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1. Introduction

Until recently it was impractical to use general purpose computer algebra systems to
investigate Chevalley groups except for those of small rank over small fields. But computer
algebra systems (such as Magma (Bosma et al. 1997) and GAP (Schönert et al. 1994)) now
have the power to deal with some aspects of all finite groups of Lie type. A natural way
to represent these groups is via matrices over the defining field. Thus, for computational
purposes, there is a need to provide matrix generators for these groups. This has been
done for the classical groups (Taylor 1987, Rylands and Taylor 1998) and now it remains
to extend this to all finite groups of Lie type.

It is the purpose of the present paper to give a uniform method of constructing gen-
erators for groups of Lie type with particular emphasis on the exceptional groups. The
constructions described here could be carried out within any computer algebra system
and, in particular, have been implemented in Magma. This completes the determination
of matrix generators for all groups of Lie type, including the twisted groups of Steinberg,
Suzuki and Ree (and the Tits group).

The Lie algebras and related Chevalley groups of types An, Bn, Cn and Dn can be
identified with classical groups (Carter (1972), §11.3), and in Taylor (1987) and Ry-
lands and Taylor (1998) this identification was used to translate the generators given by
Steinberg (1962) to matrix forms.

The constructions in this paper rely on an investigation of the root systems of Lie
algebras, providing a uniform approach and avoiding case by case discussions of non-
associative algebras. In each case (except E8) we obtain the lowest dimensional module
for the Lie algebra via an embedding in a Lie algebra of higher rank.

2. Modules

In this section we prove two theorems about Lie algebras and root systems for use in
the remainder of the paper. For notation and general facts about Lie algebras see Carter
(1972) or Humphreys (1972).

Let L denote a complex semisimple Lie algebra with root system Φ, fundamental roots
∆, Cartan subalgebra H and Cartan decomposition L = H ⊕

⊕
α∈Φ Lα. For each α ∈ Φ

choose eα ∈ Lα so that { eα | α ∈ Φ } together with the elements hα = [eα e−α] for α ∈ ∆
forms a Chevalley basis for L (Carter (1972), Theorem 4.2.1). In particular, {hα | α ∈ ∆ }
is a basis for H, Φ is a subset of the dual space of H and [h eβ ] = β(h) for all h ∈ H. We
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let Φ+ denote the set of positive roots with respect to ∆ and put Φ− = {−α | α ∈ Φ+ }.
The height of a root is the sum of its coefficients when expressed as a sum of fundamental
roots.

Let κ denote the Killing form on the dual of H. Then 〈α, β 〉 = 2κ(α, β)/κ(β, β) is
linear in the first variable and if ∆ = {α1, . . . , α`}, the i j-th entry of the Cartan matrix
is 〈αi, αj 〉.

When α + β ∈ Φ, write cα,β for the structure constant given by [eα eβ ] = cα,β eα+β .
For convenience, define cα,β to be 0 when α+ β is neither 0 nor a root.

As usual, the adjoint action of L on itself is defined by (adx)y = [x y].

Theorem 2.1. Let L be a semisimple Lie algebra with root system Φ and fundamental
roots ∆. Given a subset ∆1 of ∆, let Φ1 be the root system generated by ∆1 and let L1

be the corresponding Lie subalgebra of L. For γ ∈ Φ \ Φ1, let

X = {α ∈ Φ | α− γ is in the span of ∆1 }.

Then the subspace V of L spanned by the eα where α ∈ X is an L1-module of dimension
|X|.

Proof. The restriction of the adjoint action of L to L1 allows us to view L as an L1-
module. For α ∈ Φ1 and β ∈ X it is clear that α + β − γ is a linear combination of
elements of ∆1. Therefore, if α + β ∈ Φ, then α + β ∈ X and hence ad(eα)eβ ∈ V .
To complete the proof that V is an L1-submodule of L we note that we cannot have
α+ β = 0, otherwise −γ would belong to the span of ∆1, contrary to the choice of γ. 2

Beginning with a Dynkin diagram for L1 and a finite field F, we give an algorithmic con-
struction of an L1-module V and of the matrices representing the action of exp(t ad(eα))
on V (with respect to the basis indexed by X of Theorem 2.1), where α ∈ Φ1 and t ∈ F.

In each case we label the fundamental roots with lower case letters a, b, c, . . . . This
provides a natural total order ≺ on ∆ and we suppose that ∆ \ ∆1 = {ω} where ω
is the last element of ∆. Let V be the L1-module corresponding to γ = ω. We see
from the proof of Theorem 2.1 that X consists of the roots in which the coefficient
of ω is 1 when expressed as a linear combination of fundamental roots; in particular,
X ⊆ Φ+. The Dynkin diagram is conveniently described by its Cartan matrix and, given
this information, the algorithm of Jacobson (1962), p. 122 (and sketched in §11.1 of
Humphreys (1972)) constructs the positive roots of Φ such that roots of equal height are
ordered lexicographically. We shall write α ≺ β to indicate that α comes before β in this
order.

To obtain upper triangular matrices for the linear transformations ad(eα) when α is
positive, we order X, and hence the basis { eα | α ∈ X } of V , according to the reverse of
Jacobson’s ordering. Given α ∈ Φ1, the matrix of the restriction of ad(eα) to V has cα,β
in the row indexed by α+ β and the column indexed by β, whenever α+ β is a root.

The assumption that we are working with a Chevalley basis for L means that the cα,β
are determined up to a sign. In fact cα,β = ±(r + 1) where r is the greatest integer such
that β − rα is a root. In order to determine the sign we follow the method of Carter
(1972), §4.2. For each positive root γ which is not a fundamental root we choose the
least fundamental root α (in the total ordering ≺) such that β = γ − α is a root. In the
terminology of Carter, (α, β) is an extraspecial pair. The signs of the structure constants
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cα,β for extraspecial pairs (α, β) may be chosen arbitrarily and then all other structure
constants are uniquely determined.

