If p(X) ∈ J then p(X) = q(X)f(X) for some q,
and, since f(X) ∈ I, 5.8 (iv) yields that p(X) ∈ I. Thus J ⊆ I. Conversely,
let p(X) ∈ I, and let r(X) be the remainder on dividing p(X) by f(X).
Then for some polynomial q we have r(X) = p(X) − q(X)f(X), and since
p(X) and f(X) are both in I we deduce (by 5.8) that r(X) ∈ I. By the
choice of f(X) we know therefore that the degree of r(X) cannot be less
than the degree of f(X); hence by Theorem 6.9 it follows that r(X) = 0.
Thus p(X) = f(X)q(X) ∈ f(X)F [X] = J , and we conclude that I ⊆ J .
Hence I = J , as required. �

† Note the use of the Least Integer Principle in this step

111



112 Chapter Eight: Field Extensions

Comment ...
8.1.1 This says that all ideals of F [X] are principal. Furthermore, in the
above proof we have in fact shown that a nonzero ideal in F [X] is generated
by any nonzero element of minimal degree contained in it. ...

As a corollary of 8.1 we obtain the following proposition:

8.2 Proposition Let I be an ideal in F [X] with I 6= F [X], and suppose
that I contains an irreducible polynomial p(X). Then I = p(X)F [X].

Proof. By Theorem 8.1 there exists f(X) ∈ F [X] with I = f(X)F [X].
Since p(X) ∈ I it follows that f(X)|p(X). Since p(X) is irreducible f(X)
must be either an associate of p(X) or of degree zero. But if deg(f) = 0
then by 7.6 (i) we obtain I = F [X], contrary to hypothesis. So f and p are
associates, and therefore f(X)F [X] = p(X)F [X] (by Exercise 4 of Chapter
Seven). �

§8b Quotient rings of polynomial rings

Continuing with the notation of 8.1, let I = f(X)F [X]. We wish to inves-
tigate the ring Q = F [X]

/
I. For simplicity we will use the bar notation for

cosets: g(X) = I + g(X) for all g ∈ F [X].

8.3 Theorem Suppose that f(X) = c0 + c1X + · · ·+ cnX
n, where n ≥ 1,

ci ∈ F for each i, and cn 6= 0. Then we have the following:

(i) Each element of Q = F [X]
/
I is uniquely expressible in the form

a0 + a1X + · · ·+ an−1Xn−1

with a0, a1, . . . , an−1 ∈ F .

(ii) The set F = { a | a ∈ F } is a subring of F [X]
/
I isomorphic to F .

(iii) The element X of Q satisfies the equation

c0 + c1X + · · · + cnX
n

= 0̄.

Proof. (i) An arbitrary element of Q is a coset of I, and hence equal
to g(X) for some polynomial g ∈ F [X]. By Theorem 6.9

(∗) g(X) = q(X)f(X) + (a0 + a1X + · · ·+ an−1X
n−1)
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for uniquely determined a0, a1, . . . , an−1 ∈ F . Since I is the set of all poly-
nomials of the form q(X)f(X) it follows that equation (∗) is equivalent to
g(X) ≡ a0 + a1X + · · ·+ an−1X

n−1 (mod I), and hence to

(∗∗) g(X) = a0 + a1X + · · ·+ an−1Xn−1.

So (∗∗) holds for unique ai, as required.
(ii) Define a mapping θ:F → F [X]

/
I by θ(a) = a. Then θ is a homo-

morphism, since it is the restriction to the subring F of F [X] of the natural
homomorphism F [X] → Q. (See 7.12 and 5.5.2.) If a ∈ F is in ker θ then
a = 0, and since a ∈ F it follows from (i) that a = 0. (Alternatively,
a = 0 means that a ∈ I, and hence a is divisible by f(X). Since a is a
constant and deg(f) ≥ 1 we must have a = 0.) Thus ker θ = {0}, and since
im θ = { θ(a) | a ∈ F } = F Theorem 7.14 gives

F ∼= F
/

ker θ ∼= F

in view of §7e#8.
(iii) By the definition of addition and multiplication in a quotient ring,

r(X) + s(X) = r(X) + s(X)

r(X) s(X) = r(X)s(X)

for all r(X), s(X) ∈ F [X]. Hence

c0 + c1X + · · ·+ cnX
n

= c0 + c1X + · · ·+ cnXn = f(X)

which is equal to 0 since f(X) ∈ I. �

Comment ...
8.3.1 Part (ii) of 8.3 permits us to regard F as a subring of Q, in the
same way as we have identified F with the set of constant polynomials in
F [X]. That is, we identify ā with a for each a ∈ F . Thus Q is a ring
which contains F as a subring and also contains an element X satisfying
c0 + c1X + · · · + cnX

n
= 0. That is, X ∈ Q is a zero of the polynomial

f(Y ) = c0 + c1Y + · · · + cnY
n ∈ Q[Y ]. Furthermore, by (i) of 8.3, every

element of Q is of the form a0 + a1X + · · · + an−1X
n−1

with coefficients
ai ∈ F . Hence Q = F [X]

/
f(X)F [X] can be regarded as a ring obtained

from F by adjoining to F a new element X which is to be a zero of f .
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These remarks should be compared with the remarks in 6.7.1. The
polynomial ring F [X] is a ring obtained from F by adjoining an element X
which satisfies no nontrivial equations. Now Q is obtained by adjoining to F
an element X satisfying the equation c0+c1X+· · ·+cnX

n
= 0. Furthermore

we know by 7.12 that there is a homomorphism
F [X] → Q = F [X]

/
I

such that X 7→ X, and, in general,
a0 + a1X + · · ·+ arX

r 7→ a0 + a1X + · · ·+ arX
r

for any polynomial a0 + a1X + · · ·+ arX
r ∈ F [X]. This is reasonable, since

factoring I out of F [X] amounts to regarding elements of I, in particular the
element f(X) = c0 + c1X + · · ·+ cnX

n, as being equal to 0. ...

