The First Quiz on 23 March 2020 lasts forty minutes and will consist of fifteen multiple choice exercises, similar to a selection from the exercises below.

1. Which one of the following forms a field under addition and multiplication?
 (a) \mathbb{N} (b) \mathbb{Z}_2 (c) \mathbb{Z}_4 (d) \mathbb{Z}_6 (e) \mathbb{Z}_8

2. Which one of the following is not a field?
 (a) \mathbb{Q} (b) \mathbb{R} (c) \mathbb{C} (d) \mathbb{Z} (e) \mathbb{Z}_{13}

3. If today is Thursday, what day of the week will it be after 2018 days have elapsed?
 (a) Friday (b) Saturday (c) Sunday (d) Monday (e) Tuesday

4. Which one of the following statements is true?
 (a) $\frac{2}{3} = 5$ in \mathbb{Z}_{11}. (b) $\frac{3}{4} = 4$ in \mathbb{Z}_{13}. (c) $\frac{3}{4} = 2$ in \mathbb{Z}_7.
 (d) $\frac{2}{3} = 6$ in \mathbb{Z}_{13}. (e) $\frac{3}{4} = 7$ in \mathbb{Z}_{11}.

5. Consider the following matrix
 \[
 M = \begin{bmatrix}
 1 & 3 & 2 \\
 3 & 4 & 3 \\
 1 & 1 & 1
 \end{bmatrix}
 \]
 with entries from \mathbb{Z}_7. Working over \mathbb{Z}_7, which of the following is true?
 (a) $\det M = 0$ (b) $\det M = 4$ (c) $\det M = 5$
 (d) $\det M = 2$ (e) $\det M = 6$

6. Consider the following system of equations over \mathbb{Z}_5:
 \[
 \begin{align*}
 x + 2y + w &= 1 \\
 2x + y + z &= 2 \\
 x + y + 2z + 2w &= 1
 \end{align*}
 \]
 Working over \mathbb{Z}_5, how many distinct solutions are there for (x, y, z, w)?
 (a) infinitely many (b) no solutions (c) exactly one
 (d) exactly five (e) exactly twenty-five
7. Find the unique solution to the following matrix equation

\[
\begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
=
\begin{bmatrix}
0 \\
1 \\
0 \\
1
\end{bmatrix}
\]

working over \(\mathbb{Z}_2 \).

\[
\begin{align*}
(a) \quad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} &= \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \\
(b) \quad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\
(c) \quad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} &= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \\
(d) \quad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} &= \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \\
(e) \quad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} &= \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}
\end{align*}
\]

8. Find the value of \(\lambda \) such that the system

\[
\begin{align*}
x + 2z &= 2 \\
-x + \lambda y + z &= -1 \\
x - y - \lambda z &= 1
\end{align*}
\]

is inconsistent over \(\mathbb{Z}_5 \), but has a unique solution over \(\mathbb{R} \).

\[
\begin{align*}
(a) \quad \lambda &= 0 \\
(b) \quad \lambda &= 1 \\
(c) \quad \lambda &= 2 \\
(d) \quad \lambda &= 3 \\
(e) \quad \lambda &= 4
\end{align*}
\]

9. Consider the matrix

\[
M = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

with entries from \(\mathbb{Z}_2 \). Which of the following is row equivalent to \(M \) and in reduced row echelon form?

\[
\begin{align*}
(a) \quad & \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \\
(b) \quad & \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\
(c) \quad & \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\
(d) \quad & \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\
(e) \quad & \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]
10. Consider the following matrices over \(\mathbb{R} \), where \(\theta \) is a real number:

\[
R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad T_\theta = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}
\]

Which one of the following statements is true?