Given the ordered set of positive roots it is a straightforward matter to determine the
extraspecial pairs. Then for roots α and β (α+β 6= 0) we may use the following algorithm
(derived from Carter (1972), Theorem 4.1.2) to determine the cα,β recursively, given that
we take cα,β to be positive whenever (α, β) is an extraspecial pair. The Killing form on
the dual of the Cartan subalgebra of L is completely determined by the Cartan matrix;
namely

κ(αi, αj) =
4tij
tiitjj

, where

tij =
∑
α∈Φ

〈α, αi 〉〈α, αj 〉.

Step 1. α + β is not a root.
In this case cα,β = 0 and from now on we may suppose that α + β is a root.

Step 2. height(α) > height(β).
Then cα,β = −cβ,α and now we may suppose that height(α) ≤ height(β).

Step 3. α is negative.

Step 3a. β is negative.
Then cα,β = c−β,−α.

Step 3b. β is positive.

If ξ = α + β is negative, then cα,β =
κ(ξ, ξ)cβ,−ξ

κ(α, α)
, whereas if ξ is positive,

then cα,β =
κ(ξ, ξ)c−α,ξ

κ(β, β)
. Return to Step 2.

Step 4. α is positive.
Let (ε, η) be the extraspecial pair for α + β so that α + β = ε + η. If ε = α,

then cα,β = r + 1, where r is the greatest integer such that β − rα is a root. If
ε = β, then cα,β = −1. Otherwise,

cα,β =
κ(α + β, α + β)

r + 1

(
c−ε,βc−η,α

κ(β − ε, β − ε)
− c−ε,αc−η,β

κ(α− ε, α− ε)

)
,

where r is the greatest integer such that η − rε is a root.

The same choice of structure constants is made in Gilkey and Seitz (1988).

For the case in which all elements of Φ have the same length a considerable improve-
ment to the algorithm can be obtained via the following theorem. Furthermore, in this
case, ad(e−α)eα+β = c−α,α+βeβ = cα,βeβ (see Step 3b above) and so the matrix of
ad(e−α)|V is the transpose of the matrix of ad(eα)|V .

Theorem 2.2. Given that Φ is a root system with fundamental roots ∆ where Φ+ is
totally ordered by ≺ (as above), suppose that all roots have the same length and that the
structure constants are determined by the algorithm just described. Then for α ∈ ∆ and
β ∈ Φ such that α + β ∈ Φ where the expression for β as a sum of fundamental roots
involves some ω � α, we have

cα,β =

{
1 if β ∈ Φ+

−1 if β ∈ Φ−.
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Proof. Suppose at first that β ∈ Φ+ so that α+β ∈ Φ+. All roots have the same length
and so the α-chain through β is β, α+β. By Carter (1972), §4.2 this forces cα,β to be ±1.

Because α is positive, we determine cα,β via Step 4 of the algorithm. If (ε, η) is the
extraspecial pair for α + β, then α + β = ε + η and η − ε is not a root. Because ε � α,
it is not possible to have ε = β whereas if ε = α, then cα,β = 1 and in this case we
have finished. Thus we may suppose that ε ≺ α. Then cα,β = c−ε,βc−η,α since α − ε
is not a root and therefore c−ε,α = 0. Now cα,β 6= 0 and therefore c−ε,β 6= 0, whence
δ = β−ε = η−α is a (positive) root which involves ω � ε. Thus Step 3b of the algorithm
shows that c−ε,β = cε,δ = 1 by induction. Again using Step 3b we have c−η,α = cα,δ = 1
by induction. It follows that cα,β = 1.

It remains to consider the case in which β ∈ Φ− and α + β ∈ Φ. Then −α − β ∈ Φ+

and, as in Step 3 of the algorithm, we have cα,β = −cα,−α−β and the result follows from
the case already dealt with. 2

Corollary 2.1. Suppose that Φ, Φ1, ∆, ∆1 and X are as above with ∆ \∆1 = {ω}. If
all roots have the same length, then cα,β = 1 for all α ∈ ∆1, β ∈ X such that α+β ∈ X.

3. Lie algebras and groups of types E6, E7, E8, F4 and G2

The Weyl character formula shows that the smallest degree of a non-trivial (irreducible)
representation of the complex Lie algebra of type G2, F4, E6, E7 and E8 is respectively
7, 26, 27, 56 and 248 (Tits (1967), pp. 41–50). Theorem 2.1 enables us to write down
representations of the Lie algebras of types E6 and E7 of degrees 27 and 56 respectively
whereas the dimension of the adjoint representation of E8 is 248.

In order to obtain representations of minimal degree for the Lie algebras of types
G2 and F4 we realize them as the fixed points of graph automorphisms of D4 and E6

respectively (see § 3.4). The modules for the Lie algebras of types D4 and E6 obtained
from Theorem 2.1 via the inclusions D4 ⊆ D5 and E6 ⊆ E7 restrict to modules for G2

and F4 of dimensions 8 and 27 respectively. In both cases there is an invariant submodule
of codimension 1 affording representations of dimensions 7 and 26 respectively. It turns
out that all the representations considered so far are subrepresentations of the adjoint
representation of E8.

The use of a Chevalley basis in our construction of the modules means that each module
comes equipped with a Z-form, and therefore the usual Chevalley construction (Carter
1972, Chapter 4) yields matrix groups over all fields. In general the group so constructed
is a central extension of the simple group. Steinberg (1962) has given pairs of generators
for the simple groups, and hence we obtain pairs of generators for the central extensions.

In most cases the representations obtained are irreducible. However, when the Lie
algebra has type G2 or F4 and the field has characteristic 2 or 3 respectively, there is a
submodule of dimension 1 whose quotient is an irreducible module of dimension 6 or 25,
respectively.

For the remainder of the paper we shall consider a simple Lie algebra L and a repre-
sentation φ : L → gl(`,C) of L by ` × ` matrices. For each eα ∈ Lα the matrix φ(eα)
will have integer entries and be the restriction of ad(eα) to a suitable module, hence
nilpotent. Moreover, for any field F and ξ ∈ F the sum

xα(ξ) = exp(ξφ(eα)) = 1 + ξφ(eα) +
ξ2

2!
φ(eα)2 + · · ·
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will be finite (it will never have more than 3 terms) and defined over F. The Chevalley
group associated with L, φ and the field Fq of order q is

Gφ(q) = 〈xα(ξ) | ξ ∈ Fq, α ∈ Φ 〉.