To complete our discussion of quotient rings of F [X] it remains to say
what happens when p(X) is a constant polynomial. There are two cases,
both trivial.

8.4 Theorem Let p(X) = a ∈ F , and let I = p(X)F [X].
(i) If a = 0 then I = {0} and F [X]

/
I ∼= F [X].

(ii) If a 6= 0 then I = F [X] and F [X]
/
I ∼= {0}.

Proof. Part (i) is immediate from §7e#8, and, in view of 7.6 (i), Part (ii)
is immediate from §7e#9. �

Examples

#1 Let R = Q[X]
/
(X2 − 3)Q[X]. We use the bar notation again: if

g(X) ∈ Q[X] then g(X) denotes the element (X2 − 3)Q[X] + g(X) of the
ring R. By the discussion in 8.3.1 we know that R can be thought of as the
result of adjoining to Q an element X satisfying X

2 − 3 = 0. Every element
of R will have the form a + bX for some a, b ∈ Q, and the following rules
hold for addition and multiplication in R:

(a+ bX) + (c+ dX) = (a+ c) + (b+ d)X

(a+ bX)(c+ dX) = ac+ (ad+ bc)X + bdX
2

= (ac+ 3bd) + (ad+ bc)X

since X
2

= 3.
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There is another way to adjoin to Q an element whose square is three;
namely, consider the set Q[

√
3] of all real numbers of the form a + b

√
3

with a and b in Q. We saw in §5a#6 that Q[
√

3] is a subfield of R. The
above considerations suggest that this subfield of R ought to be isomorphic
to Q[X]

/
(X2 − 3)Q[X]. It is easy to prove this by using the Fundamental

Homomorphism Theorem.

Define θ: Q[X] → R by θ
(
g(X)

)
= g(

√
3) for all g ∈ Q[X]. Then θ is

a homomorphism. Since (
√

3)i is in Q if i is even and of the form q
√

3 with
q ∈ Q if i is odd, we have

im θ = { a0 + a1

√
3 + a2(

√
3)2 + · · ·+ an(

√
3)n | 0 ≤ n ∈ Z, ai ∈ Q }

= { a+ b
√

3 | a, b ∈ Q }
= Q[

√
3].

Moreover, since (by 6.9) any element of Q[X] is expressible in the form
(X2 − 3)q(X) + (a+ bX) with q(X) ∈ Q[X] and a, b ∈ Q, it follows that

ker θ = { g ∈ Q[X] | g(
√

3) = 0 }
= { (X2 − 3)q(X) + a+ bX | q ∈ Q[X], a, b ∈ Q, a+ b

√
3 = 0 }

= { (X2 − 3)q(X) | q ∈ Q[X] }
= (X2 − 3)Q[X].

By 7.14,
Q[X]

/
(X2 − 3)Q[X] ∼= Q[

√
3]

and there is an isomorphism satisfying

a+ bX = (X2 − 3)Q[X] + (a+ bX) 7−→ a+ b
√

3

for all a, b ∈ Q.

#2 Prove that Q[ 3
√

2] = { a + b 3
√

2 + c( 3
√

2)2 | a, b, c ∈ Q } is isomorphic
to Q[X]

/
(X3 − 2)Q[X].

�−−. Define φ: Q[X] → R by φ(p(X)) = p( 3
√

2). By Theorem 6.8 we know
that φ is a homomorphism. Now any rational linear combination of powers
of 3
√

2 lies in Q[ 3
√

2], since ( 3
√

2)i is in Q if i ≡ 0 (mod 3), of the form q 3
√

2
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with q ∈ Q if i ≡ 1 (mod 3) and of the form q( 3
√

2)2 with q ∈ Q if i ≡ 2 (mod
3). Thus

imφ = { a0 + a1
3
√

2 + · · ·+ an( 3
√

2)n | 0 ≤ n ∈ Z ai ∈ Q }
= { a+ b

3
√

2 + c( 3
√

2)2 | a, b, c ∈ Q }
= Q[ 3

√
2].

By Theorem 7.14 it follows that Q[ 3
√

2] ∼= Q[X]
/

kerφ, and it remains for us
to prove that kerφ = (X3 − 2)Q[X]. Now certainly X3 − 2 ∈ kerφ, since
φ(X3−2) = ( 3

√
2)3−2 = 0. But since X3−2 is irreducible in Q[X] (by Eisen-

stein’s Criterion—see §6k#14), it follows from 8.2 that ker θ = (X3−2)Q[X],
as required. /−−�

#3 Let Q = R[X]
/
X3R[X]. Then by 8.3 the set

R′ = {X3R[X] + t | t ∈ R }

is a subring of Q isomorphic to R, and α = X3R[X] + X is an element of
Q satisfying α3 = 0. Every element of Q is uniquely expressible in the form
t0 + t1α+ t2α

2 with t0, t1, t2 ∈ R′. The rule for addition in Q is obvious:

(s0 + s1α+ s2α
2) + (t0 + t1α+ t2α

2) = (s0 + t0) + (s1 + t1)α+ (s2 + t2)α2

for all si, ti ∈ R (i = 0, 1, 2). To multiply two elements of Q, simply expand
the product and use α3 = 0:

(s0+s1α+s2α2)(t0+t1α+t2α2) = s0t0+(s0t1+s1t0)α+(s0t2+s1t1+s2t0)α2.

