3.1 Rings of Fractions

Let A be a ring.

Call a subset S of A **multiplicatively closed** if

(i) $1 \in S$;

(ii) $(\forall x, y \in S)$ $xy \in S$.

For example, if A is an integral domain then $A \setminus \{0\}$ is multiplicatively closed.
More generally, if P is a prime ideal of A then

$$A \setminus P \text{ is multiplicatively closed.}$$

Let S be a multiplicatively closed subset of A. Define a relation \equiv on

$$A \times S = \{(a, s) \mid a \in A, s \in S\}$$

as follows:
for \(a, b \in A \), \(s, t \in S \),

\[
(a, s) \equiv (b, t)
\]

iff \((\exists u \in S) \ (at - bs)u = 0 \).

Claim: \(\equiv \) is an equivalence relation.

Proof: Clearly \(\equiv \) is reflexive and symmetric.

Suppose \((a, s) \equiv (b, t) \equiv (c, u)\).
Then, for some \(v, w \in S \)

\[
(at - bs)v = 0 = (bu - ct)w,
\]

so

\[
\begin{align*}
atv - bsv &= 0 \\
butw - ctw &= 0
\end{align*}
\]

so

\[
\begin{align*}
atv(uw) - bsv(uw) &= 0 \\
-ctw(sv) + butw(sv) &= 0
\end{align*}
\]
so

\[au(tvw) - cs(tvw) = (au - cs)(tvw) = 0 , \]

But \(tvw \in S \), since \(S \) is multiplicatively closed, so \((a, s) \equiv (c, u) \), which proves \(\equiv \) is transitive.

If \(a \in A \) and \(s \in S \) then write

\[a/s = \text{equivalence class of } (a, s) . \]
Put

\[S^{-1}A = \{ a/s \mid a \in A, \ s \in S \} \]

and define addition and multiplication on \(S^{-1}A \) by

\[(a/s) + (b/t) = (at + bs)/st \]
\[(a/s)(b/t) = ab/st .\]
We check that multiplication is well-defined:

Suppose

\[(a_1, s_1) \equiv (a_2, s_2) \quad \text{and} \quad (b_1, t_1) \equiv (b_2, t_2).\]

Then, for some \(u, v \in S\),

\[(a_1s_2 - a_2s_1)u = 0 \quad \text{and} \quad (b_1t_2 - b_2t_1)v = 0.\]

WTS \((a_1b_1, s_1t_1) \equiv (a_2b_2, s_2t_2). \)
$$\left[(a_1 b_1)(s_2 t_2) - (a_2 b_2)(s_1 t_1)\right] uv$$

$$= (a_1 b_1)(s_2 t_2)(uv) - (a_2 b_2)(s_1 t_1)(uv) - (a_2 s_1)(b_1 t_2)(uv) + (a_2 s_1)(b_1 t_2)(uv)$$

$$= (a_1 s_2 - a_2 s_1)u(b_1 t_2v) + (b_1 t_2 - b_2 t_1)v(a_2 s_1 u)$$

$$= 0 + 0 = 0.$$
Thus

\[(a_1 b_1, s_1 t_1) \equiv (a_2 b_2, s_2 t_2),\]

which verifies that multiplication is well-defined.

Exercise: Prove that addition in $S^{-1}A$ is well-defined.

It is now routine to check that $S^{-1}A$ is a ring with identity $1 = s/s$ \((\forall s \in S)\).
We call $S^{-1}A$ the **ring of fractions of** A **with respect to** S.

If A is an integral domain and $S = A \setminus \{0\}$ then $S^{-1}A$ is the familiar **field of fractions** of A.

Let $f : A \to S^{-1}A$ where $f(x) = x/1$.

Clearly f is a ring homomorphism.
Observation: If A is an integral domain and S any multiplicatively closed subset not containing 0 then

$$f \text{ is injective.}$$

Proof: Suppose A is an integral domain, $0 \not\in S \subseteq A$, and S multiplicatively closed.

Let $x_1, x_2 \in A$ such that $x_1/1 = x_2/1$.
Then \((x_1, 1) \equiv (x_2, 1)\), so

\[(x_1 - x_2)u = 0 \quad (\exists u \in S),\]

yielding \(x_1 - x_2 = 0\), since \(A\) is an integral domain and \(u \neq 0\).