In what follows we let I denote the identity matrix and Ei,j denote the elementary
matrix with 1 in the ij-th position and 0’s elsewhere; ξ will be always be an element of
the relevant field.

Following Carter (1972), §6.4, for each positive root α we take

nα(ξ) = xα(ξ)x−α(−ξ−1)xα(ξ) and
hα,ξ = nα(ξ)nα(−1).

Then hα,ξ satisfies

hα,ξxβ(ν)h−1
α,ξ = xβ(ξ〈 β,α 〉ν)

for all ν ∈ F×q and β ∈ Φ and so may be identified with the element h in Theorem 3.4 of
Steinberg (1962). In each case the matrix hα,ξ will be diagonal.

Finally, n will always be a product (in some order) of the nα(1) where α ∈ ∆; that is,
it will correspond to a Coxeter element of the Weyl group.

3.1. E8

Label the fundamental roots as indicated in the diagram

• • • • • • •
•

a c

b

d e f g h

The degree of the smallest representation is 248. This is the dimension of the Lie algebra
of type E8, and so the Chevalley construction for the field Fq produces the (simple)
adjoint group E8(q).

In this case, for e ∈ L, φ(e) is the matrix of ad(e) with respect to the Chevalley basis.
The Lie algebra is generated by the matrices φ(eα), where ±α ∈ {a, b, . . . , h}. Each
matrix has at most 61 of its 61, 504 entries non-zero but this is still too large to be given
here. However, Theorem 2.2 and the fact that φ(e−α) is almost the transpose of φ(eα)
allows these matrices to be computed rapidly. From these we get generators for the group
E8(q):

xα(ξ) = I + ξφ(eα) +
1
2
ξ2φ(eα)2 for ± α ∈ {a, b, . . . , h},

where ξ ∈ Fq. Using these elements we have

nα(ξ) = xα(ξ)x−α(−ξ−1)xα(ξ) for α ∈ {a, b, . . . , h},
n = nh(1)ng(1)nf (1)ne(1)nd(1)nc(1)nb(1)na(1) and

hh,ξ = nh(ξ)nh(−1).

It follows from Steinberg (1962), Theorem 3.11 that E8(q) is generated by{
hh,µ and xh(1)n for q > 3
xh(1) and n for q ≤ 3,

where µ is a primitive element of Fq.
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3.2. E7

The Dynkin diagram for E7 is

• • • • • •
•

a c

b

d e f g

labelled to be consistent with the diagram of type E8. We use Theorem 2.1 with ∆1 =
∆(E7), ∆ = ∆(E8) and γ = h to construct a representation space V of dimension 56 of
the Lie algebra of type E7. The basis for V is { eα | α ∈ X } with X defined and ordered
as in §2 (so that X = {2a + 3b + 4c + 6d + 5e + 4f + 3g + h, . . . , f + g + h, g + h, h}).
The ordering ensures that the matrix φ(eα) of ad(eα)|V is upper triangular for each root
α ∈ Φ+(E7). By Corollary 2.1, for all α ∈ ∆1, every nonzero entry of φ(eα) is 1.

Since φ(e−α) is the transpose of φ(eα) for any root α, the following elements and their
transposes generate the Lie algebra:

φ(ea) = E7,8 + E9,10 + E11,12 + E13,15 + E16,18 + E19,22 + E35,38

+ E39,41 + E42,44 + E45,46 + E47,48 + E49,50,

φ(eb) = E5,6 + E7,9 + E8,10 + E20,23 + E24,26 + E27,29 + E28,30

+ E31,33 + E34,37 + E47,49 + E48,50 + E51,52,

φ(ec) = E5,7 + E6,9 + E12,14 + E15,17 + E18,21 + E22,25 + E32,35

+ E36,39 + E40,42 + E43,45 + E48,51 + E50,52,

φ(ed) = E4,5 + E9,11 + E10,12 + E17,20 + E21,24 + E25,28 + E29,32

+ E33,36 + E37,40 + E45,47 + E46,48 + E52,53,

φ(ee) = E3,4 + E11,13 + E12,15 + E14,17 + E24,27 + E26,29 + E28,31

+ E30,33 + E40,43 + E42,45 + E44,46 + E53,54,

φ(ef ) = E2,3 + E13,16 + E15,18 + E17,21 + E20,24 + E23,26 + E31,34

+ E33,37 + E36,40 + E39,42 + E41,44 + E54,55 and
φ(eg) = E1,2 + E16,19 + E18,22 + E21,25 + E24,28 + E26,30 + E27,31

+ E29,33 + E32,36 + E35,39 + E38,41 + E55,56.

The matrix group Gφ(q) is generated by the elements xα(ξ) = I+ ξφ(eα) (as φ(eα)2 =
0) for ±α ∈ {a, b, . . . , g} and ξ ∈ Fq.

In general we have nα(ξ) = xα(ξ)x−α(−ξ−1)xα(ξ) and hα,ξ = nα(ξ)nα(−1). The
centre of Gφ(q) is generated by hb,−1he,−1hg,−1 = −I and thus Gφ(q) is 2E7(q) (the
central extension of the simple group E7(q) by a group of order 2) when q is odd or
E7(q) when q is a power of 2.

The diagonal matrix hg,ξ has its ith diagonal entry equal to ξ if i = 1, 16, 18, 21, 24, 26, 27, 29, 32, 35, 38 or 55,
ξ−1 if i = 2, 19, 22, 25, 28, 30, 31, 33, 36, 39, 41 or 56,
1 otherwise.