#4 Let T = R[X]
/
X R[X]. Using the bar notation again, we have

X = 0 = zero element of T ,

since X is in the ideal X R[X]. (In factoring out X R[X] all elements of
X R[X] are regarded as being zero, and this includes the element X.) So
in accordance with 8.3 the ring T can be thought of as obtained from R by
adjoining to R an element X satisfying X = 0.

Adjoining 0 to R doesn’t do a lot—0 is already an element of R. So we
should have that T ∼= R. Again this can be proved using 7.14. There is a
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homomorphism φ: R[X] → R given by φ
(
p(X)

)
= p(0) for all p ∈ R[X]; that

is,
φ(a0 + a1X + · · ·+ anX

n) = a0.

Clearly imφ = R and kerφ = X R[X]; so 7.14gives R[X]
/
X R[X] ∼= R. This

can also be seen directly by observing that

a0 + a1X + · · ·+ anX
n ≡ a0 (mod X R[X]),

and hence that every element of R[X]
/
X R[X] is equal to ā for some a ∈ R.

§8c Fields as quotient rings of polynomial rings

8.5 Definition If F is a subfield of a field E then E is called an extension
of F . More generally, if E has a subfield isomorphic to F we say that E is
an extension of F .

We have seen that R[X]
/
(X2 + 1)R[X] is a field (isomorphic to C)

containing R as a subfield, and that Q[X]
/
(X2−3)Q[X] is a field (isomorphic

to Q[
√

3]
)

containing Q as a subfield. However, R[X]
/
X3R[X] is not a field,

since it contains zero divisors. (The element α = X3R[X] + X is nonzero
but satisfies α3 = 0, as we saw in #3.) We are led to wonder under what
circumstances a quotient ring of F [X] is a field.

Analogy with quotient rings of Z provides a clue to the answer. We
have seen (Theorems 4.10 and 4.11) that Z

/
nZ is a field if and only if n is

prime; that is, the quotient is a field if and only if the ideal is generated by
a prime. Exactly the same is true for quotients of F [X].

8.6 Theorem Let F be a field and p(X) ∈ F [X]. Then F [X]
/
p(X)F [X]

is a field if and only if p is irreducible.

Proof. Let I = F [X]
/
p(X)F [X], and suppose first that p(X) is not irre-

ducible. Then either p(X) is a constant or else deg(p) > 1 and p(X) has a
factorization p(X) = s(X)t(X) for some s and t of degree less than deg(p).

If p(X) is a constant then by 8.4 F [X]
/
I is isomorphic either to F [X],

which is not a field since polynomials of degree greater than 1 do not have
inverses in F [X], or to the trivial ring {0}, which is not a field since it does not
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have a nonzero identity element. We are left with the case p(X) = s(X)t(X)
with 1 ≤ deg(s) < deg(p) and 1 ≤ deg(t) < deg(p). Now since p(X) ∈ I we
find that

(I + s(X))(I + t(X)) = I + s(X)t(X) = I + p(X) = I = I + 0
the zero element of F [X]

/
I. Moreover, p(X) cannot be a factor of s(X) or

t(X) (since 1 ≤ deg(s) < deg(p) and 1 ≤ deg(t) < deg(p)), and therefore
I + s(X) 6= I and I + t(X) 6= I. So the ring F [X]

/
I has zero divisors, hence

is not an integral domain, hence is not a field.
Suppose, on the other hand, that p(X) is irreducible. We must prove

that Q = F [X]
/
I is a field. Since it is certainly a ring, it suffices to prove that

it is commutative and has a nonzero identity, and that all nonzero elements
have inverses.

Let α, β ∈ Q. Then α = I + f(X), β = I + g(X) for some f(X) and
g(X) in F [X], and

αβ = (I + f(X)(I + g(X)) = I + f(X)g(X)
= I + g(X)f(X) = (I + g(X))(I + f(X)) = βα

by commutativity of F [X]. Furthermore,
α(I + 1) = (I + f(X))(I + 1) = I + f(X)1

= I + 1f(X) = (I + 1)(I + f(X)) = (I + 1)α
where 1 is the identity of F . Thus Q is commutative and has an identity.
The identity is nonzero since I + 1 = I would imply that 1 ∈ I and hence
that p(X)|1, which is impossible since deg(p) 6= 0.

Let α be a nonzero element of Q, and let f(X) be an element of F [X]
such that α = I + f(X). Then f(X) 6≡ 0 (mod I), since

I + f(X) 6= I = zero element of Q,
and so p(X)/| f(X). Thus the gcd of p(X) and f(X) cannot be an associate
of p(X), and since p(X) is irreducible the only other divisors it has are
polynomials of degree 0. So the gcd of p(X) and f(X) must be 1. Now by
6.14 there exist m(X) and n(X) with m(X)p(X) + n(X)f(X) = 1, and this
gives

α(I + n(X)) = (I + f(X))(I + n(X))
= I + f(X)n(X)
= I + (1−m(X)p(X))
= I + 1

since m(X)p(X) ∈ I. Thus α has an inverse, as required. �
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Examples

#5 Let F = R and p(X) = X2 − 3X + 2 = (X − 1)(X − 2). Then p(X)
is not irreducible, and so Q = R[X]

/
p(X)R[X] is not a field. Indeed,

X − 1 = p(X)R[X] + (X − 1)
and

X − 2 = p(X)R[X] + (X − 2)

are nonzero elements of Q with product zero:(
X − 1

)(
X − 2

)
= X2 − 3X + 2
= 0,

since X2 − 3X + 2 ≡ 0 (mod p(X)R[X]).

#6 Let F = Q and p(X) = X2−3. We have seen that X2−3 is irreducible
in Q[X] (§6i#6), and so Q[X]

/
(X2 − 3)Q[X] is a field. We had noted this

already in #1 above.

