(⇐) Suppose conversely, for all A-modules N, that

\[
0 \longrightarrow \text{Hom} (M'', N) \longrightarrow \text{Hom} (M, N) \longrightarrow \text{Hom} (M', N)
\]

is exact.

(i) We show ν is surjective:

Put $N = M''/\text{im} \nu$ and let $f : M'' \rightarrow N$ be the natural map.

Observe that $\nu(f) = f \circ \nu = 0$, the zero map, by definition of f,
so \(f = 0 \), since \(\overline{v} \) is injective.

But this means \(M'' = \text{im} \, v \), that is, \(v \) is surjective.

(ii) We show \(\text{im} \, u \subseteq \text{ker} \, v \):

Put \(N = M'' \) and let \(f : M'' \to N \) be the identity mapping. Then

\[
0 = (\overline{u} \circ \overline{v})(f) = f \circ v \circ u = v \circ u
\]

(since \(\text{im} \, \overline{v} = \ker \, \overline{u} \)), which proves \(\text{im} \, u \subseteq \ker \, v \).
(iii) We show \(\ker v \subseteq \text{im} \, u \):

Put \(N = M/\text{im} \, u \) and let \(f : M \to N \) be the natural map.

Certainly \(\overline{u}(f) = f \circ u = 0 \) (by definition of \(f \)).

so \(f \in \ker \overline{u} = \text{im} \, \overline{v} \), yielding

\[
f = \overline{v}(g) = g \circ v
\]

for some \(g \in \text{Hom} \, (M'', N) \).
But \(\ker(g \circ v) \supseteq \ker v \), so

\[
\text{im } u = \ker f = \ker(g \circ v) \supseteq \ker v .
\]

Facts (i), (ii), (iii) establish that

\[
\begin{array}{ccc}
\text{u} & \text{v} \\
M' & \rightarrow & M & \rightarrow & M'' & \rightarrow & 0
\end{array}
\]

is exact, and (1) of the Theorem is proved.
Let

\[
\begin{array}{cccccc}
0 & \rightarrow & M' & \rightarrow & M & \rightarrow & M'' & \rightarrow & 0 \\
& & f' & \downarrow & f & \downarrow & f'' & \\
0 & \rightarrow & N' & \rightarrow & N & \rightarrow & N'' & \rightarrow & 0 \\
& & u' & & u' & & v' & \\
\end{array}
\]

be a commutative diagram of A-modules and homomorphisms, with exact rows.
Theorem: With the above, there exists an exact sequence

\[
0 \rightarrow \ker f' \rightarrow \ker f \rightarrow \ker f'' \\
\overline{u} \overline{v} \quad d \quad \overline{u}' \overline{v}'
\]

\[
coker f' \rightarrow coker f \rightarrow coker f'' \rightarrow 0
\]

for some homomorphism \(d \).
In the above diagram

\(\overline{u} , \overline{v} \) denote the restrictions of \(u , v \) respectively, and

\(\overline{u}' , \overline{v}' \) are induced by composites of \(u' , v' \) respectively with natural maps.

Proof: Define

\[
d : \ker f'' \rightarrow \coker f' = N/\text{im } f'
\]

as follows:
Let \(x'' \in \ker f'' \). Then, since \(v \) is onto,

\[
x'' = v(x) \quad \exists x \in M
\]

so

\[
v'(f(x)) = f''(v(x)) = f''(x'') = 0,
\]

yielding

\[
f(x) \in \ker v' = \text{im} \ u',
\]
whence

\[f(x) = u'(y') \quad \exists y' \in N'. \]

Now put

\[
\begin{align*}
 d(x'') &= y' + f'(M') \in N'/\text{im } f'.
\end{align*}
\]

(i) Check that \(d \) is well-defined:
This is a simple **exercise**, using exactness at M, commutativity of the first square and the fact that u' is injective.

(ii) Check that d is a module homomorphism:

This follows easily, tracing through the definition of d and using the fact that each of v, f and u' are homomorphisms.
(iii) Check exactness at \(\ker f' \) and \(\coker f'' \):

This is immediate because \(\overline{u} \) is injective (restriction of an injective map) and \(\overline{v}' \) is surjective (induced by a surjective map).

(iv) Check exactness at \(\ker f \):

If \(x \in \ker \overline{v} \) then \(x \in \ker v = \text{im} v \), so

\[
x = u(x') \quad \exists x' \in M'
\]
and

\[u'(f'(x')) = f(u(x')) = f(x) = 0, \]

so

\[f'(x') = 0 \quad \text{(since } u' \text{ is injective)} \]

yielding \(x' \in \ker f' \), whence

\[x = u(x') = \overline{u}(x') \in \text{im } \overline{u}. \]

Thus \(\ker \overline{u} \subseteq \text{im } \overline{u} \).
Conversely, if \(x \in \text{im } \overline{u} \) then

\[
x = \overline{u}(x') = u(x') \quad \exists x' \in \ker f'
\]

so

\[
f(x) = f(u(x')) = u'(f'(x')) = u'(0) = 0 ,
\]

so

\[
x \in \ker f \cap \text{im } u = \ker f \cap \ker v
\]

so \(x \in \ker \overline{v} \). Thus \(\text{im } \overline{u} = \ker \overline{v} \), and equality holds.
Check exactness at $\text{coker } f$:

This is left as an exercise.