Thus \(x_1 = x_2\), proving \(f\) is injective.

If \(A\) is not an integral domain then \(f\) need not be injective:
Exercise: Let $A = \mathbb{Z}_6$,

$$S_1 = \{ 1, 2, 4 \} \quad S_2 = \{ 1, 3 \}.$$

Then S_1 and S_2 are multiplicatively closed.

Verify that

$$S_1^{-1}\mathbb{Z}_6 \cong \mathbb{Z}_3, \quad S_2^{-1}\mathbb{Z}_6 \cong \mathbb{Z}_2$$

(so certainly, in both cases, f is not injective).

$S^{-1}A$ has the following universal property:
Theorem: Let \(g : A \to B \) be a ring homomorphism such that \(g(s) \) is a unit in \(B \) for each \(s \in S \).

Then there is a unique homomorphism \(h \) such that

\[
\begin{array}{ccc}
A & \xrightarrow{f} & S^{-1}A \\
\downarrow{g} & & \downarrow{h} \\
B & & \\
\end{array}
\]

commutes.
Proof: Define \(h : S^{-1}A \rightarrow B \) by

\[
h(a/s) = g(a) g(s)^{-1} \quad (a \in A, \ s \in S).
\]

WTS \(h \) is well defined.

Suppose \(a/s = a'/s' \) so \((a, s) \equiv (a', s') \), so

\[
(as' - a's)t = 0 \quad (\exists t \in S).
\]
Thus

\[0 = g(0) = g((as' - a's)t) \]

\[= [g(a)g(s') - g(a')g(s)] g(t) , \]

so, since \(g(t) \) is a unit in \(B \),

\[g(a)g(s') - g(a')g(s) = 0 , \]

so

\[g(a)g(s') = g(a')g(s) , \]
yielding, since \(g(s), g(s') \) are units in \(B \),

\[
g(a) g(s)^{-1} = g(a') g(s')^{-1}.
\]

This proves \(h \) is well-defined.

It is routine now to check that \(h \) is a ring homomorphism.
Further, if \(a \in A \) then

\[(h \circ f)(a) = h(a/1) = g(a)g(1)^{-1} = g(a),\]

so that the following diagram commutes:
Suppose also that \(h' : S^{-1}A \to B \) is a ring homomorphism such that the following diagram commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & S^{-1}A \\
\downarrow{g} & & \downarrow{h'} \\
B & & \\
\end{array}
\]

Then

\[
h'(a/s) = h'(a/1 \cdot 1/s) = h'(a/1) h'(1/s).
\]
But $1/s$ is a unit in $S^{-1}A$ with inverse $s/1$, so that $h'(1/s)$ is a unit in B and

$$h'(1/s) = [h'(s/1)]^{-1}.$$

Hence

$$h'(a/s) = h'(a/1) [h'(s/1)]^{-1} = h'(f(a)) [h'(f(s))]^{-1} = g(a)g(s)^{-1} = h(a/s).$$

This proves $h' = h$, and so h is unique with the required properties.
Observe that $S^{-1} A$ and

$$f : A \to S^{-1} A, \quad a \mapsto a/1$$

have the following properties:

1. $s \in S$ implies $f(s)$ is a unit in $S^{-1} A$
 (because $s/1$ has inverse $1/s$);

2. $f(a) = 0$ implies $as = 0$ ($\exists s \in S$)
 (because the zero in $S^{-1} A$ is $0/1$);
(3) every element of $S^{-1}A$ has the form
\[f(a)f(s)^{-1} \quad (\exists a \in A)(\exists s \in S) \]

(because $a/s = a/1 \cdot 1/s$).

Conversely, properties (1), (2), (3) characterize $S^{-1}A$ up to isomorphism:
Corollary: Let $g : A \rightarrow B$ be a ring homomorphism such that properties (1), (2) and (3) hold with g replacing f and B replacing $S^{-1}A$.