(a) \(R_{\pi/3}^3 = I = T_{\pi/2}^2 \)
(b) \(R_{2\pi/3}^3 = I = T_{2\pi/3}^3 \)
(c) \(R_{\pi/4}^4 = I = T_{\pi/4}^4 \)
(d) \(R_{\pi/2} T_{2\pi/3} R_{\pi/2} = T_{4\pi/3} \)
(e) \(T_{\pi/2} R_{\pi/3} T_{\pi/2} = R_{4\pi/3} \)

11. Consider the real matrix

\[
M = \begin{bmatrix} 0 & 2 \\ 3 & 9 \end{bmatrix} \sim \begin{bmatrix} 3 & 9 \\ 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

and elementary matrices

\[
E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, \quad E_4 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
\]

Use the chain of equivalences above, or otherwise, to find a correct expression for \(M \) as a product of these elementary matrices.

(a) \(M = E_4 E_2 E_3 E_1 \)
(b) \(M = E_4 E_2 E_1 E_3 \)
(c) \(M = E_3 E_2 E_1 E_4 \)
(d) \(M = E_4 E_3 E_2 E_1 \)
(e) \(M = E_2 E_1 E_3 E_4 \)

12. Suppose that \(A, B \) and \(P \) are real square matrices such that \(P \) is invertible and \(\lambda \in \mathbb{R} \) such that

\[
P(A - \lambda I)P^{-1} = B,
\]

where \(I \) denotes the identity matrix. Which of the of the following is a correct expression for \(A \)?

(a) \(A = P^{-1}BP + \lambda I \)
(b) \(A = PBP^{-1} + \lambda I \)
(c) \(A = P^{-1}BP + \lambda P \)
(d) \(A = P^{-1}B + \lambda P^{-1} \)
(e) \(A = P^{-1}BP + \lambda P^{-1} \)

13. Suppose that \(a, b, c, d, g \) are elements of a group \(G \) such that

\[
abgc^{-1} = d.
\]

Which one of the following is a correct expression for \(g \)?

(a) \(g = a^{-1}b^{-1}dc \)
(b) \(g = dca^{-1}b^{-1} \)
(c) \(g = (ab)^{-1}cd \)
(d) \(g = b^{-1}a^{-1}dc \)
(e) \(g = c(ab)^{-1}d \)

14. Consider the permutations

\[
\alpha = (1\ 2\ 3\ 4)(5\ 6\ 7), \quad \beta = (1\ 3)(2\ 4), \quad \gamma = (1\ 2\ 3)(4\ 5)(6\ 7)
\]

of \{1, 2, 3, 4, 5, 6, 7\} expressed in cycle notation. Which one of the following is correct?

(a) \(\beta \) and \(\gamma \) are even, and \(\alpha \) is odd.
(b) \(\alpha \) and \(\beta \) are even, and \(\gamma \) is odd.
(c) \(\alpha \) and \(\gamma \) are even, and \(\beta \) is odd.
(d) \(\alpha \) and \(\beta \) are odd, and \(\gamma \) is even.
(e) \(\alpha \) and \(\gamma \) are odd, and \(\beta \) is even.
15. Consider the permutation

\[\alpha = (1 \ 2 \ 3)(6 \ 3 \ 2)(5 \ 4 \ 6 \ 3 \ 2) \]

of \{1,2,3,4,5,6\} expressed in cycle notation where we compose from left to right. Which one of the following is a correct equivalent expression?

(a) \(\alpha = (1 \ 2 \ 3)(5 \ 6 \ 4) \)
(b) \(\alpha = (1 \ 3)(2 \ 5 \ 4 \ 6) \)
(c) \(\alpha = (1 \ 3)(2 \ 6 \ 4 \ 5) \)
(d) \(\alpha = (1 \ 4)(3 \ 6 \ 5 \ 2) \)
(e) \(\alpha = (1 \ 4 \ 2)(3 \ 5 \ 6) \)

16. Consider the permutations

\[\alpha = (1 \ 2 \ 3 \ 4)(5 \ 6 \ 7), \quad \beta = (1 \ 3)(2 \ 4), \quad \gamma = (1 \ 2 \ 3)(4 \ 5)(6 \ 7) \]

of \{1,2,3,4,5,6,7\} expressed in cycle notation. Simplify the permutation

\[\delta = \alpha \beta \gamma^{-1}, \]

composing from left to right:

