Important Ideas and Useful Facts:

(i) **Matrix exponentials:** If M is a real square matrix then we may form the *matrix exponential*

$$e^M = I + M + \frac{M^2}{2!} + \frac{M^3}{3!} + \ldots .$$

It is a theorem that the series always converges. If M is a diagonal $n \times n$ matrix with diagonal entries $\lambda_1, \ldots, \lambda_n$ then e^M is also diagonal with diagonal entries $e^{\lambda_1}, \ldots, e^{\lambda_n}$. If A, B and P are real square matrices of the same size, P invertible, and $B = P^{-1}AP$ then

$$e^B = P^{-1}e^A P .$$

If A and B commute, that is, $AB = BA$, then $e^{A+B} = e^Ae^B$.

(ii) **Solving systems of differential equations:** Suppose that we have n differentiable functions $x_1 = x_1(t), x_2 = x_2(t), \ldots, x_n = x_n(t)$ of a real variable t that satisfy the following system of differential equations with constant coefficients:

$$
\begin{align*}
x_1' &= a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\
x_2' &= a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\
&\vdots \\
x_n' &= a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n
\end{align*}
$$

Put $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $\mathbf{x}' = \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix}$ and $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$, so that the system may be expressed in matrix form $\mathbf{x}' = A\mathbf{x}$. The solution to this system is

$$\mathbf{x} = e^{tA}\mathbf{c}$$

where $\mathbf{c} = \mathbf{x}(0)$ is a column vector of constants.

(iii) **Linear transformations (general case):** Let V and W be vector spaces over a field F. A function $T : V \to W$ is called a *linear transformation* if T respects vector addition and scalar multiplication, that is, for all $\mathbf{v}, \mathbf{w} \in V$ and $\lambda \in F$,

$$T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w}) \quad \text{and} \quad T(\lambda\mathbf{v}) = \lambda T(\mathbf{v}) ,$$

or, equivalently, T preserves linear combinations, that is for all $\mathbf{v}_1, \mathbf{v}_2 \in V$ and $\lambda_1, \lambda_2 \in F$,

$$T(\lambda_1\mathbf{v}_1 + \lambda_2\mathbf{v}_2) = \lambda_1 T(\mathbf{v}_1) + \lambda_2 T(\mathbf{v}_2) .$$

If $V = W$ then T is called a *linear operator*. If T is bijective (one-one and onto) then T is called a *vector space isomorphism*. The composite of linear transformations, when defined, is also a linear transformation.
(iv) Matrix of a linear transformation with respect to choice of bases: Let \(T : V \to W \) be a linear transformation, and let \(B = \{b_1, \ldots, b_n\} \) and \(D = \{d_1, \ldots, d_m\} \) be ordered bases for \(V \) and \(W \) respectively. Define the \textit{matrix of \(T \) with respect to \(B \) and \(D \)} to be

\[
[T]_B^D = \begin{bmatrix} [T(b_1)]_D & \cdots & [T(b_n)]_D \end{bmatrix},
\]

by which we mean that we write down, in order, columns of coordinates, in \(W \) with respect to \(D \), of the images under \(T \) of successive basis elements from \(B \). Note that \([T]_B^D \) is an \(m \times n \) matrix. It follows from the definitions that, for all \(v \in V \),

\[
[T(v)]_D = [T]_B^D[v]_B.
\]

(v) \textbf{The identity linear operator}: Given any vector space \(V \) the mapping \(\text{id} = \text{id}_V : V \to V \) where \(\text{id}(v) = v \), fixing all vectors in \(V \), is called the \textit{identity linear transformation} or \textit{identity operator}. If \(V \) is \(n \)-dimensional and \(B \) is any basis for \(V \) then \([\text{id}]_B^B = I_n \), the \(n \times n \) identity matrix. If \(T : V \to W \) is a linear transformations then

\[
T \circ \text{id}_V = T \quad \text{and} \quad \text{id}_W \circ T = T.
\]

Further, if \(T \) is a vector space isomorphism, so that \(T \) is invertible and \(T^{-1} : W \to V \), then

\[
T^{-1} \circ T = \text{id}_V \quad \text{and} \quad T \circ T^{-1} = \text{id}_W.
\]

(vi) \textbf{Change of basis matrix}: Let \(B \) and \(D \) be any bases for an \(n \)-dimensional vector space \(V \). The matrix \([\text{id}]_D^B \) is called a \textit{change of basis matrix} and has the effect of converting coordinates of vectors with respect to \(B \) into coordinates with respect to \(D \), in the following sense, for any vector \(v \in V \):

\[
[\text{id}]_D^B[v]_B = [v]_D.
\]

Furthermore, the change of basis matrices \([\text{id}]_D^B \) and \([\text{id}]_B^D \) are mutually inverse, that is,

\[
[\text{id}]_D^B[\text{id}]_B^D = [\text{id}]_B^D[\text{id}]_D^B = I_n.
\]

(vii) \textbf{Kernel and image of a linear transformation}: Let \(T : V \to W \) be a linear transformation. Define the \textit{kernel} of \(T \) to be \(\ker(T) = \{v \in V \mid T(v) = 0\} \), which is a subspace of \(V \), and the \textit{image} of \(T \) to be \(\text{im}(T) = \{T(v) \mid v \in V\} \), which is a subspace of \(W \).

(viii) \textbf{Criterion using the kernel for a linear transformation to be injective}: If \(T : V \to W \) is a linear transformation then \(T \) is injective (one-one) if and only if \(\ker(T) = \{0\} \).

