Composition series & Jordan–Hölder

Throughout let M be a nontrivial A-module.

Call M simple if $M \neq 0$ and M has no nontrivial proper submodules.

i.e. $0 \neq \{0\}$ is a maximal submodule,

i.e. lattice of submodules of M is $M \triangleright \{0\}$

A series for M is a sequence of submodules $S': \{0\} = M_0 \leq M_1 \leq \ldots \leq M_{n-1} \leq M_n = M$.

Call S a composition series if each factor M_{i+1}/M_i is simple (i.e., nontrivial).

Called a composition factor.

Call n the length of S'.
\[\mathbb{Z}_{30} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \]

with composition factors:
\[\langle 6 \rangle / \langle 0 \rangle \cong \mathbb{Z}_5, \quad \langle 2 \rangle / \langle 6 \rangle \cong \mathbb{Z}_3, \quad \langle 1 \rangle / \langle 2 \rangle \cong \mathbb{Z}_5. \]

Jordan-Hölder Theorem: If \(M \) has a composition series of length \(n \), then all composition series of \(M \) have length \(n \), and there is a one-to-one correspondence of isomorphic composition factors.
e.g. In \mathbb{Z}_5, all 6 composition series have length 3, and the composition factors are one copy of each of \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_5.

e.g. \mathbb{Z} has no composition series.

but every proper interval avoiding $\langle 0 \rangle$ does have a composition series (= lattice of submodules of some \mathbb{Z}_n).
Lemma: If \(M \) has a composition series, then so does every submodule \(T \) of \(M \).

Proof: Suppose \(N \leq M \) and \(M \) has a composition series

\[S : \emptyset \leq T_0 \leq M_0 \leq \ldots \leq M_k \leq M = \text{M}_k \leq M = \text{M}_k \leq M = M. \]

Form the following series for \(N \):

\[S' : \emptyset \leq T_0 \leq M_0 \cap N \leq \ldots \leq M_k \cap N = N. \]

But

\[\frac{M_i \cap N}{M_i \cap N} = \frac{M_i \cap N}{M_i \cap (M_i \cap N)} \]

Since \(M_i \leq M_i \cap N \)

\[J + \overline{K} \quad \text{and} \quad \text{which is simple}. \]
Hence $\frac{M_{i+1} \cap N}{M_i \cap N}$ is trivial or simple, so deleting duplicates from S yields a composition series for N.

Part 1: Jordan-Holder:

Suppose

$S : 0 = M_0 \leq M_1 \leq \cdots \leq M_{n-1} \leq M_n = M$

is a composition series for M of length n. If $n > 1$, then $M = M_1$ is simple, so S is unique, which starts an induction.

Suppose $n > 1$ and J-H holds for modules with composition series of length $\leq n$.

Let

$S' : 0 = M_0' \leq M_1' \leq \cdots \leq M_{k-1}' \leq M_k' = M$

be another composition series of M.

Case (i): If $M_{n-1} = M_{k-1}$ then, by ind. hyp., $m-1 = k-1$, so $m = k$ and composition factors for M_{n-1} match up for S and S', plus $M/M_{n-1} = M/M_{k-1}$, so done.

Case (ii): If $M_{n-1} \neq M_{k-1}$ then apply isomorphism theorem, ind. hyp., and Lemma to $M_{n-1} \cap M_{k-1}$.

$M = M_{n-1} + M_{k-1}$

and everything matches up, and done.