Then there is a unique isomorphism h such that the following diagram commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & S^{-1}A \\
\downarrow{g} & & \downarrow{h} \\
B & \xrightarrow{h} & S^{-1}A \\
\end{array}
\]
Proof: By (1) and the previous Theorem, there is a unique homomorphism \(h : S^{-1}A \rightarrow B \) such that

\[
\begin{array}{ccc}
A & \xrightarrow{f} & S^{-1}A \\
g & \downarrow & h \\
B & \downarrow & \text{commutes.}
\end{array}
\]

Further, from the proof,

\[h(a/s) = g(a)g(s)^{-1} \quad (a \in A, \ s \in S). \]

By (3), \(h \) is onto.
If \(a/s \in \ker h \) for some \(a \in A \), \(s \in S \), then

\[
0 = h(a/s) = g(a)g(s)^{-1},
\]

so that \(g(a) = 0 \) \(g(s) = 0 \), yielding, by (2),

\[
at = 0 \quad (\exists t \in S),
\]

whence \((a, s) \equiv (0, 1)\), that is, \(a/s = 0 \) in \(S^{-1}A \).

Thus \(h \) is one-one, so \(h \) is an isomorphism.
Examples:

(1) Let \(P \) be a prime ideal of \(A \), and put

\[
S = A \setminus P ,
\]

which is multiplicatively closed. Form

\[
A_P = S^{-1}A ,
\]

and put

\[
M = \{ a/s \in A_P \mid a \in P \} .
\]
Claim: A_P is a local ring with unique maximal ideal M.

The process of passing from A to A_P is called localization at P.

e.g. If $A = \mathbb{Z}$ and $P = p\mathbb{Z}$ where p is a prime integer, then localization at P produces

$$A_P = \{ a/b \mid a, b \in \mathbb{Z}, \ p \nmid b \}.$$
Proof of Claim: We first prove

\[(\forall b \in A) \ (\forall t \in S)\]
\[b/t \in M \implies b \in P\]

Suppose
\[b/t = a/s\]
where \(b \in A\), \(a \in P\) and \(s, t \in S\). Then
\[(at - bs)u = 0 \quad (\exists u \in S)\]
so
\[at - bs \in P \]
since \(P \) is prime, \(0 \in P \) and \(u \not\in P \).

Hence
\[bs = at - (at - bs) \in P. \]

But \(s \not\in P \), so \(b \in P \), and (\(*\)) is proved.

By (\(*\)), certainly \(1 = 1/1 \not\in M \) (since \(1 \not\in P \))
so \(M \neq A_P \).
It is easy to check that $M \triangleleft A_P$.

Further, if $b \in A$, $t \in S$ and $b/t \notin M$, then, by definition of M, $b \notin P$, so $b \in S$, yielding
\[t/b \in A_P, \]
whence b/t is a unit of A_P.

By (i) of an early Proposition (on page 105), A_P is local with unique maximal ideal M.
Examples (continued):

(2) \(S^{-1}A \) is the zero ring iff \(0 \in S \).

Proof: \(\iff \) If \(0 \in S \) then, for all \(a, b \in A \), \(s, t \in S \),

\[
a/s = b/t
\]

since

\[
(at - bs)0 = 0,
\]

so that all elements of \(S^{-1}A \) are equal.
(⇒) If $S^{-1}A$ contains only one element then

$$ (0, 1) \equiv (1, 1) $$

so that

$$ 0 = (0 \cdot 1 - 1 \cdot 1)t = -t \quad (\exists t \in S') $$

so that $0 = t \in S$.
Let \(x \in A \) and put
\[
S = \{ x^n \mid n \geq 0 \} \quad \text{(where } x^0 = 1) .
\]

Then \(S \) is multiplicatively closed, so we may form
\[
A_x = S^{-1}A .
\]

e.g. If \(A = \mathbb{Z} \) and \(0 \neq x \in \mathbb{Z} \) then
\[
A_x = \{ \text{rational numbers in reduced form}
\text{whose denominators divide a power of } x \} .
\]
(4) Let I be an ideal of a ring A and put
\[S = 1 + I = \{ 1 + x \mid x \in I \} . \]

Then S is easily seen to be multiplicatively closed, so we may form $S^{-1}A$.

e.g. If $A = \mathbb{Z}$ and $I = 6\mathbb{Z}$ then
\[S^{-1}A = \{ \text{rational numbers in reduced form whose denominators divide some integer congruent to } 1 \mod 6 \} . \]