A Coxeter element is the matrix n = ng(1)nf (1)ne(1)nd(1)nc(1)nb(1)na(1). Its nonzero
entries are equal to 1 for the indices
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(1, 10), (9, 12), (10, 14), (11, 15), (12, 17), (13, 18), (14, 23), (15, 21), (16, 22),
(17, 26), (18, 25), (19, 5), (20, 29), (21, 30), (22, 7), (23, 38), (24, 33), (26, 41),
(27, 37), (29, 44), (32, 46), (35, 50), (38, 52), (39, 32), (41, 35), (42, 36), (44, 39),
(45, 40), (46, 42), (47, 43), (48, 45), (51, 49), (52, 53), (53, 54), (54, 55), (55, 56)

and −1 for

(2, 1), (3, 2), (4, 3), (5, 4), (6, 8), (7, 6), (8, 9), (25, 11), (28, 13), (30, 20), (31, 16),
(33, 24), (34, 19), (36, 27), (37, 28), (40, 31), (43, 34), (49, 48), (50, 51), (56, 47).

It follows from Steinberg (1962), Theorem 3.11 that Gφ(q) is generated by{
hg,µ and xg(1)n for q > 3
xg(1) and n for q ≤ 3,

where µ is a primitive element of Fq.

3.3. E6

The Dynkin diagram for E6 is

• • • • •
•

a c

b

d e f

labelled to be consistent with the diagram of type E7. We use Theorem 2.1 with ∆1 =
∆(E6), ∆ = ∆(E7) and γ = g to construct a representation space V of dimension 27 of
the Lie algebra of type E6. The basis of V is indexed by X and ordered as in §2, that is,
X = {2a + 2b + 3c + 4d + 3e + 2f + g, . . . , e + f + g, f + g, g}. This choice of ordering
means that for α ∈ ∆1 the matrix φ(eα) of ad(eα)|V is upper triangular. (Note that
there are two 27-dimensional representations of the Lie algebra of type E6; one is the
contragredient of the other.) By Corollary 2.1 the nonzero entries of the matrices are 1
and a straightforward calculation produces the following 27× 27 matrices:

φ(ea) = E1,2 + E11,13 + E14,16 + E17,18 + E19,20 + E21,22,

φ(eb) = E4,5 + E6,7 + E8,10 + E19,21 + E20,22 + E23,24,

φ(ec) = E2,3 + E9,11 + E12,14 + E15,17 + E20,23 + E22,24,

φ(ed) = E3,4 + E7,9 + E10,12 + E17,19 + E18,20 + E24,25,

φ(ee) = E4,6 + E5,7 + E12,15 + E14,17 + E16,18 + E25,26 and
φ(ef ) = E6,8 + E7,10 + E9,12 + E11,14 + E13,16 + E26,27.

The matrix φ(e−α) is the transpose of φ(eα) and the Lie algebra of type E6 is generated
by the φ(eα) for ±α ∈ {a, . . . , f}.

The matrix groupGφ(q) is generated by the elements xα(ξ) = exp(ξφ(eα)) = I+ξφ(eα)
for ±α ∈ {a, b, . . . , f} and ξ ∈ Fq.

If q ≡ 1 mod 3, the field Fq contains an element ω of order 3 and the centre of Gφ(q)
is generated by the scalar matrix ha,ω2hc,ωhe,ω2hf,ω of order 3. Thus when q ≡ 1 mod 3,
the group Gφ(q) is 3E6(q) (the central extension of the simple group E6(q) by a group
of order 3); otherwise it is the simple group E6(q).
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The diagonal matrix ha,ξ has its ith diagonal entry equal to
ξ if i = 1, 11, 14, 17, 19 or 21
ξ−1 if i = 2, 13, 16, 18, 20 or 22
1 otherwise.

A Coxeter element is given by n = na(1)nc(1)nd(1)ne(1)nf (1)nb(1); it has nonzero
entries equal to 1 for indices

(1, 10), (7, 12), (9, 14), (10, 15), (11, 16), (12, 17), (14, 18), (15, 21), (17, 22),
(18, 9), (19, 24), (20, 11), (21, 27), (22, 19), (23, 13), (24, 20), (25, 23)

and −1 for

(2, 1), (3, 2), (4, 3), (5, 8), (6, 5), (8, 7), (13, 4), (16, 6), (26, 25), (27, 26).

It follows from Steinberg (1962), Theorem 3.11 that Gφ(q) is generated by{
ha,µ and xa(1)n for q > 3
xa(1) and n for q = 2 or 3,

where µ is a primitive element of Fq.

3.4. The fixed points of a graph automorphism

Suppose that all the roots of the simple Lie algebra L have the same length and
that σ is an automorphism of the Dynkin diagram of L. Then σ determines a linear
transformation of the Cartan subalgebra (and its dual) which permutes the fundamental
roots ∆ and fixes the full root system Φ. In fact this permutation of Φ, which we also
denote by σ, extends to an automorphism of L such that, in the notation of §2, hασ = hασ

and eασ = ±eασ (Carter 1972, Proposition 12.2.3).
Let Lσ be the subalgebra of fixed points of σ. In the cases of interest to us, namely

D4 and E6, Lσ is a simple Lie algebra of type G2 or F4, respectively.
For each e ∈ L let ẽ be the sum of the elements in the 〈σ 〉-orbit of e. Then for h ∈ H

such that hσ = h and for α ∈ Φ we have [h ẽα] = α(h)ẽα. Thus the roots of Lσ are the
restrictions to Hσ = H ∩ Lσ of the roots of L. Also, for α ∈ ∆ we have h̃α = [ẽα ẽ−α].

For typesD4 and E6 and α ∈ ∆ such that α 6= ασ we have 〈α, ασ 〉 = 0. Thus α(h̃α) = 2
and it follows that a Chevalley basis for Lσ can be obtained by taking elements ẽ, where
e runs through a set of representatives for the orbits of the group 〈−1, σ 〉 on a Chevalley
basis of L. We label the fundamental roots of Lσ as A,B, . . .. If A is the restriction of
the root a, we choose eA = ẽa, and so on. The remaining elements of the Chevalley basis
are determined by eA, eB , . . . up to a sign and we choose the signs to agree with the
algorithm of §2. The Cartan matrix of Lσ can be obtained from the Cartan matrix of L
by taking, for each pair of representatives of the 〈σ 〉-orbits on ∆, the sum of the entries
in the row of α corresponding to the columns indexed by the elements in the 〈σ 〉-orbit
of β.