#7 The polynomial X2 + 1 is irreducible in R[X], hence the quotient ring
R[X]

/
(X2 + 1)R[X] is a field (as we had seen in §7d#7).

#8 We saw in §6j#12 that X3 + X + 1 is an irreducible polynomial in
Z2[X]. Hence if I = p(X)Z2[X] we have that K = Z2[X]

/
I is a field con-

taining Z2 as a subfield. By Theorem 8.3 each element of K is uniquely ex-
pressible in the form a0+a1X+a2X

2
with a0, a1, a2 ∈ Z2 (whereX = I+X).

Since there are exactly two choices (0 or 1) for each of a0, a1 and a2, there
are exactly eight possible expressions a0 + a1X + a2X

2
. So K is a field with

eight elements.

§8d Field extensions and vector spaces

Let F be a field and p(X) a polynomial over F , of degree n ≥ 1. Let
Q = F [X]

/
I, where I = p(X)F [X]. By Theorem 8.3 each element of Q

is uniquely expressible in the form a0 + a1X + · · · + an−1X
n−1

where the
coefficients a0, a1, . . . , an−1 are elements of F and X = I +X. We deduce
the following lemma:
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8.7 Lemma The elements 1, X, . . . ,X
n−1

form a basis for Q considered as
a vector space over F .

Proof. The proof that Q is a vector space over F is a straightforward
checking of Property (∗) and Axioms (i)–(viii) listed in §0c, and is omit-
ted. As observed above, every element of Q can be expressed as a linear
combination of the given elements; that is, they span Q. Suppose that
a0 + a1X + · · ·+ an−1X

n−1
= 0 with the ai ∈ F . Then

a0 + a1X + · · ·+ an−1X
n−1

= 0 + 0X + · · ·+ 0X
n−1

and by the uniqueness part of 8.3 (i) it follows that all the ai are equal to 0.
This proves linear independence. �

As a consequence of the lemma we have the following:

8.8 Theorem Let Q = F [X]
/
p(X)F [X] where F is a field and p a poly-

nomial over F of degree n ≥ 1. Then Q is a vector space over F , and the
dimension of this vector space is n.

In the situation described above, if p is irreducible then Q is an exten-
sion field of F . In general, if E is any extension of a field F then (∗) and
(i)–(viii) of §0c are satisfied, and so E may be regarded as a vector space over
F . The dimension of this vector space is called the degree of the extension.

8.9 Definition If E is an extension field of F the degree of E over F ,
denoted by ‘[E : F ]’, is the dimension of E as a vector space over F .

Comments ...
8.9.1 There is no guarantee that [E : F ] is finite.

8.9.2 If F [X]
/
p(X)F [X] is a field then its degree over F equals deg(p).

...

§8e Extensions of extensions

8.10 Theorem Suppose that F , E, K are fields with F ⊆ E ⊆ K, and
suppose that [K : E] = m and [E : F ] = n. Then [K : F ] = mn.
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Proof. Let x1, x2, . . . , xm be a basis for K over E and let y1, y2, . . . , yn be
a basis for E over F . We show that

8.10.1 x1y1, x1y2, . . . , x1yn, x2y1, . . . , x2yn, . . . . . . , xmy1, . . . , xmyn

is a basis for K over F .

We prove first that the elements 8.10.1 span K over F . Let t ∈ K.
Then since {x1, . . . , xm} spans K over E there exist s1, s2, . . . , sm ∈ E with

t = s1x1 + s2x2 + · · ·+ smxm.

Now each si is an F -linear combination of y1, y2, . . . , yn, since these elements
span E over F . So we have

s1 = u11y1 + u12y2 + · · ·+ u1nyn

s2 = u21y1 + u22y2 + · · ·+ u2nyn

...
sm = um1y1 + um2y2 + · · ·+ umnyn

with the coefficients uij in F for all i and j. Now substituting gives

t = u11y1x1 + u12y2x1 + · · ·+ u1nynx1 + · · · · · ·+ umnynxm,

an F -linear combination of the elements 8.10.1.

Now we must show that the elements 8.10.1 are linearly independent
over F . Suppose that uij (1 ≤ i ≤ m, 1 ≤ j ≤ n) are elements of F such
that

∑m
i=1

∑n
j=1 uijyjxi = 0. Then

( n∑
j=1

u1jyj

)
x1 +

( n∑
j=1

u2jyj

)
x2 + · · ·+

( n∑
j=1

umjyj

)
xm = 0,

and since each coefficient
∑n

j=1 uijyj is an element of E and x1, x2, . . . , xm

are linearly independent over E we deduce that
∑n

j=1 uijyj = 0 for each i.
Now the linear independence over F of y1, y2, . . . , yn gives uij = 0 for all i
and j, as required. �
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§8f Algebraic and transcendental elements

Let E be an extension field of F and let a ∈ E. Any subring of E containing
F and containing a clearly must contain a2, a3, a4, . . . , and hence must
contain everything of the form b0 + b1a + · · · + bna

n with 0 ≤ n ∈ Z and
b0, b1, . . . , bn ∈ F . That is, it must contain everything of the form f(a) for
f(X) ∈ F [X].

8.11 Definition Let F [a] be the subset of E defined by
F [a] = { f(a) | f(X) ∈ F [X] }.

Any subfield S of E which contains F and also a certainly contains F [a]
(since S is also a subring). So if u, v ∈ F [a] and v 6= 0 then it follows that
uv−1 ∈ S.

