The answers to questions 1, 2 and 3 are on the Practice Sheet.

4. Find the eigenvalues and corresponding eigenvectors for
\[A = \begin{bmatrix} 1 & -1 & 5 \\ -1 & 1 & 13 \\ 0 & 0 & -3 \end{bmatrix}. \]

Solution.

First calculate the eigenvalues of \(A \). By expanding the determinant of \(\det(A - \lambda I) \) along its last row we see that the characteristic equation is
\[
0 = \det \begin{bmatrix} 1 - \lambda & -1 & 5 \\ -1 & 1 - \lambda & 13 \\ 0 & 0 & -3 - \lambda \end{bmatrix} = (-3 - \lambda)((1 - \lambda)^2 - 1) = -(3 + \lambda)(\lambda - 2).
\]

This has roots \(\lambda = -3, 0, 2 \) and these are the eigenvalues of \(A \).

Any nonzero solution of \((A - \lambda I) \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\) is an eigenvector for the eigenvalue \(\lambda \). Thus to find the eigenvectors for the eigenvalue 2 we should find the nonzero solutions of
\[
\begin{bmatrix} -1 & -1 & 5 \\ -1 & -1 & 13 \\ 0 & 0 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
\]

It is easily checked that the general solution of this system is \(x = -y = t \) and \(z = 0 \), where \(t \) is an arbitrary parameter. Thus the eigenvectors of \(A \) for the eigenvalue 2 are all column vectors of the form \(t \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \) for \(t \neq 0 \). Similarly, we find that the eigenvectors for the eigenvalue \(-3\) are the nonzero scalar multiples of \(\begin{bmatrix} 11 \\ 19 \\ -5 \end{bmatrix} \) and the eigenvectors for the eigenvalue 0 nonzero scalar multiples of \(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \).

5. [Cayley-Hamilton] Show that the characteristic equation of the matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is
\[
\lambda^2 - (a + d)\lambda + (ad - bc) = 0.
\]

Show also that \(A \) satisfies the matrix equation \(A^2 - (a + d)A + (ad - bc)I_2 = 0_2 \), where \(I_2 \) and \(0_2 \) are the \(2 \times 2 \) identity and zero matrices respectively.

Solution.

\[
\det(A - \lambda I) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = \lambda^2 - (a + d)\lambda + (ad - bc).
\]
Since \(A^2 = \begin{bmatrix} a^2 + bc & ab + bd \\ ca + dc & cb + d^2 \end{bmatrix} \) we find that \(A^2 - (a + d)A + (ad - bc)I_2 \) equals
\[
\begin{bmatrix}
 a^2 + bc & ab + bd \\
 ca + dc & cb + d^2
\end{bmatrix} - \begin{bmatrix}
 (a + d)a & (a + d)b \\
 (a + d)c & (a + d)d
\end{bmatrix} + \begin{bmatrix}
 ad - bc & 0 \\
 0 & ad - bc
\end{bmatrix} = \begin{bmatrix} 0 & 0 \\
 0 & 0 \end{bmatrix}
\]
as required. (There is a theorem known as the “Cayley-Hamilton Theorem” which states that a square matrix satisfies its characteristic equation. We have proved it for \(2 \times 2 \) matrices.)

6. Let \(A \) and \(P \) be \(n \times n \) matrices, with \(P \) invertible. Show that \(A \) and \(PAP^{-1} \) have the same characteristic equation. (Use the product rule \(\det(XY) = (\det X)(\det Y) \).)

Solution.
Note that \(\det P \det(P^{-1}) = \det(PP^{-1}) = \det I = 1 \). Note also that
\[P(\lambda I)P^{-1} = \lambda(PI)P^{-1} = \lambda I. \]
It follows that
\[
\det(PAP^{-1} - \lambda I) = \det(PAP^{-1} - P\lambda IP^{-1}) = \det(P(\lambda I - A)P^{-1}) = \det P \det(A - \lambda I)(\det P)^{-1} = \det(A - \lambda I).
\]

7. [Cramer’s rule]
(i) Given a \(3 \times 3 \) matrix \(A \) and a \(3 \times 1 \) column vector \(b \), show that
\[
(adj A)b = \begin{bmatrix} \det(A_1) \\ \det(A_2) \\ \det(A_3) \end{bmatrix}
\]
where \(A_i \) is the matrix obtained from \(A \) by replacing column \(i \) by \(b \).
(ii) Suppose that \(A \) is invertible and then show that the solution to the matrix equation \(Ax = b \), where \(x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) is
\[
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{\det(A_1)}{\det(A)} \begin{bmatrix} \det(A_1)/\det(A) \\ \det(A_2)/\det(A) \\ \det(A_3)/\det(A) \end{bmatrix}.
\]
(iii) Use (ii) to solve the following equations:
\[
\begin{align*}
x + 2y + 2z &= 5 \\
x + 3y + z &= 0 \\
x + 3y + 2z &= -2
\end{align*}
\]
Which method of solving equations do you prefer: using row operations or Cramer’s rule?
Solution.

(i) The entries of the first row of adj A are the cofactors c_{i1} of the elements of the first column of A. Thus the matrix product of the first row of adj A and b is $\sum_{i=1}^{3} c_{i1}b_i$, where b_i is the entry in row i of b. This is just the expansion down the first column of the matrix A_1 obtained from A by replacing its first column with b. Thus its value is $\det(A_1)$. The same argument shows that the entries in the second and third rows of $(\text{adj } A)b$ are $\det(A_2)$ and $\det(A_3)$.

(ii) Since A is invertible we may multiply the equation $Ax = b$ on the left by A^{-1} to obtain $x = A^{-1}b$. But we know that $A^{-1} = (\det A)^{-1}\text{adj }A$ and so $x = (\det A)^{-1}(\text{adj }A)b$. The result now follows from (i).

(iii) The matrix of coefficients is

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 1 \\ 1 & 3 & 2 \end{bmatrix}. $$

Expanding across the first row, the determinant of A is

$$(3 \times 2 - 1 \times 3) - 2(1 \times 2 - 1 \times 1) + 2(1 \times 3 - 3 \times 1) = 3 - 2 = 1. $$

Furthermore, $\det(A_1) = 23$, $\det(A_2) = -7$ and $\det(A_3) = -2$. Therefore, $x = 23$, $y = -7$ and $z = -2$.

8. The Hessian of a function $u(x_1, x_2)$ of two variables is the determinant of the matrix

$$\begin{vmatrix} \frac{\partial^2 u}{\partial x_1 \partial x_1} \\ \frac{\partial^2 u}{\partial x_1 \partial x_2} \end{vmatrix}$$

whose (i, j)-th entry is $\frac{\partial^2 u}{\partial x_i \partial x_j}$. Find the Hessian of $ax_1^2 + bx_1x_2 + cx_2^2$.

Solution.

If $u = ax_1^2 + bx_1x_2 + cx_2^2$, then

$$\frac{\partial u}{\partial x_1} = 2ax_1 + bx_2 \quad \frac{\partial^2 u}{\partial x_1 \partial x_1} = 2a \quad \frac{\partial^2 u}{\partial x_1 \partial x_2} = b \quad \frac{\partial^2 u}{\partial x_2 \partial x_2} = 2c \quad \frac{\partial^2 u}{\partial x_1 \partial x_2} = b$$

and so the Hessian is $\begin{vmatrix} 2a & b \\ b & 2c \end{vmatrix} = 4ac - b^2$.