Uniform Continuity of Continuous Functions on Compact Metric Spaces

Daniel Daners

A basic theorem asserts that a continuous function on a compact metric space with values in another metric space is uniformly continuous. The usual proofs based on a contradiction argument involving sequences or on the covering property of compact sets are quite sophisticated for students taking a first course on real analysis. We present a direct proof only using results that are established anyway in such an introductory course.

Let \(f : X \to Y \) be a continuous function from the compact metric space \((X,d_X)\) into the metric space \((Y,d_Y)\). The function \(F : X \times X \to \mathbb{R} \) given by

\[
F(x,y) : = d_Y(f(x),f(y))
\]

is continuous with respect to the product metric on \(X \times X \). Fix \(\varepsilon > 0 \) and consider the inverse image

\[A_\varepsilon := F^{-1}([\varepsilon, \infty]) := \{(x,y) \in X \times X : F(x,y) \geq \varepsilon\}. \]

As \(F \) is continuous and \([\varepsilon, \infty)\) is closed, \(A_\varepsilon \) is a closed subset of the compact metric space \(X \times X \). Hence, \(A_\varepsilon \) is compact. Assume that \(A_\varepsilon \neq \emptyset \). The real valued function \((x,y) \mapsto d_X(x,y)\) is continuous on \(X \times X \) and hence has a minimum on the compact set \(A_\varepsilon \). Thus, there exists \((x_0,y_0) \in A_\varepsilon\) such that

\[
\delta := d(x_0,y_0) \leq d(x,y)
\]

for all \((x,y) \in A_\varepsilon\). As \((x_0,y_0) \in A_\varepsilon\) we have \(\delta > 0 \) as otherwise \(x_0 = y_0 \) and hence \(0 = F(x_0,y_0) \geq \varepsilon > 0 \). Moreover, if \(d_X(x,y) < \delta \), then \((x,y)\) is in the complement of \(A_\varepsilon \), and therefore

\[
d_X(x,y) < \delta \implies d_Y(f(x),f(y)) = F(x,y) < \varepsilon.
\]

This is exactly what is required for uniform continuity. If \(A_\varepsilon = \emptyset \), then (1) holds for every \(\delta > 0 \). As the arguments work for every choice of \(\varepsilon > 0 \) this proves the uniform continuity of \(f \).

School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
daniel.daners@sydney.edu.au