8.12 Definition Let F (a) = {uv−1 | u, v ∈ F [a] and v 6= 0 }.

8.13 Theorem Let E be an extension field of F and let a ∈ E.

(i) F [a] is a subring of E containing F and a, and any subring of E con-
taining F and a contains F [a].

(ii) F (a) is a subfield of E containing F [a]. Any subfield of E containing
F and a contains F (a).

Proof. (i) We proved in the discussion above that every subring contain-
ing F and a contains F [a]. That F [a] is a subring follows from 7.3, since
F [a] is the image of the evaluation homomorphism f(X) 7→ f(a) from F [X]
to E.
(ii) It suffices to prove that F (a) is a subfield, since the other assertion was
proved above. We use Theorem 5.3.

Since F contains the zero and identity of E, so too does F (a). Now if
x, y ∈ F (a) then x = uv−1 and y = st−1 for some u, v, s, t ∈ F [a], and by
the closure properties of the subring F [a] we have that ut + vs, us and −u
are all in F [a]. Hence

x+ y = uv−1 + st−1 = (ut+ vs)(vt)−1 ∈ F (a)
xy =

(
uv−1

) (
st−1

)
= (us)(vt)−1 ∈ F (a)

−x = −
(
uv−1

)
= (−u)v−1 ∈ F (a)

while if u 6= 0 then vu−1 ∈ F (a). So all the requirements of Theorem 5.3 are
satisfied, and F (a) is a subfield. �
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Theorem 8.13 justifies the following terminology:
F [a] is the subring of E generated by F and a,
F (a) is the subfield of E generated by F and a.

8.14 Definition Let E be an extension field of F , and let a ∈ E. If there
exists a nonzero polynomial f(X) ∈ F [X] with f(a) = 0 then a is said to be
algebraic over F . Otherwise a is said to be transcendental over F .

8.15 Theorem Let E be an extension field of F and let a ∈ E.

(i) If a is transcendental over F then F [a] ∼= F [X] (where X is an indeter-
minate), and F (a) 6= F [a].

(ii) If a is algebraic over F then

(a) there exists a unique monic irreducible polynomial p(X) ∈ F [X]
for which p(a) = 0,

(b) F [X]
/
I ∼= F [a], where I = p(X)F [X] is the principal ideal of

F [X] generated by p,

(c) F (a) = F [a].

Proof. Let φ be the evaluation homomorphism F [X] → E given by the
rule φ

(
f(X)

)
= f(a) for all f(X) ∈ F [X]. Then by 7.14,

F [X]
/

kerφ ∼= imφ

= {φ
(
f(X)

) ∣∣ f(X) ∈ F [X] }
= { f(a) | f(X) ∈ F [X] }
= F [a].

(i) Suppose first that a is transcendental over F . Then there are no nonzero
polynomials f(X) ∈ F [X] with f(a) = 0, and so

kerφ = { f(X) | φ
(
f(X)

)
= 0 } = {0}.

Thus F [a] ∼= F [X]
/
{0} ∼= F [X], and we have proved the first assertion in (i).

Since F [X] is not a field we deduce (by §5b#11 in Chapter 5) that F [a] is
not a field, and therefore F (a) 6= F [a].
(ii) Suppose now that a is algebraic over F . By Definition 8.14 there exist
nonzero elements of F [X] of which a is a zero, and therefore kerφ 6= {0}. Let
p(X) be a nonzero polynomial of minimal degree in kerφ. Since associates of
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elements of kerφ will also be in kerφ, we may choose p(X) to be monic (by
6.12.1). We have kerφ = p(X)F [X] (by 8.1.1), and also p(a) = φ(p(X)) = 0
(since p(X) ∈ kerφ). Clearly deg(p) > 1, since p(X) is nonzero and p(a) = 0.
If s(X) and t(X) are polynomials of smaller degree than p(X) such that
p(X) = s(X)t(X) then since s(a)t(a) = p(a) = 0 and the field E can have no
zero divisors it follows that either s(a) = 0 or t(a) = 0. But this contradicts
the choice of p(X) as a polynomial of minimal degree of which a is a zero.
So p(X) has no such factorization, and is therefore irreducible.

To complete the proof of (a) it remains to show that p(X) is the unique
monic irreducible element of F [X] of which a is a zero. So, assume that
q(X) ∈ F [X] is irreducible, monic and satisfies q(a) = 0. Then φ(q(X)) = 0,
and consequently

q(X) ∈ kerφ = p(X)F [X].

Thus p(X)|q(X), and since q(X) is irreducible and deg(p) > 1 it follows that
p(X) and q(X) are associates. Because they are both monic this implies that
q(X) = p(X).

Since F [X]
/

kerφ ∼= F [a] and kerφ = p(X)F [X], part (b) has been
proved. We know by Theorem 8.6 and §5b#11 that F [a] is a field; so the
second assertion in 8.13 (ii) yields that F [a] contains F (a). But the first
assertion in 8.13 (ii) gives the reverse inclusion, and therefore F (a) = F [a],
proving (c). �

Comment ...
8.15.1 The polynomial p(X) in 8.15 (ii) is called the minimal polynomial
of the algebraic element a. Note that the minimal polynomial is always
irreducible. Note also that if p is the minimal polynomial of a then F [a] is
an extension of F of degree equal to deg(p). ...

Example

#9 If F is a subfield of R and 0 < a ∈ R with a /∈ F then

F (a) = F [a] = {x+ y
√
a | x, y ∈ F }

is a subfield of R, and is an extension of F of degree 2.
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§8g Ruler and compass constructions revisited

We finally have the machinery at hand to deal with the classical geometrical
problems described in Chapter 1. Reformulating Theorems 1.1 and 1.2 gives
the following characterization of constructible numbers:

8.16 Theorem A real number t is constructible if and only if there is a
finite sequence of subfields of R

Q = F1 ⊂ F2 ⊂ · · · ⊂ Fn

such that t ∈ Fn and for each i = 1, 2, . . . , n − 1 there is an ai ∈ Fi such
that Fi+1 = Fi

(√
ai

)
.

