1.7 The Radical of an Ideal

Let A be a ring, and consider $X \subseteq A$.

Define the radical of X (with respect to A) to be

$$r(X) = \{ z \in A \mid z^n \in X \quad \exists n \geq 1 \}.$$

— comprising all “nth roots” of elements of X for all positive n.
Clearly

\[r(\bigcup_{\alpha} X_\alpha) = \bigcup_{\alpha} r(X_\alpha) \]

for any family of subsets \(X_\alpha \) of \(A \).

Proposition: The set of zero-divisors of \(A \) is equal to its own radical which is

\[\bigcup_{x \neq 0} r(\text{Ann } x) . \]
Proof: Put \(D = \{ \text{zero-divisors of } A \} \). Then

\[
D = \bigcup_{x \neq 0} \text{Ann}(x).
\]

Certainly

\[
D \subseteq r(D).
\]

Suppose \(y \in r(D) \), so

\[
y^k \in D \quad (\exists k \geq 1),
\]

so

\[
y^k x = 0 \quad (\exists x \neq 0).
\]
If \(k = 1 \) then \(y \in D \).

If \(k > 1 \) then

\[
y(y^{k-1}x) = 0
\]

so either \(y^{k-1}x \neq 0 \), whence \(y \in D \), or

\[
y^{k-1}x = 0,
\]

whence \(y \in D \) by an inductive hypothesis.
Thus

\[D = r(D) = r\left(\bigcup_{x \neq 0} \text{Ann}(x) \right) \]

\[= \bigcup_{x \neq 0} r(\text{Ann}(x)), \]

and the Proposition is proved.
Now suppose $I \triangleleft A$.

Then

$$r(I) = \{ x \in A \mid x^n \in I \quad \exists n \in \mathbb{Z}^+ \}$$

$$= \{ x \in A \mid I + x^n = I \quad \exists n \in \mathbb{Z}^+ \}$$

$$= \{ x \in A \mid (I + x)^n = I \quad \exists n \in \mathbb{Z}^+ \}$$
so that

\[r(I) = \phi^{-1}(N_{A/I}) \triangleleft A \]

where \(\phi : A \rightarrow A/I \) is the natural map and \(N_{A/I} \) denotes the nilradical of \(A/I \).

The radical of an ideal \(I \) of \(A \) is the preimage under the natural map of the nilradical of \(A/I \).
Exercises: Let \(I, J \) be ideals of \(A \). Verify the following:

(1) \(r(I) \supseteq I \);
(2) \(r(r(I)) = r(I) \);
(3) \(r(IJ) = r(I \cap J) = r(I) \cap r(J) \);
(4) \(r(I) = A \iff I = A \);
(5) \(r(I + J) = r(r(I) + r(J)) \).
Exercise: If P is a prime ideal of A then

$$(\forall n \in \mathbb{Z}^+) \quad r(P^n) = P.$$

Example: Let $A = \mathbb{Z}$ and $I = m\mathbb{Z}$ where $m \geq 2$. Write

$$m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$$

for distinct primes p_1, \ldots, p_r and positive integers $\alpha_1, \ldots, \alpha_r$.
Observe that

\[(p_1 \ldots p_r)^\beta \in I\]

where

\[\beta = \max \{ \alpha_1, \ldots, \alpha_r \}\]

so

\[p_1 \ldots p_r \in r(I),\]

so

\[p_1 \ldots p_r \mathbb{Z} \subseteq r(I).\]
On the other hand, if \(z \in r(I) \) then some positive power of \(z \) is divisible by \(m \), from which it follows that \(z \) is divisible by \(p_1 \ldots p_r \). Thus

\[
r(I) = p_1 \ldots p_r \mathbb{Z}.
\]

Notice that

\[
r(I) = \bigcap_{i=1}^{r} p_i \mathbb{Z},
\]

the intersection of all prime ideals containing \(I \).

This illustrates a general phenomenon:
Theorem: The radical of an ideal is the intersection of the prime ideals containing it.

Proof: Let $I \triangleleft A$. Then

$$r(I) = \phi^{-1}(N_{A/I})$$

where $N_{A/I}$ is the nilradical of A/I, and ϕ is the natural map.
By an earlier Theorem,

\[N_{A/I} \text{ is the intersection of all prime ideals of } A/I. \]

But

Easy Exercise: any prime ideal of \(A/I \) has the form \(P/I \) where \(P \) is a prime ideal of \(A \) containing \(I \).
Thus

\[r(I) = \phi^{-1}\left(\bigcap_{\text{prime ideals } P \supseteq I} P/I \right) \]

\[= \bigcap_{\text{prime ideals } P \supseteq I} \phi^{-1}(P/I) \]

\[= \bigcap_{\text{prime ideals } P \supseteq I} P. \]
Proposition: Suppose $I, J \triangleleft A$ such that $r(I)$ and $r(J)$ are coprime.

Then I and J are coprime.

Proof: By earlier exercises,

$$r(I + J) = r(r(I) + r(J)) = r(A) = A$$

so that $I + J = A$, and the Proposition is proved.