Check exactness at $\ker f''$:

Suppose $x'' \in \ker d$, so

$$x'' = v(x) \quad \exists x \in M, \quad f(x) = u'(y') \quad \exists y' \in N'$$
and

\[f'(M') = d(x'') = y' + f'(M') . \]

Thus \(y' \in f'(M') \), so

\[y' = f'(x') \quad \exists x' \in M' \]

yielding

\[f(x) = u'(y') = u'(f'(x')) = f(u(x')) , \]
so \(x - u(x') \in \ker f \). Observe now that

\[
\overline{v}(x-u(x')) = v(x) - v(u(x'')) = v(x) = x'',
\]

proving \(\ker d \subseteq \im \overline{v} \).

Conversely, if \(x'' \in \im \overline{v} \) then

\[
x'' = \overline{v}(x) = v(x) \quad \exists \ x \in \ker f
\]
so \(f(x) = 0 = u'(0) \), so (by definition)

\[
d(x'') = 0 + f'(M') = f'(M'),
\]

proving \(x'' \in \ker d \), whence \(\text{im } \bar{v} = \ker d \).

(vii) **Check exactness at** \(\text{coker } f' \):

This is left as an **exercise**.

The Theorem is proved.
Exercise: In the earlier diagram with commuting squares and exact rows, find an example in which each of

\[\ker f', \quad \ker f, \quad \ker f'', \quad \text{coker } f', \quad \text{coker } f, \quad \text{coker } f'' \]

is not a zero module, and each of

\[\overline{u}, \quad \overline{v}, \quad d, \quad \overline{u}', \quad \overline{v}' \]

is not a zero homomorphism.
Let \mathcal{C} be a class of A-modules containing the zero module.

Call $\lambda : \mathcal{C} \to \mathbb{Z}$ additive if, for each short exact sequence

$$0 \to M' \to M \to M'' \to 0$$

where $M', M, M'' \in \mathcal{C}$ we have

$$\lambda(M) = \lambda(M') + \lambda(M'').$$
Note that

\[0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \]

is exact, so \(\lambda(0) = \lambda(0) + \lambda(0) \), yielding

\[\lambda(0) = 0. \]

Example: Let \(A = F \) be a field and \(C \) the class of all finite dimensional vector spaces over \(F \).
If
\[0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0 \]
is exact, then
\[M'' \cong M / \ker g = M / f(M') \]
so (by the Rank-Nullity Theorem)
\[\dim M'' = \dim(M / f(M')) = \dim M - \dim f(M') \]
\[= \dim M - \dim M' , \]
which proves \(\dim : C \rightarrow \mathbb{Z} \) is additive.
Example: Let \mathcal{C} denote the class of all finite abelian groups, regarded as \mathbb{Z}-modules.

Let \mathcal{P} be some given set of primes (possibly all primes). If $A \in \mathcal{C}$ then

$$|A| = \left(\prod_{p \in \mathcal{P}} p^{\alpha_p} \right) q$$

where q is coprime to all elements of \mathcal{P}.

Define $\lambda(A) = \sum_{p \in \mathcal{P}} \alpha_p$.

Clearly λ is additive.
Example: Let C denote the class of all finitely generated abelian groups, regarded as \mathbb{Z}-modules.

If $A \in C$ then $A \cong \mathbb{Z}^n \oplus B$ for some $n \geq 0$ and finite abelian group B.

Define $\lambda(A) = n = \text{torsion free rank}$.

Exercise: Prove λ is additive.
Proposition: Let

\[
0 \longrightarrow M_0 \longrightarrow M_1 \longrightarrow \ldots \longrightarrow M_n \longrightarrow 0
\]

be exact where all modules and kernels belong to \(\mathcal{C} \), and let \(\lambda \) be additive. Then

\[
\sum_{i=0}^{n} (-1)^i \lambda(M_i) = 0 .
\]
Proof: We have that

\[
\begin{array}{ccccccc}
0 & \longrightarrow & 0 & \longrightarrow & 0 & \longrightarrow & \cdots & \longrightarrow & 0 \\
& \lrcorner & \lrcorner & \lrcorner & \lrcorner & \lrcorner & & \\
0 & \longrightarrow & N_1 & \longrightarrow & N_2 & \longrightarrow & \cdots & \longrightarrow & N_n \\
& \lrcorner & \lrcorner & \lrcorner & \lrcorner & \lrcorner & & \\
0 & \longrightarrow & M_0 & \longrightarrow & M_1 & \longrightarrow & \cdots & \longrightarrow & M_{n-1} \\
& \lrcorner & \lrcorner & \lrcorner & \lrcorner & \lrcorner & & \\
0 & \longrightarrow & 0 & \longrightarrow & 0 & \longrightarrow & 0 \\
\end{array}
\]

is a commutative diagram where

\[N_i = \text{im } f_{i-1} = \ker f_i\]

and \([0 \longrightarrow N_i \longrightarrow M_i \longrightarrow N_{i+1} \longrightarrow 0]\) is exact for \(i = 1, \ldots, n-1\).
Then, noting $\lambda(0) = 0$,

$$\lambda(M_0) - \lambda(M_1) + \ldots + (-1)^n \lambda(M_n)$$

$$= - (\lambda(0) - \lambda(M_0) + \lambda(N_1))$$

$$+ (\lambda(N_1) - \lambda(M_1) + \lambda(N_2))$$

$$- \ldots$$

$$+ (-1)^{n-1} (\lambda(N_n) - \lambda(M_n) + \lambda(0))$$

$$= 0.$$