More background on chain conditions

Throughout M is an A-module.

Call M Noetherian [Artinian] if it satisfies the a.c.c. (ascending chain condition).

[\textit{a.c.c.} (descending "\textit{\ldots}")]

i.e.,

$M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n \subseteq \cdots$

$[M_1 \supsetneq M_2 \supsetneq \cdots \supsetneq M_n \supsetneq \cdots]$

always stabilizes, that is,

$(\exists N) (\forall k \geq N) M_k = M_N$

Call a ring A Noetherian [Artinian] if it is with respect to ideals (regarded as submodules).

Examples:

1. Finite abelian groups are both Noetherian and Artinian as \mathbb{Z}-modules.
2. \mathbb{Z} and $\mathbb{F}(x)$ are Noetherian but not Artinian.
(3) \mathbb{Z} subgroup $\mathbb{Z} \times (\mathbb{Q}, +)$ and

$$\mathbb{Q}/\mathbb{Z} = \{ \frac{q}{Z} \mid q \in \mathbb{Q} \}$$

is an additive abelian group (Z-module).

For $i \geq 0$, put

$$G_i = \{ \frac{a}{2^i} + \mathbb{Z} \mid a \in \mathbb{Z} \}$$

and

$$G = \bigcup_{i=0}^{\infty} G_i$$

Then

$$G_0 \subset G_1 \subset G_2 \subset G_3 \subset \ldots$$

is an infinite ascending chain, so G is not Noetherian as a \mathbb{Z}-module, but it is Artinian.

$L(\mathbb{Q})$: $G_0 \supset G_1 \supset \ldots$

Easy exercise: there are all the subgroups of G
(4) Let $H = \{ \frac{a}{2^n} \mid n \geq 0, a \in \mathbb{Z} \}$

so

$0 \rightarrow \mathbb{Z} \rightarrow H \rightarrow \mathbb{Z}/2 \rightarrow 0$

exact sequence. Thus

H is neither Noetherian nor Artinian.

became \mathbb{Z}

became $\mathbb{Z}/2$

two "bad" intervals in $\mathcal{L}(H)$

$\mathcal{L}(\mathbb{Z})$

$\mathcal{L}(H)$
(5) \(\mathbb{F}[x_1, x_2, \ldots] \) not Noetherian because of

\[\langle x_1 \rangle \not\subseteq \langle x_1, x_2 \rangle \not\subseteq \cdots \not\subseteq \langle x_1, \ldots, x_n \rangle \not\subseteq \cdots \]

and not Artinian because \(\mathbb{F}[x] \) isn't.

General Observation 1: Let \(M \) be an \(A \)-module. Then \(M \) is Noetherian if every submodule is finitely generated.

Proof: (\(\Rightarrow \)) Easy.

(\(\Leftarrow \)) Suppose every submodule is f.g. and

\[M_1 \leq M_2 \leq \cdots \leq M_n \leq \cdots \quad (\ast) \]

Put

\[M' = \bigcup_{i=1}^{\infty} M_i \leq M \]

So

\[M' = \langle x_1, \ldots, x_n \rangle \quad \text{for some } x_1, \ldots, x_n \in M \]

Then

\[(\exists N) \quad n_1, \ldots, N \in \mathbb{N} \]

so \(M_1 \leq \mathbb{M}_N \leq M \), so \(M' = \mathbb{M}_N \) and (\(\ast \)) stabilizes.
General Observation 2: Let

\[0 \to M' \to M \to M'' \to 0 \]

be exact. Then \(M \) is Noetherian

iff both \(M' \) and \(M'' \) are Noetherian.

Proof: (\(\Rightarrow \)) Easy.

(\(\Leftarrow \)) Suppose both \(M' \) and \(M'' \) are Noetherian

and

\[l_1 \leq l_2 \leq \ldots \leq l_n \leq \ldots \] \((\ast)\)

Then \(w = (x_i) \) stabilizes.

\[\exists M \ni \begin{array}{c}
 w = (x_i) \\
 w = (x_i) \\
 \vdots \\
\end{array} \]

Then

\[x'_1(l_1) \leq x'_2(l_2) \leq \ldots \leq x'_n(l_n) \leq \ldots \]

in \(M' \)

and

\[\rho(l_1) \leq \rho(l_2) \leq \ldots \leq \rho(l_n) \leq \ldots \]

in \(M'' \)

both of which stabilize, so

\[(\exists N)(\forall k \geq N) \quad x'_1(l_k) = x'_2(l_k), \quad \rho(l_k) = \rho(l_k). \]
Claim: \(L_k = L_N \quad \forall k \in \mathbb{N} \)

Suffices to show \(L_k \subseteq L_N \), so let \(x \in L_k \).

Then \(\beta(x) \in \beta(L_k) = \beta(L_N) \)

so \(\beta(x) = \beta(y) \quad \exists y \in L_N \)

so \(x - y = k \beta \beta = 0 \)

\[\text{by contradiction} \]

and \(x - y \in L_k \quad (\text{since } L_N \subseteq L_k) \)

so \(x - y = x(y) : \exists z \in \mathbb{Z}(L_k) = \mathbb{Z}(L_N) \)

\[x - y \in L_N \]

Hence \(x = x - y + y \in L_N \).

Thus \(L_k \subseteq L_N \subseteq L_k \), so \(L_k = L_N \).

\(\square \)
Corollary 3: Homomorphic images of Noetherian rings are Noetherian.

Proof: If $I \triangleleft A$ then

$$0 \to I \to A \to A/I \to 0$$

is exact. \(\square\)

Corollary 4: If M_1, \ldots, M_n are Noetherian then $M_1 \oplus \cdots \oplus M_n$.

Proof: $M_1 \oplus \cdots \oplus M_n$ is an iterated split extension. \(\square\)

Theorem 5: Let A be a Noetherian ring and M a finitely generated A-module.

Then M is Noetherian.

Proof: $M \cong A^n/N$ ($\exists n$) ($\exists N \subseteq A^n$)

Free module homomorphic image