3.5. F4

We begin with the complex Lie algebra L of type E6 given in §3.3 and with its Dynkin
diagram as given there. In this case the graph automorphism has order 2. The restrictions
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of a, c, d and b to Hσ are the fundamental roots A, B, C and D of Lσ, and we have
eA = ẽa = ea + ef , eB = ẽc = ec + ee, eC = ẽd = ed and eD = ẽb = eb.

Since


2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0

0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

 is the Cartan matrix of L, the Cartan matrix

of Lσ with respect to the ordering A, B, C, D is

 2 −1 0 0
−1 2 −1 0

0 −2 2 −1
0 0 −1 2

 and therefore

its Dynkin diagram is
• • • •<

A B C D

of type F4.
Take φ to be the representation of dimension 27 for E6 with representation space V

defined in §3.3 and let v1, v2, . . . , v27 be its basis defined there. We note that φ(e−X) is
the transpose of φ(eX).

The restriction of φ to Lσ is reducible. There is an Lσ-invariant subspace U with basis
ui, i = 1, . . . , 26, where

ui =


vi for 1 ≤ i < 13
v13 + v14 for i = 13
v14 + v15 for i = 14
vi+1 for 14 < i ≤ 26

In characteristic 0 the representation splits into the sum of the (irreducible) 26-
dimensional representation on U and the zero representation on 〈u0〉, where u0 = v13 −
v14 + v15. In any characteristic 〈u0〉 is the unique 1-dimensional Lσ-submodule of U .

If we let ψ denote the representation of Lσ on U we obtain the following matrix
generators for the Lie algebra of type F4.

ψ(eA) = E1,2 + E6,8 + E7,10 + E9,12 + 2E11,13 + E11,14 + E13,15

+ E16,17 + E18,19 + E20,21 + E25,26,

ψ(eB) = E2,3 + E4,6 + E5,7 + E9,11 + E12,13 + 2E12,14 + E14,16

+ E15,17 + E19,22 + E21,23 + E24,25,

ψ(eC) = E3,4 + E7,9 + E10,12 + E16,18 + E17,19 + E23,24,

ψ(eD) = E4,5 + E6,7 + E8,10 + E18,20 + E19,21 + E22,23,

ψ(e−A) = E2,1 + E8,6 + E10,7 + E12,9 + E13,11 + 2E15,13 + E15,14

+ E17,16 + E19,18 + E21,20 + E26,25,

ψ(e−B) = E3,2 + E6,4 + E7,5 + E11,9 + E14,12 + E16,13 + 2E16,14

+ E17,15 + E22,19 + E23,21 + E25,24,

ψ(e−C) = ψ(eC)t and
ψ(e−D) = ψ(eD)t.

¿From these we obtain

ψ(e2B+C) = −E2,6 − E5,11 + E10,16 + E12,18 − E15,22 − E21,25 and
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ψ(e−(2B+C)) = ψ(e2B+C)t.

The group Gψ(q) is generated by the elements xα(ξ) = I + ξψ(eα) + 1
2ξ

2ψ(eα)2 for
±α ∈ {A,B,C,D} and ξ ∈ Fq. It is isomorphic to the simple group F4(q).

In particular we have:

xA(1) = I + ψ(eA) +
1
2
ψ(eA)2 = I + E1,2 + E6,8 + E7,10 + E9,12 + 2E11,13

+ E11,14 + E13,15 + E16,17 + E18,19 + E20,21 + E25,26 + E11,15,

xC(1) = I + ψ(eC) = I + E3,4 + E7,9 + E10,12 + E16,18 + E17,19 + E23,24 and

x−B(1) = I + ψ(e−B) +
1
2
ψ(e−B)2 = I + E3,2 + E6,4 + E7,5 + E11,9 + E14,12

+ E16,12 + E16,13 + 2E16,14 + E17,15 + E22,19 + E23,21 + E25,24.

The ith diagonal entry of hA,ξ = nA(ξ)nA(−1) is equal to
ξ if i = 1, 6, 7, 9, 16, 18, 20 or 25
ξ−1 if i = 2, 8, 10, 12, 17, 19, 21 or 26
ξ2 if i = 11
ξ−2 if i = 15
1 otherwise

and the ith diagonal entry of h2B+C,ξ is equal to ξ if i = 2, 5, 10, 12, 15 or 21
ξ−1 if i = 6, 11, 16, 18, 22 or 25
1 otherwise.

The Coxeter element n = nA(1)nB(1)nC(1)nD(1) has nonzero entries equal to 1 for
indices

(1, 5), (4, 7), (5, 9), (6, 10), (7, 12), (9, 20), (11, 21), (13, 14), (18, 23), (19, 16),
(20, 24), (21, 18), (22, 17), (23, 19), (24, 25), (25, 26), (26, 22)

and −1 for

(2, 1), (3, 2), (8, 3), (10, 4), (12, 11), (14, 13), (14, 14), (15, 6), (16, 15), (17, 8).

