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Semester 1 Exercises for Week 11 (beginning 13 May) 2019

Important Ideas and Useful Facts:

(i) Inner product spaces: Let V be a vector space over R. We call V an inner product space
if it is equipped with an inner product, that is, a mapping 〈 , 〉 : V × V → R such that

(a) (∀u,v ∈ V ) 〈u,v〉 = 〈v,u〉,
(b) (∀u,v,w ∈ V ) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉,
(c) (∀u,v ∈ V )(∀λ ∈ R) 〈λu,v〉 = λ〈u,v〉,
(d) (∀v ∈ V ) 〈v,v〉 ≥ 0 and 〈v,v〉 = 0 if and only if v = 0.

Common examples are V = Rn with respect to the usual dot product, and V the vector
space of continuous real functions on a closed interval [a, b] with inner product defined
by, for f, g ∈ V ,

〈f, g〉 =

∫ b

a

f(x)g(x) dx .

(ii) Simple consequences of the inner product definition: Let V be an inner product space. Then

(e) (∀v ∈ V ) 〈0,v〉 = 〈v,0〉 = 0,

(f) (∀u,v,w ∈ V ) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉,
(g) (∀u,v ∈ V )(∀λ ∈ R) 〈u, λv〉 = λ〈u,v〉.

(iii) Length or norm of a vector: Let V be an inner product space. Define the length or norm
of a vector v ∈ V to be

‖v‖ = 〈v,v〉1/2 .

Length has the following properties:

(a) (∀v ∈ V ) ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0,

(b) (∀λ ∈ R)(∀v ∈ V ) ‖λv‖ = |λ| ‖v‖,
(c) (∀u,v ∈ V ) ‖u + v‖ ≤ ‖u‖+ ‖v‖.

The last property is known as the triangle inequality.

(iv) Distance between vectors: If v and w are vectors in an inner product space V then the
distance between v and w is ‖v−w‖ = ‖w− v‖. Thus, from the triangle inequality, for
any u,v,w ∈ V ,

‖u−w‖ ≤ ‖u− v‖+ ‖v −w‖ .

(v) The Cauchy-Schwarz inequality: If u,v ∈ V , where V is an inner product space, then

|〈u,v〉| ≤ ‖u‖‖v‖ .
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(vi) Normalising a vector: Call a vector v from an inner product space normal if ‖v‖ = 1. If
v 6= 0 then we normalise v by forming the normal vector

v̂ =
1

‖v‖
v .

(vii) Orthogonal vectors: Vectors u and v from an inner product space are said to be orthogonal
or mutually perpendicular if 〈u,v〉 = 0.

(viii) Orthogonal and orthonormal sets of vectors: A set of vectors from an inner product space
is said to be orthogonal if every pair of distinct vectors from the set is orthogonal. An
orthogonal set in which every vector is normal is said to be orthonormal. It is an important
fact that any orthogonal set of nonzero vectors is linearly independent.

(ix) Utility of an orthonormal basis in finding coordinates: If B = {b1, . . . ,bn} is an orthonormal
basis for an inner product space V then, for all v ∈ V ,

v = 〈v,b1〉b1 + 〈v,b2〉b2 + . . .+ 〈v,bn〉bn .

(x) Direct sum decompositions of a vector space: Let V be a vector space. If there exists
subspaces U and W of V such that

V = U +W = {u + w | u ∈ U , w ∈ W} and U ∩W = {0}

then we say that V has a direct sum decomposition with respect to U and W and write
V = U ⊕W . In this case, if B is a basis for U and D is a basis for W then if follows that
B ∪D is a basis for V .

(xi) Orthogonal complement: If W is a subspace of an inner product space V then the orthog-
onal complement of W in V is

W⊥ = {v ∈ V | 〈v,w〉 = 0 | for all w ∈ W} ,

in which case we have the direct product decomposition V = W ⊕W⊥.

(xii) Orthogonal projection onto a subspace: Let W be a subspace of an inner product space V .
The orthogonal projection of V onto W is the linear transformation Proj : V → W that
maps a vector v ∈ V to the unique vector w = Proj(v) ∈ W where

v = w + w⊥ ,

for some unique w⊥ ∈ W⊥ (both of which exist and are unique because V = W ⊕W⊥).
We call w = Proj(v) the projection of v on W and w⊥ the component of v orthogonal to
W . It is an important fact that Proj(v) is the closest vector in W to v, that is,

‖Proj(v)− v‖ ≤ ‖u− v‖

for all u ∈ W .
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Tutorial Exercises:

1. Let u = (1,−3, 2), v = (1, 1, 0), w = (2, 2,−4). Find

(a) −2w

(d) u + v

(b) ‖ − 2w‖

(e) ‖u + v‖

(c)

∥∥∥∥−2

‖w‖
w

∥∥∥∥
(f) ‖u‖+ ‖v‖

Verify that the triangle inequality is holding in parts (e) and (f).