Proof. Suppose firstly that we are given such a chain of subfields Fi of
R: we will prove that all the elements of the subfields are constructible
numbers. Since 1 is constructible it follows from 1.1 that all elements of Q
are constructible; that is, F1 ⊆ Con. But if Fi ⊆ Con and a, b ∈ Fi then
a, b, ai ∈ Con, and by 1.1 it follows that a+ b

√
ai ∈ Con. So Fi+1 ⊆ Con,

and by induction all fields in the chain are contained in Con.
Conversely, let t be a constructible number, and let α be a constructible

point one of whose coordinates is t. Let α0, α1, . . . , αn = α be the points
obtained in a ruler and compass construction, listed in the order obtained.
(Thus α0 = (0, 0) and α1 = (1, 0).) For each i let Fi be the set of all real num-
bers obtainable from the coordinates of α0, α1, . . . , αi by finite sequences of
operations of addition, subtraction, multiplication and division. Clearly each
Fi is closed under these operations, and we see from 5.3 that Fi is a subfield of
R. Moreover, by 1.2 there exists ai ∈ Fi such that αi+1 = (s+t

√
ai, u+v

√
ai)

for some s, t, u, v ∈ Fi. If t = v = 0 we can replace ai by 0, and in this
case we have Fi+1 = Fi = Fi(

√
ai). If t or v is nonzero then all elements

of Fi(
√
ai) can be obtained from the coordinates of α and elements of Fi by

finite sequences of field operations, and we see that the field Fi+1 is equal to
Fi(
√
ai) in this case too. Hence we have a sequence of fields of the required

kind with t ∈ Fn. �

Now we can dispose of the Delian Problem:

8.17 Theorem The number 3
√

2 is not constructible: a cube cannot be
duplicated by ruler and compass.

Proof. Suppose that 3
√

2 is a constructible number. By 8.16 there is a
sequence of fields Q = F1 ⊂ F2 ⊂ · · · ⊂ Fn, each a quadratic extension
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of the preceding, with 3
√

2 ∈ Fn. Let Fi = Fi−1

(√
ai−1

)
, and assume that

Fi 6= Fi−1. (If Fi = Fi−1 simply delete Fi from the sequence.) Then √ai−1 is
not in Fi−1, and so X2−ai−1 is an irreducible polynomial in Fi−1[X]. Hence

[Fi : Fi−1] = deg(X2 − ai−1) = 2.

By Theorem 8.10 it follows that [Fn : Q] = 2n. But since 3
√

2 ∈ Fn it follows
that Q

(
3
√

2
)
⊆ Fn. Furthermore, as we have seen, X3 − 2 is an irreducible

element of Q[X], and therefore

[Q
( 3
√

2
)

: Q] = deg(X3 − 2) = 3.

By Theorem 8.10 we have

2n = [Fn : Q]

=
[
Fn : Q

( 3
√

2
)][

Q
( 3
√

2
)

: Q
]

= 3
[
Fn : Q

( 3
√

2
)]
,

—a contradiction, since the degree
[
Fn : Q

(
3
√

2
)]

must be an integer, but 2n

is not divisible by three. �

A similar proof applies for κ = cos(π
9 ). Since cos 3θ = 4 cos3 θ − 3 cos θ

we have that 4κ3 − 3κ = 1
2 ; that is, κ is a zero of 8X3 − 6X − 1. This

polynomial is irreducible over Q[X], and so [Q(κ) : Q] = 3. Thus, by the
same argument as above, κ cannot lie in an extension field of Q of degree a
power of two. Thus we have proved

8.18 Theorem The number cos(π
9 ) is not constructible; an angle of sixty

degrees cannot be trisected.

I am forced now to confess that the third classical problem is beyond
the scope of this course. The proof that

√
π is not constructible depends on

showing that π is transcendental over Q; that is, π is not a zero of any poly-
nomial equation over Q. From this it follows that

√
π is also transcendental,

and hence not constructible (since it follows readily from 8.16 that every
constructible number is algebraic over Q). To prove that π is transcenden-
tal would require a lengthy digression into Number Theory. The interested
reader is referred to Hardy and Wright “An Introduction to the Theory of
Numbers” (4th ed.) §11.14, p.173.
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§8h Finite fields

Although we have answered the questions we set out to answer, it would be
a shame to leave the subject without a few words on fields which have only
finitely many elements. If p ∈ Z+ is prime then Zp is a field with exactly p
elements (by Theorems 4.10 and 4.11). We have also seen (#8) how a field
can be constructed which has exactly eight elements. It is natural to wonder
for which positive integers n a field can be found with exactly n elements.

8.19 Theorem Let F be any field. Then the characteristic of F is either
zero or a prime number.

Proof. Suppose to the contrary that F has characteristic m and that m is
composite (that is, not prime). Thenm = rs for some r, s ∈ {2, 3, . . . ,m−1}.
By 5.11 the elements r1 and s1 of F are nonzero (since r and s are less than
the characteristic of F ), but (r1)(s1) = m1 = 0. This contradicts the fact
that there are no zero divisors in a field. �

Now suppose that F is a field with exactly n elements. Then the subset
S of F defined by

S = {n1 | n ∈ Z }
has only a finite number of elements, and so it cannot be isomorphic to Z.
So by Theorem 5.12 it follows that S ∼= Zp, where p is the characteristic of
F , and by 8.19 we know that p must be prime. Therefore we have proved
the following:

8.20 Proposition A finite field F must be an extension of Zp for some
prime p.

The field F can be regarded as a vector space over the subfield S ∼= Zp,
and since F has only finitely many elements this must certainly be a finite
dimensional vector space. So the degree [F : Zp] of the extension is finite.
From this we deduce the next theorem.