It follows from Steinberg (1962), Theorems 3.11 and 3.14 that F4(q) is generated by
hA,µ and xA(1)n for q odd and q > 3
xA(1) and n for q = 3
h2B+C,µ and xC(1)x−B(1)n for q even and q > 2
xC(1)x−B(1) and n for q = 2,

where µ is a primitive element of Fq.
Except when Fq has characteristic 3 this representation of F4(q) is irreducible. In

characteristic 3 we have u0 = u13+u14 ∈ U and the quotient U/〈u0〉 affords an irreducible
representation of F4(q) of dimension 25.
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3.6. G2

Let a, b, c, d and e be the fundamental roots for the root system of type D5 as shown
in the Dynkin diagram:

•

•
• • •HH

��

a

b
c d e

The root system of type D5 has 20 positive roots and that of D4 has 12. The ordering
given in §2 for the roots in Φ+(D5) \ Φ+(D4) is a+ b+ 2c+ 2d+ e, a+ b+ 2c+ d+ e,
a+ b+ c+ d+ e, b+ c+ d+ e, a+ c+ d+ e, c+ d+ e, d+ e, e. Applying the methods of
§2 gives an 8-dimensional representation φ of the Lie algebra L of type D4 such that

φ(ea) = E3,4 + E5,6,

φ(eb) = E3,5 + E4,6,

φ(ec) = E2,3 + E6,7,

φ(ed) = E1,2 + E7,8

and where φ(e−α) is the transpose of φ(eα) for all α ∈ ∆.
We regard the Lie algebra of type G2 as the subalgebra of fixed points Lσ of the

diagram automorphism σ of order three of L. The restrictions of a and c to Hσ are the
fundamental roots A and B for Lσ and we have eA = ẽa = ea+eb+ed and eB = ẽc = ec.

The Cartan matrix of L is

 2 0 −1 0
0 2 −1 0
−1 −1 2 −1

0 0 −1 2

 and the considerations of §3.4 show

that the Cartan matrix for Lσ is
(

2 −1
−3 2

)
and hence its Dynkin diagram is of type G2,

namely t t<
A B

.
The restriction of φ to Lσ gives an 8-dimensional representation V of G2 with basis

v1, . . . , v8. This representation is reducible and there is an Lσ-invariant submodule U
with basis ui, i = 1, . . . , 7, where

ui =

 vi for 1 ≤ i < 4
v4 + v5 for i = 4
vi+1 for 4 < i ≤ 7

In characteristic 0, we have V = U ⊕〈u0〉 as Lσ-modules, where u0 = −v4 + v5. In any
characteristic, 〈u0〉 is the unique 1-dimensional Lσ-submodule of V .

Let ψ denote the restriction of φ to Lσ with respect to the basis ui of U . We have

ψ(eA) = E1,2 + 2E3,4 + E4,5 + E6,7,

ψ(e−A) = E2,1 + E4,3 + 2E5,4 + E7,6,

ψ(eB) = E2,3 + E5,6,

ψ(e−B) = E3,2 + E6,5

and later we shall need

ψ(eA+B) = E1,3 − 2E2,4 + E4,6 − E5,7,

ψ(e−A−B) = −E3,1 + E4,2 − 2E6,4 + E7,5,

ψ(e2A+B) = −2E1,4 + E2,5 + E3,6 − E4,7 and
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ψ(e−2A−B) = −E4,1 + E5,2 + E6,3 − 2E7,4.

The group Gψ(q) is generated by the elements xα(ξ) = I + ξψ(eα) + 1
2ξ

2ψ(eα)2 for
±α ∈ {A,B} and ξ ∈ Fq; it is isomorphic to G2(q).

In particular we have

xA(ξ) = I + ξE1,2 + 2ξE3,4 + ξE4,5 + ξE6,7 + ξ2E3,5,

x−A(ξ) = I + ξE2,1 + ξE4,3 + 2ξE5,4 + ξE7,6 + ξ2E5,3,

xB(ξ) = I + ξeB = I + ξE2,3 + ξE5,6,

x−B(ξ) = I + ξe−B = I + ξE3,2 + ξE6,5,

n = nA(1)nB(1) = E1,3 − E2,1 + E3,6 − E4,4 − E5,2 + E6,7 + E7,5,

hA,ξ = ξE1,1 + ξ−1E2,2 + ξ2E3,3 + E4,4 + ξ−2E5,5 + ξE6,6 + ξ−1E7,7,

hB,ξ = E1,1 + ξE2,2 + ξ−1E3,3 + E4,4 + ξE5,5 + ξ−1E6,6 + E7,7 and
h2A+B,ξ = ξ2E1,1 + ξE2,2 + ξE3,3 + E4,4 + ξ−1E5,5 + ξ−1E6,6 + ξ−2E7,7.

It follows from Steinberg (1962), Theorems 3.11 and 3.14 that G2(q) is generated by h2A+B,µ and xB(1)x−A(1)n for q ≡ 0 mod 3
hA,µ and xA(1)n for q 6≡ 0 mod 3 and q 6= 2
xA(1) and n for q = 2,

where µ is a primitive element of Fq.
Except for characteristic 2 this representation of G2(q) is irreducible. In characteristic

2 the subspace spanned by the fourth basis element is fixed, and so by taking the quotient
an irreducible representation of dimension 6 is obtained.

4. The twisted groups

This section deals with the twisted groups 2B2, 3D4, 2E6, 2F4 and 2G2. Each twisted
group kG(q) is generated by fixed points of an automorphism of G(qk) or G(q) of order k
which arises from a field automorphism and an automorphism of order k of the underlying
graph of the Dynkin diagram. In the case of a single root length, the twisted group kG(q)
is a subgroup of G(qk) and the field automorphism is the Frobenius map. On the other
hand, when there is more than one root length, a power of the field automorphism is the
Frobenius map over the prime field. A consequence of this is that kG(q) is defined only
for some values of q, and is a subgroup of G(q). See Chapters 13 and 14 of Carter (1972)
for the definition and a discussion of these groups.

For ξ ∈ Fq write ξσ for the image of ξ under the field automorphism, for α ∈ Φ write
α for the image of α under the map on Φ corresponding to the graph automorphism and
write x for the image of x under the associated group automorphism.

Except for 2B2(2), 2F4(2) and 2G2(3), the twisted groups are simple (Steinberg (1967),
p. 186 and Carter (1972), Chapter 14).