(a) \(\delta = (1 \ 5 \ 7 \ 4 \ 2 \ 3) \)
(b) \(\delta = (1 \ 5 \ 7 \ 4) \)
(c) \(\delta = (1 \ 4 \ 7 \ 5) \)
(d) \(\delta = (1 \ 3 \ 2 \ 4 \ 7 \ 5) \)
(e) \(\delta = (1 \ 5 \ 7 \ 4)(3 \ 2) \)

17. Consider the permutations

\[\alpha = (1 \ 3)(2 \ 4 \ 6 \ 5) \quad \text{and} \quad \beta = (1 \ 4 \ 2 \ 5)(6 \ 3) \]

of \{1,2,3,4,5,6\} expressed in cycle notation. Which one of the following is a correct expression for the permutation

\[\gamma = \beta^{-1}\alpha\beta \]

where we compose from left to right?

(a) \(\gamma = (4 \ 6)(5 \ 2 \ 1 \ 3) \)
(b) \(\gamma = (5 \ 6)(4 \ 3 \ 1 \ 2) \)
(c) \(\gamma = (4 \ 6)(1 \ 5 \ 2 \ 3) \)
(d) \(\gamma = (4 \ 6)(5 \ 3 \ 1 \ 2) \)
(e) \(\gamma = (5 \ 6)(4 \ 1 \ 3 \ 2) \)

18. Consider the permutations

\[\alpha = (1 \ 3)(4 \ 2 \ 5 \ 6) \quad \text{and} \quad \gamma = (4 \ 5)(1 \ 3 \ 2 \ 6) \]

of \{1,2,3,4,5,6\} expressed in cycle notation. Which one of the following is a correct expression for a permutation \(\beta \) with the property

\[\gamma = \beta^{-1}\alpha\beta \]

where we compose from left to right?

(a) \(\beta = (1 \ 6)(2 \ 3) \)
(b) \(\beta = (1 \ 4 \ 2 \ 3 \ 6 \ 5) \)
(c) \(\beta = (1 \ 4 \ 6)(2 \ 3 \ 5) \)
(d) \(\beta = (1 \ 4)(2 \ 6)(3 \ 5) \)
(e) \(\beta = (1 \ 4 \ 2 \ 6 \ 3 \ 5) \)
19. Which one of the following configurations is possible to reach from the 8-puzzle

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \\
\end{array}
\]

by moving squares in and out of the space?

(a) \[
\begin{array}{ccc}
4 & 1 & 5 \\
6 & 2 & 3 \\
7 & 8 & \\
\end{array}
\]

(b) \[
\begin{array}{ccc}
7 & 6 & 4 \\
2 & 8 & 3 \\
1 & 5 & \\
\end{array}
\]

(c) \[
\begin{array}{ccc}
8 & 6 & 4 \\
3 & 1 & 5 \\
2 & 7 & \\
\end{array}
\]

(d) \[
\begin{array}{ccc}
2 & 3 & 4 \\
8 & 7 & 5 \\
1 & 6 & \\
\end{array}
\]

(e) \[
\begin{array}{ccc}
4 & 8 & 2 \\
5 & 7 & 1 \\
3 & 6 & \\
\end{array}
\]

20. Which one of the following configurations is impossible to reach from the 8-puzzle

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \\
\end{array}
\]

by moving squares in and out of the space?

(a) \[
\begin{array}{ccc}
2 & 4 & \\
8 & 1 & 5 \\
3 & 6 & 7 \\
\end{array}
\]

(b) \[
\begin{array}{ccc}
7 & 2 & 4 \\
6 & 8 & \\
1 & 5 & 3 \\
\end{array}
\]

(c) \[
\begin{array}{ccc}
4 & 8 & 2 \\
3 & 6 & \\
1 & 7 & 5 \\
\end{array}
\]

(d) \[
\begin{array}{ccc}
8 & 3 & 4 \\
2 & 7 & \\
6 & 5 & 1 \\
\end{array}
\]

(e) \[
\begin{array}{ccc}
7 & 1 & \\
6 & 4 & 2 \\
3 & 5 & 8 \\
\end{array}
\]