8.21 Theorem Suppose that F is an extension of Zp (where p is prime),
and suppose that [F : Zp] = k. Then F has exactly pk elements.

Proof. Let a1, a2, . . . , ak be a basis for F over Zp. Then each element of
F is uniquely expressible in the form λ1a1 + λ2a2 + · · · + λkak with the λi

in Zp, and since there are p choices for each λi there are pk such expressions
altogether. �
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It is also possible to show that for each prime power pk there is a field
with pk elements, and that any two fields with pk elements are isomorphic.
To construct such a field one simply has to find an irreducible polynomial
f ∈ Zp[X] with deg(f) = k, for then 8.6 and 8.9.2 show that F = Zp[X]

/
I

(where I = f(X)Zp[X]) is a field satisfying [F : Zp] = k.

8.22 Theorem For each prime power q there is (up to isomorphism) a
unique field with q elements.

8.23 Definition The field referred to in 8.22 is called the Galois field with
q elements. It is commonly denoted by ‘GF (q)’.

We omit the proof of Theorem 8.22, but give several examples to illus-
trate Galois fields.

Examples

#10 GF (4)
The only polynomials of degree 1 in Z2[X] are X and X + 1. Therefore the
only reducible polynomials of degree 2 are X2, X(X + 1) = X2 + X and
(X + 1)2 = X2 + 1. (Of course (X + 1)2 is equal to X2 + 2X + 1, but 2 = 0
in Z2.) Hence p(X) = X2 + X + 1, the remaining polynomial of degree 2,
must be irreducible. Let I = p(X)Z2[X] and Q = Z2[X]

/
I. Then Q is an

extension field of Z2 of degree equal to deg(p) = 2, and if α = I + X then
1, α is a basis for Q over Z2 (by 8.7). Thus Q has exactly 4 elements:

0 = 0 · 1 + 0α
1 = 1 · 1 + 0α

α = 0 · 1 + 1α
α+ 1 = 1 · 1 + 1α.

The rules for addition and multiplication of these elements are completely
determined by the equation α2 + α + 1 = 0 together with the fact that the
characteristic of Q is 2. Thus, for example,

α(α+ 1) = α2 + α = (α2 + α+ 1) + 1 = 1.

Similar calculations yield the complete addition and multiplication tables for
GF (4). (We have omitted 0 from the multiplication table since the rule for
multiplying by 0 is trivial: 0x = 0 for all x.)

+ 0 1 α α+ 1

0 0 1 α α+ 1
1 1 0 α+ 1 α
α α α+ 1 0 1

α+ 1 α+ 1 α 1 0

· 1 α α+ 1

1 1 α α+ 1
α α α+ 1 1

α+ 1 α+ 1 1 α
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#11 GF (16)
Suppose that f(X) ∈ Z2[X] is reducible and has degree 4. Then one of the
following cases must occur:
(a) f(X) has four irreducible factors of degree 1. There are five possibilities

for f(X):
X4

X3(X + 1)

X2(X + 1)2

X(X + 1)3

(X + 1)4

(b) f(X) has two irreducible factors of degree 1 and one of degree 2. There
are three possibilities:

X2(X2 +X + 1)

X(X + 1)(X2 +X + 1)

(X + 1)2(X2 +X + 1)

(c) f(X) has one irreducible factor of degree 1 and one of degree 3. There
are four possibilities:

X(X3 +X + 1)

(X + 1)(X3 +X + 1)

X(X3 +X2 + 1)

(X + 1)(X3 +X2 + 1)

(d) f(X) has two irreducible factors of degree 2. The only possibility is

f(X) = (X2 +X + 1)2.

So there are thirteen reducible polynomials of degree 4. Since there are
sixteen polynomials of degree 4 altogether it follows that there are three
irreducible ones, and they can be found by writing down all sixteen elements
of Z2[X] of degree 4 and crossing out the thirteen reducible ones above. The
irreducibles are

X4 +X + 1, X4 +X3 + 1, X4 +X3 +X2 +X + 1,

and we can use any of these in the construction of GF (16). For instance, let
I = (X4 +X+1)Z2[X] and t = I+X ∈ Z2[X]

/
I. Then the sixteen elements

of Z2[X]
/
I are:

0, 1, t2 + t, t2 + t+ 1 (forming a subfield with 4 elements)
t, t2, t+ 1, t2 + 1 (which are zeros of X4 +X + 1)

t3, t3 + t2, t3 + t2 + t+ 1, t3 + t (zeros of X4 +X3 +X2 +X + 1)
t3 + 1, t3 + t2 + 1, t3 + t2 + t, t3 + t+ 1 (zeros of X4 +X3 + 1).
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#12 GF (9)
As in our previous examples we can explicitly determine the reducible poly-
nomials of degree 2 in Z3[X], and deduce that the remaining ones are irre-
ducible. We find that there are three monic irreducibles, namely X2−X−1,
X2 + X − 1 and X2 + 1. Now GF (9) can be constructed by adjoining to
GF (3) = Z3 a zero of one of these polynomials (we can choose whichever we
like). Thus, for instance, if s is a zero of X2 + 1 then GF (9) consists of

0, 1, −1 (lying in the subfield Z3),
s, −s (zeros of X2 + 1),

s+ 1, −s+ 1 (zeros of X2 +X − 1),
s− 1, −s− 1 (zeros of X2 −X − 1).