4.1. The groups 2B2

The Dynkin diagrams of types B2 and C2 are the same ( • •>
a b ) and the underlying

graph has an automorphism of order 2. When the order q of the field is an odd power
of 2 there is a field automorphism which, when combined with the graph automorphism,
induces an automorphism of the group B2(q). The group 2B2(q) of fixed points is also
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known as a Suzuki group. They were first described in Suzuki (1960) and then interpreted
as twisted groups of Lie type by Ree (Tits 1960). Thus in this section Fq will denote the
field of order q = 22m+1 and σ will be the automorphism of Fq such that ξσ = ξ2

m

; that
is, 2σ2 = 1. This field automorphism combined with the graph automorphism extends to

an automorphism of the group given by xX(ξ) =

{
xX(ξσ) X a long root

xX(ξ2σ) X a short root
.

Even though we refer to the groups as 2B2(q), we use the four dimensional (symplectic)
representation obtained from the embedding of C2 in C3. The following elements of 2B2(q)
will be needed:

x = xa(1)xb(1)xa+2b(1) =

 1 1 0 1
0 1 1 1
0 0 1 1
0 0 0 1

,
n =

 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 and

h(ξ) = ha(ξ)ha(ξ) = ha(ξ)hb(ξσ)
= diag(ξσ, ξ−σ+1, ξσ−1, ξ−σ).

It follows from Steinberg (1962), Theorem 4.1 that 2B2(q) is generated by{
h(µ) and xn for q > 2
x and n for q = 2

where µ is a primitive element of Fq.

4.2. The groups 3D4

The simple group 3D4(q) is a subgroup of the orthogonal group Ω+(8, q3), which we
identify with the Chevalley group of type D4 over Fq3 . It is defined in terms of an
automorphism of Ω+(8, q3) of order 3 which arises from the diagram automorphism of
order 3 and the Frobenius map of order 3.

•

•
• •HH

��

a

b
c d

For ξ ∈ Fq3 the Frobenius map sends ξ to ξq. The group automorphism is given by
xα(ξ) = xα(ξq).

We begin with the 8-dimensional representation of the Lie algebra of type D4 given in
§3.6. From the matrices φ(eα), ±α ∈ {a, b, c, d}, we obtain the following elements of the
Chevalley group of type D4.

xa(ξ) = I + ξE3,4 + ξE5,6,

xb(ξ) = I + ξE3,5 + ξE4,6,

xc(ξ) = I + ξE2,3 + ξE6,7,

xd(ξ) = I + ξE1,2 + ξE7,8
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and x−α(ξ) = xα(ξ)t for α ∈ {a, b, c, d}. From these elements we derive

na(ξ) = E1,1 + E2,2 + ξE3,4 − ξ−1E4,3 + ξE5,6 − ξ−1E6,5 + E7,7 + E8,8,

nb(ξ) = E1,1 + E2,2 + ξE3,5 + ξE4,6 − ξ−1E5,3 − ξ−1E6,4 + E7,7 + E8,8,

nc(ξ) = E1,1 + ξE2,3 − ξ−1E3,2 + E4,4 + E5,5 + ξE6,7 − ξ−1E7,6 + E8,8,

nd(ξ) = ξE1,2 − ξ−1E2,1 + E3,3 + E4,4 + E5,5 + E6,6 + ξE7,8 − ξ−1E8,7,

ha,ξ = diag(1, 1, ξ, ξ−1, ξ, ξ−1, 1, 1),
hb,ξ = diag(1, 1, ξ, ξ, ξ−1, ξ−1, 1, 1),
hc,ξ = diag(1, ξ, ξ−1, 1, 1, ξ, ξ−1, 1) and
hd,ξ = diag(ξ, ξ−1, 1, 1, 1, 1, ξ, ξ−1).

We take xR(ξ) = xa(ξ)xb(ξσ)xd(ξσ
2
) for ξ ∈ Fq3 and xc(η) for η ∈ Fq to be the

fundamental root elements for the group 3D4(q). Then we have

xR(1) = I + E1,2 + E3,4 + E3,5 + E3,6 + E4,6 + E5,6 + E7,8,

nR(1) = xR(1)x−R(−1)xR(1) = na(1)nb(1)nd(1)
= E1,2 − E2,1 + E3,6 − E4,5 − E5,4 + E6,3 + E7,8 − E8,7,

n = nR(1)nc(1) = E1,3 − E2,1 + E3,7 − E4,5 − E5,4 − E6,2 + E7,8 + E8,6 and

hR(ξ) = ha,ξhb,ξσhd,ξσ2 = diag(ξσ
2
, ξ−σ

2
, ξσ+1, ξσ−1, ξ−σ+1, ξ−σ−1, ξσ

2
, ξ−σ

2
).

It follows from Steinberg (1962), Theorem 4.1 that 3D4(q) is generated by

hR(µ) and xR(1)n

where µ is a primitive element of the field Fq3 .

4.3. The groups 2E6

Label the fundamental roots as in §3.3:

• • • • •
•

a c

b

d e f

The diagram automorphism of order 2, combined with the Frobenius map ξ 7→ ξσ = ξq

of the field Fq2 , gives rise to an automorphism g 7→ g of the group Gφ(q2) of type E6

(defined in §3.3) such that xα(ξ) = xα(ξσ). The fixed points of this automorphism form
the group Gφ(q) of type 2E6. If 3 divides q + 1 and if ω is an element of order 3 in Fq2 ,
then ha,ω2hf,ωhc,ωhe,ω2 is an element of order 3 in the centre of Gφ(q). In this case Gφ(q)
is the central extension 3 2E6(q) of the twisted simple group 2E6(q); otherwise it is the
simple group 2E6(q) itself.

As fundamental root elements for the group Gφ(q) we take xR(ξ) = xa(ξ)xf (ξσ) and
xS(ξ) = xc(ξ)xe(ξσ) for ξ ∈ Fq2 and xd(η) and xb(η) for η ∈ Fq. Then

xR(1) = I + E1,2 + E6,8 + E7,10 + E9,12 + E11,13 + E11,14 + E11,16 + E13,16

+ E14,16 + E17,18 + E19,20 + E21,22 + E26,27, and
xS(1) = I + E2,3 + E4,6 + E5,7 + E9,11 + E12,14 + E12,15 + E12,17 + E14,17

+ E15,17 + E16,18 + E20,23 + E22,24 + E25,26.
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¿From these elements and similar expressions for x−R(1) and x−S(1) we derive nR(1) =
xR(1)x−R(−1)xR(1) and nS(1) = xS(1)x−S(−1)xS(1).