(ix) \textbf{Rank-nullity Theorem for linear transformations}: If \(: V \to W \) is a linear transformation then \(\dim(V) = \dim(\ker(T)) + \dim(\text{im}(T)) \).
Tutorial Exercises:

1. Find the exponential matrix e^{tA} where A is each of the following matrices:

 (a) $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$
 (b) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
 (c) $\begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$
 (d) $\begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}$

2. Solve the following systems of differential equations, where $x = x(t)$ and $y = y(t)$ are differentiable functions of a real variable t, with the same initial conditions $x(0) = 1$ and $y(0) = 2$ in each case:

 (a) \(x' = -x \)
 \[y' = 2y \]
 (b) \(x' = x + y \)
 \[y' = x + y \]
 (c) \(x' = x + 3y \)
 \[y' = 2x + 2y \]
 (d) \(x' = 5x - 6y \)
 \[y' = 3x - 4y \]

3. Let $B = \{(1,0), (0,1)\}$ be the standard basis for \mathbb{R}^2. Put

 \[D = \{(1,1), (-1,0)\}. \]

 Explain why D is a basis for \mathbb{R}^2 and then write down the following matrices:

 \[A = [\text{id}]_B^D, \quad C = [\text{id}]_D^B \quad \text{and} \quad E = [\text{id}]_B^D. \]

 Now find E^{-1} in the usual way and check that indeed

 \[E^{-1} = \begin{bmatrix} (1,0)_D \\ (0,1)_D \end{bmatrix} = [\text{id}]_B^D. \]

4. Let $f, g : \mathbb{R}^2 \to \mathbb{R}^2$ be linear transformations given by the following rules:

 $f(x,y) = (x + 2y, 3x - 4y)$ and $g(x,y) = (3x - y, 2y)$.

 (a) Find each of the following, by direct calculation, where B and D are the bases for \mathbb{R}^2 in the previous exercise:

 \[[f]_B^D, \quad [f]_D^B, \quad [g]_B^D, \quad [g]_D^B. \]

 (If you have done this correctly, you should have produced a diagonal matrix representation for g.)

 (b) Check, as the theory predicts, that the following equations hold:

 \[[f]_D^B = [\text{id}]_D^B[f]_B^B[\text{id}]_B^D \quad \text{and} \quad [g]_D^B = [\text{id}]_D^B[g]_B^B[\text{id}]_B^D. \]

 (c)* Find rules for linear operators $h, k : \mathbb{R}^2 \to \mathbb{R}^2$ such that $[h]_B^B = [f]_B^D$ and $[k]_B^B = [f]_D^B$.

5. Working over \mathbb{R}, let $B = \{1, x, x^2\}$ be the standard basis for the vector space \mathbb{P}_2 of polynomials of degree at most 2. Put

 \[D = \{1 + x^2, x + 2x^2, 1 + 2x + 3x^2\}. \]

 Explain why D is a basis for \mathbb{P}_2 and then write down the matrix $E = [\text{id}]_B^D$. Now find E^{-1} in the usual way and check that indeed

 \[E^{-1} = \begin{bmatrix} [1]_D \\ [x]_D \\ [x^2]_D \end{bmatrix} = [\text{id}]_D^B. \]
Further Exercises:

6. Let $B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ be the standard basis for \mathbb{R}^3. Put

$$D = \{(1, 0, 1), (1, 1, 0), (1, 1, 1)\}.$$

Explain why D is a basis for \mathbb{R}^3 and then write down the matrix $E = [\text{id}]_B^D$. Now find E^{-1} in the usual way and check that indeed $E^{-1} = \begin{bmatrix} (1, 0, 1) & (0, 1, 0) & (0, 0, 1) \end{bmatrix} = [\text{id}]_D^B$.

7. Find the exponential matrix e^{tA} where A is each of the following matrices:

 (a) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

 (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$

 (c) $\begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$

8. Solve the following systems of differential equations, where $x = x(t)$, $y = y(t)$ and $z = z(t)$ are differentiable functions of a real variable t, with the same initial conditions $x(0) = -1$, $y(0) = -4$ and $z(0) = 2$ in each case:

 (a) $x' = -x$
 $y' = 2y$
 $z' = 3z$

 (b) $x' = y - z$
 $y' = x + z$
 $z' = x + y$

 (c) $x' = x + y + 2z$
 $y' = -y$
 $z' = 2x + y + z$

9. Consider the real matrix $M = \begin{bmatrix} 2 & 5 & -3 \\ 1 & -4 & 7 \end{bmatrix}$.

 (a) Write down the rule for the linear transformation $f : \mathbb{R}^3 \to \mathbb{R}^2$ such that the matrix of f with respect to the standard bases is M.

 (b) Explain briefly why $B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ and $D = \{(1, 3), (2, 5)\}$ are bases for \mathbb{R}^3 and \mathbb{R}^2 respectively.

 (c)* Find the matrix $[f]^B_D$ of f with respect to B and D.

10.* Let D be the differential operator that takes a differentiable function to its derivative. Explain why each of the following sets is a basis of the subspace of \mathbb{R}^R that it generates:

$$B_1 = \{1, x, x^2, x^3\}, \quad B_2 = \{\sin x, \cos x\}, \quad B_3 = \{e^x, e^{2x}, xe^{2x}\}.$$

Each of these subspaces consists of differentiable functions on which D acts as an operator. Find $[D]_{B_i}^{B_j}$ for $i = 1, 2, 3$ and calculate the rank and nullity of D in each case.