The addition table is easy to write down provided that you remember that
1 + 1 = −1 and s + s = −s (since 3 = 0 in a ring of characteristic three).
The multiplication table is also straightforward, using s2 + 1 = 0.

#13 GF (27)
There are eight monic irreducible polynomials of degree 3 over GF (3), and
GF (27) contains three zeros for each of them (making 24 elements) along
with the three elements of the subfield GF (3). (Note that GF (9) is not a
subfield of GF (27)—in general, GF (q1) is a subfield of GF (q2) if and only if
q2 is a power of q1.)

Exercises

1. Suppose that R is a ring of characteristic three with identity element 1.

(i) Is the set {0, 1,−1} a subring of R?
(ii) Suppose that t ∈ R and t2 + 1 = 0. Show that there are at most

nine elements of R given by polynomial expressions in t, and write
down nine such expressions giving these elements. Prove that these
elements form a subring S of R. Is S a field?

2. Prove that the ring Q[X]
/
(X2 − 2)Q[X] is isomorphic to the field of all

real numbers of the form a+ b
√

2 with a, b ∈ Q.
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3. Let F = Q[
√

1 +
√

2].

(i) Show that the equation of the line joining the points (1 +
√

2, 1)
and (

√
2,
√

1 +
√

2) has coefficients in F .

(ii) Calculate the the coordinates of the point of intersection of the
lines

√
2x−

√
1 +

√
2y = 1

(1 +
√

2)x+ y = 1 +
√

1 +
√

2

and show that they lie in F .

4. Find the smallest subfield F of R which contains the coordinates of the
point of intersection of the circle with centre (0, 0) and radius

√
3 and the

line joining (1/2, 0) and (4
√

2,
√

2). Calculate also the degree [F : Q].

5. Let J = (X3 +X+1)Z2[X]. Express the following elements of Z2[X]
/
J

in the form J + (aX2 + bX + c) with a, b, c ∈ Z2:

(i) J +X5. (ii) J + (X4 +X + 1).

6. Let I be the principal ideal in Q[X] generated by X4 − 2X2 + 1. For
each of the following elements of Q[X]

/
I determine whether an inverse

exists, and, if one does, find it.

(i) I + (X2 +X + 1). (ii) I + (X2 +X − 2).

7. For the given field F and polynomial s(X) ∈ F [X], list all the elements
of the ring Q = F [X]

/
s(X)F [X] and construct a multiplication table

for Q.

(i) F = Z2, s(X) = X2 + 1

(ii) F = Z3, s(X) = X2 + 1

(iii) F = Z2, s(X) = X3 +X + 1

(iv) F = Z3, s(X) = X2 −X + 1

8. Prove that
√

5 /∈ Q[
√

2] by attempting to solve
√

5 = x+y
√

2 for rational
numbers x and y.
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9. (i) Prove that
√

5 /∈ Q[ 3
√

2] by attempting to solve

√
5 = x+ y

3
√

2 + z( 3
√

2)2

for x, y, z ∈ Q.
(Hint: Use the fact that 1, 3

√
2 and ( 3

√
2)2 are linearly inde-

pendent over Q.)
(ii) Prove that

√
5 /∈ Q[ 3

√
2] by considering degrees of field extensions.

(Hint: If
√

5 ∈ Q[ 3
√

2] then Q ⊆ Q[
√

5] ⊆ Q[ 3
√

2].)
(iii) Use considerations of degree to prove that 5

√
17 6∈ Q[ 7

√
43]. (Note

that a computational proof of this fact would be rather messy!)

10. Let E = Q[
√

2], K = E[
√

5].

(i) Calculate the degree [K : Q].
(ii) Observe that t =

√
2 +

√
5 ∈ K. Can the numbers 1, t, t2, t3, t4

be linearly independent over Q?
(iii) Prove that

√
2 +

√
5 is algebraic over Q and find a polynomial

f(X) ∈ Q[X] such that f(
√

2 +
√

5) = 0.

11. Let F be a finite field and S a subfield of F . Prove that the number of
elements of F is a power of the number of elements of S.

(Hint: Imitate the proof of Theorem 8.21.)

12. Let F be a field of characteristic p.

(i) Prove that (a+ b)p = ap + bp for all a, b ∈ F .
(ii) Prove that the function φ:F → F defined by φ(a) = ap (for all

a ∈ F ) is a ring homomorphism.
(iii) Prove that x = 1 is the only solution in F of the equation xp = 1.

13. Let F be a field of characteristic p such that the polynomial Xp3
− X

has p3 distinct roots in F . Prove that these roots form a subfield of F
with p3 elements. (Hint: Use Theorem 5.3.)

14. Let F be a field and f(X) ∈ F [X] be irreducible polynomial. Let
Q = Zp[X]

/
I where I = f(X)F [X] and let α = I + X ∈ Q. Thus

Q is an extension field of F and α a zero of f(Y ) in Q[Y ].

(i) Prove that f(Y ) = (Y − α)g(Y ) for some g(Y ) ∈ Q[Y ].



Chapter Eight: Field Extensions 133

(ii) Suppose that deg(g) ≥ 1 and let h(Y ) be an irreducible factor of
g(Y ) in Q[Y ]. Prove that there exists an extension field E of Q in
which h has a zero.

(iii) Prove the field E in the previous part is an extension of F in which
the polynomial f has at least two zeros.

(iv) Explain why there must exist an extension of F in which f has
deg(f) zeros. Show that this is also true if f is not irreducible.

(Hint: Consider the irreducible factors of f separately.)

15. Use the previous two exercises to prove the existence of a field with p3

elements, and generalize the argument to prove the existence of a field
with pk elements for any k.
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