Then a Coxeter element is given by n = nR(1)nS(1)nd(1)nb(1); it has nonzero entries
equal to 1 for indices

(1, 5), (4, 7), (5, 9), (6, 10), (7, 12), (9, 21), (11, 22), (13, 15), (19, 24), (20, 17),
(21, 25), (22, 19), (23, 18), (24, 20), (25, 26), (26, 27), (27, 23)

and −1 for

(2, 1), (3, 2), (8, 3), (10, 4), (12, 11), (14, 13), (15, 14), (16, 6), (17, 16), (18, 8).

The diagonal matrix hR(ξ) = ha,ξhf,ξσ has its ith diagonal entry equal to

ξ i = 1, 17, 19 or 21
ξ−1 i = 2, 18, 20 or 22
ξσ i = 6, 7, 9 or 26
ξ−σ i = 8, 10, 12 or 27
ξσ+1 i = 11
ξσ−1 i = 13
ξ−σ+1 i = 14
ξ−σ−1 i = 16
1 otherwise.

By Steinberg (1962), Theorem 4.1 2E6(q) is generated by hR(µ) and xR(1)n where µ
is a primitive element of Fq2 .

4.4. The groups 2F4 and the Tits group

The Dynkin diagram of type F4 is

• • • •<
A B C D

The underlying graph has an automorphism of order 2. The groups 2F4(q) were in-
troduced by Ree (1961a) and are defined only when the field has order an odd power
of 2. Thus let Fq be the field of order q = 22m+1. There is an automorphism σ of
Fq such that ξσ = ξ2

m

; that is, 2σ2 = 1. This field automorphism combined with
the graph automorphism X 7→ X extends to an automorphism of the group given by

xX(ξ) =

{
xX(ξσ) X a long root

xX(ξ2σ) X a short root
.

We use the representation and elements given in §3.5. Let x = xB(1)xC(1)x2B+C(1);
its matrix has 1’s on the diagonal and the other nonzero entries are 1 for indices

(2, 3), (2, 4), (2, 6), (3, 4), (4, 6), (5, 7), (5, 9), (5, 11), (7, 9), (9, 11), (10, 12),
(10, 16), (10, 18), (12, 13), (12, 16), (14, 16), (14, 18), (15, 17), (15, 19), (15, 22),
(16, 18), (17, 19), (19, 22), (21, 23), (21, 24), (21, 25), (23, 24), (24, 25).

The matrix for

n = n2B+C(1)nC(1)nA(1)nD(1) = (nB(1)nC(1))3nA(1)nD(1) =
x2B+C(1)xC(1)x−2B−C(−1)x−C(−1)×
x2B+C(1)xC(1)xA(1)xD(1)x−A(−1)x−D(−1)xA(1)xD(1)
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has nonzero entries equal to 1 for indices

(1, 2), (2, 10), (3, 5), (4, 3), (5, 15), (6, 1), (7, 12), (8, 7), (9, 8), (10, 21),
(11, 4), (12, 17), (13, 13), (13, 14), (14, 14), (15, 23), (16, 9), (17, 20), (18, 6),
(19, 16), (20, 19), (21, 26), (22, 11), (23, 24), (24, 22), (25, 18), (26, 25).

The diagonal matrix h(ξ) = hB,ξhB,ξ = hB,ξhC,ξσ has ith diagonal entry

ξ i = 2, 5, 15 or 21
ξ−1 i = 6, 11, 22 or 25
ξ−σ+1 i = 4, 9, 19 or 24
ξσ−1 i = 3, 7, 17 or 23
ξσ i = 10
ξ−σ+2 i = 12
ξσ−2 i = 16
ξ−σ i = 18
1 otherwise.

It follows from Steinberg (1962), Theorem 4.1 that 2F4(q) is generated by{
h(µ) and xn for q > 2
x and n for q = 2

where µ is a primitive element of Fq.
The Tits group is the simple group (2F4(2))′; it has index 2 in 2F4(2) (Carter 1972,

§14.4). The group (2F4(2))′ is generated by

xnx−1n−1 and n.

4.5. The groups 2G2

Ree (1961b) describes these groups and gives a matrix representation for them equiv-
alent to the one given here.

Let q = 32m+1 and let σ be the automorphism of Fq defined by ξσ = ξ3
m

(and so
3σ2 = 1). The field automorphism σ combined with the graph automorphism X 7→
X (interchanging roots A and B) extends to an automorphism of the group given by

xX(ξ) =
{
xX(ξσ) X a long root
xX(ξ3σ) X a short root .

We use the notation from §3.6, but choose different structure constants for the Lie
algebra of type G2 to ensure that the graph automorphism has a nice form (Carter 1972,
§12.4). The structure constants are determined by putting cα,β = −(r + 1) instead of
r+1 whenever (α, β) is the extraspecial pair for α+β in the algorithm in §2. We obtain
the following elements of 2G2(q).

x(ξ) = xA(ξσ)xB(ξ)xA+B(ξσ+1)x2A+B(ξ2σ+1),

x(1) =


1 1 0 0 1 2 2
0 1 1 2 1 0 1
0 0 1 2 1 0 2
0 0 0 1 1 0 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

,
n′ = (nA(1)nB(1))3 = E1,7 − E2,6 + E3,5 − E4,4 + E5,3 − E6,2 + E7,1 and
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h(ξ) = hA(ξ)hA(ξ) = hA(ξ)hB(ξ3σ)
= ξE1,1 + ξ3σ−1E2,2 + ξ2−3σE3,3 + E4,4 + ξ3σ−2E5,5 + ξ1−3σE6,6 + ξ−1E7,7.

It follows from Steinberg (1962), Theorem 4.1 that 2G2(q) is generated by h(µ) and
x(1)n′ where µ is a primitive element of Fq.

5. Availability

The generators for all the groups described in this paper have been included in Magma
since V2.4.
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