2. Let u = (2,−1, 1) and v = (1, 1, 2). Find u · v and the angle θ between u and v.

3. Let P0(0, 0, 0), P1(1, 1, 0), P2(1, 0, 1), P3(0, 1, 1) be the vertices of a tetrahedron in R3.

(a) Verify that the tetrahedron is regular (all faces are equilateral triangles).

(b) Find the angle θ betwen two rays joining the centre to two vertices (the “bond angle”
of a methane molecule).

4. Use the dot product to verify that the angle inscribed in a semicircle is a right angle.

5. Let u = (2, 0,−1, 3) and v = (5, 4, 7,−1). Find ‖u‖, ‖v‖, ‖u + v‖, u · v and the angle θ
between u and v. Verify (as expected) that ‖u + v‖ ≤ ‖u‖+ ‖v‖. Verify, however, that

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Is this to be expected? (See Exercise 13 below.)

6. (a) Write down a vector v, as a linear combination of i and j, pointing in the direction
of the line y = 2x in the xy-plane.

(b) Find v̂, the unit vector pointing in the direction of v.

(c) Write down the position vector u of the point (−1, 5) as a linear combination of i
and j.

(d) Find projvu = (u · v̂)v̂, the projection of u in the direction of v.

(e) Now find the distance from the point (−1, 5) to the line y = 2x and the nearest
point on this line.

7.∗ Let W be the plane defined by the equation

x+ 2y − z = 0 .

Let b1 = ( 1√
2
, 0, 1√

2
) and b2 = (− 1√

3
, 1√

3
, 1√

3
).

(a) Check that {b1,b2} is an orthonormal basis for the subspace W .

(b) Find projWv = 〈v,b1〉b1 + 〈v,b2〉b2 where v = (4, 2,−5).

(c) Find the distance from the point (4, 2,−5) to W and the nearest point on W .

8.∗ Let u,v ∈ Rn where u 6= 0.

(a) Put λ =
u · v
‖u‖2

and expand and simplify (λu− v) · (λu− v).

(b) Deduce that |u · v| = ‖u‖ ‖v‖ if and only if v is a scalar multiple of u.
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Further Exercises:

9. Verify from the definition of dot product that, for all u,v,w ∈ Rn, λ ∈ R,

(u + v) ·w = u ·w + v ·w and λ(u · v) = (λu) · v = u · (λv) .

10. Verify the identity
‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2

in Rn, and interpret this geometrically in R2.

11. Use the Cauchy-Schwarz inequality to verify the triangle inequality in Rn.

12. If u,v ∈ Rn, recall that the distance from u to v is

d(u,v) = ‖u− v‖ .

Deduce the following triangle inequality from the usual one:

d(u,w) ≤ d(u,v) + d(v,w)

for all u,v,w ∈ Rn.

13. Let v,w be orthogonal elements of an inner product space. Verify the so-called Gener-
alised Theorem of Pythagoras:

‖v + w‖2 = ‖v‖2 + ‖w‖2 .

14. Let V be an inner product space and W be the subspace spanned by v1,v2, . . . ,vn ∈ V ,
that is,

W = {λ1v +1 +λ2v2 + . . .+ λnvn | λ1, λ2, . . . , λn ∈ R} .

Verify that an arbitrary vector v ∈ V is orthogonal to every vector in W if and only if v
is orthogonal to each of v1,v2, . . . ,vn.

15.∗ Let V be the vector space of all continuous functions: [a, b]→ R and define, for f, g ∈ V ,

〈f, g〉 =

∫ b

a

f(x)g(x) dx .

Verify that V becomes an inner product space.

16.∗ In the previous exercise, take a = −1 and b = 1. Let f, g, h ∈ V where f(x) = 1, g(x) = x
and h(x) = x3 for x ∈ [−1, 1].

(a) Find ‖f‖, ‖g‖, ‖h‖, 〈f, g〉, 〈f, h〉, 〈g, h〉 and the distance between f and g. Which
pairs of functions are orthogonal?

(b) More generally, let p(x) = xm and q(x) = xn, where m,n are nonnegative integers.
Find a simple condition on m and n characterising orthogonality of p and q in V .
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