MATH2022 Linear and Abstract Algebra

Semester 1

Exercises for Week 11 (beginning 11 May)

2020

Important Ideas and Useful Facts:

- (i) Inner product spaces: Let V be a vector space over \mathbb{R} . We call V an *inner product space* if it is equipped with an *inner product*, that is, a mapping $\langle , \rangle : V \times V \to \mathbb{R}$ such that
 - (a) $(\forall \mathbf{u}, \mathbf{v} \in V)$ $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$,
 - (b) $(\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V) \quad \langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle,$
 - (c) $(\forall \mathbf{u}, \mathbf{v} \in V)(\forall \lambda \in \mathbb{R}) \quad \langle \lambda \mathbf{u}, \mathbf{v} \rangle = \lambda \langle \mathbf{u}, \mathbf{v} \rangle,$
 - (d) $(\forall \mathbf{v} \in V)$ $(\mathbf{v}, \mathbf{v}) \ge 0$ and $(\mathbf{v}, \mathbf{v}) = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

Common examples are $V = \mathbb{R}^n$ with respect to the usual dot product, and V the vector space of continuous real functions on a closed interval [a, b] with inner product defined by, for $f, g \in V$,

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$
.

- (ii) Simple consequences of the inner product definition: Let V be an inner product space. Then
 - (e) $(\forall \mathbf{v} \in V)$ $\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$,
 - (f) $(\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V)$ $(\mathbf{u}, \mathbf{v} + \mathbf{w}) = (\mathbf{u}, \mathbf{v}) + (\mathbf{u}, \mathbf{w}),$
 - (g) $(\forall \mathbf{u}, \mathbf{v} \in V)(\forall \lambda \in \mathbb{R}) \quad \langle \mathbf{u}, \lambda \mathbf{v} \rangle = \lambda \langle \mathbf{u}, \mathbf{v} \rangle.$
- (iii) Length or norm of a vector: Let V be an inner product space. Define the length or norm of a vector $\mathbf{v} \in V$ to be

$$\|\mathbf{v}\| = \langle \mathbf{v}, \mathbf{v} \rangle^{1/2}$$
.

Length has the following properties:

- (a) $(\forall \mathbf{v} \in V)$ $\|\mathbf{v}\| \ge 0$ and $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$,
- (b) $(\forall \lambda \in \mathbb{R})(\forall \mathbf{v} \in V) \quad \|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|,$
- (c) $(\forall \mathbf{u}, \mathbf{v} \in V)$ $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

The last property is known as the *triangle inequality*.

(iv) Distance between vectors: If \mathbf{v} and \mathbf{w} are vectors in an inner product space V then the distance between \mathbf{v} and \mathbf{w} is $\|\mathbf{v} - \mathbf{w}\| = \|\mathbf{w} - \mathbf{v}\|$. Thus, from the triangle inequality, for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$,

$$\|{\bf u} - {\bf w}\| \ \le \ \|{\bf u} - {\bf v}\| + \|{\bf v} - {\bf w}\| \ .$$

(v) The Cauchy-Schwarz inequality: If $\mathbf{u}, \mathbf{v} \in V$, where V is an inner product space, then

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \ \leq \ \|\mathbf{u}\| \|\mathbf{v}\| \ .$$

(vi) Normalising a vector: Call a vector \mathbf{v} from an inner product space *normal* if $\|\mathbf{v}\| = 1$. If $\mathbf{v} \neq \mathbf{0}$ then we *normalise* \mathbf{v} by forming the normal vector

$$\widehat{\mathbf{v}} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} .$$

- (vii) Orthogonal vectors: Vectors \mathbf{u} and \mathbf{v} from an inner product space are said to be *orthogonal* or *mutually perpendicular* if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- (viii) Orthogonal and orthonormal sets of vectors: A set of vectors from an inner product space is said to be *orthogonal* if every pair of distinct vectors from the set is orthogonal. An orthogonal set in which every vector is normal is said to be *orthonormal*. It is an important fact that any orthogonal set of nonzero vectors is linearly independent.
 - (ix) Utility of an orthonormal basis in finding coordinates: If $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is an orthonormal basis for an inner product space V then, for all $\mathbf{v} \in V$,

$$\mathbf{v} = \langle \mathbf{v}, \mathbf{b}_1 \rangle \mathbf{b}_1 + \langle \mathbf{v}, \mathbf{b}_2 \rangle \mathbf{b}_2 + \ldots + \langle \mathbf{v}, \mathbf{b}_n \rangle \mathbf{b}_n$$
.

(x) Direct sum decompositions of a vector space: Let V be a vector space. If there exists subspaces U and W of V such that

$$V = U + W = \{\mathbf{u} + \mathbf{w} \mid \mathbf{u} \in U, \mathbf{w} \in W\}$$
 and $U \cap W = \{\mathbf{0}\}$

then we say that V has a direct sum decomposition with respect to U and W and write $V = U \oplus W$. In this case, if B is a basis for U and D is a basis for W then if follows that $B \cup D$ is a basis for V.

(xi) Orthogonal complement: If W is a subspace of an inner product space V then the orthogonal complement of W in V is

$$W^{\perp} = \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{w} \rangle = 0 \mid \text{ for all } \mathbf{w} \in W \},$$

in which case we have the direct product decomposition $V=W\oplus W^{\perp}.$

(xii) Orthogonal projection onto a subspace: Let W be a subspace of an inner product space V. The orthogonal projection of V onto W is the linear transformation $\operatorname{Proj}: V \to W$ that maps a vector $\mathbf{v} \in V$ to the unique vector $\mathbf{w} = \operatorname{Proj}(\mathbf{v}) \in W$ where

$$\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp}$$
,

for some unique $\mathbf{w}^{\perp} \in W^{\perp}$ (both of which exist and are unique because $V = W \oplus W^{\perp}$). We call $\mathbf{w} = \operatorname{Proj}(\mathbf{v})$ the projection of \mathbf{v} on W and \mathbf{w}^{\perp} the component of \mathbf{v} orthogonal to W. It is an important fact that $\operatorname{Proj}(\mathbf{v})$ is the closest vector in W to \mathbf{v} , that is,

$$\|\operatorname{Proj}(\mathbf{v}) - \mathbf{v}\| \le \|\mathbf{u} - \mathbf{v}\|$$

for all $\mathbf{u} \in W$.

Tutorial Exercises:

1. Let
$$\mathbf{u} = (1, -3, 2), \mathbf{v} = (1, 1, 0), \mathbf{w} = (2, 2, -4)$$
. Find

(a)
$$-2\mathbf{w}$$

(b)
$$\|-2\mathbf{w}\|$$

(c)
$$\left\| \frac{-2}{\|\mathbf{w}\|} \mathbf{w} \right\|$$

(d)
$$\mathbf{u} + \mathbf{v}$$

(e)
$$\|{\bf u} + {\bf v}\|$$

(f)
$$\|\mathbf{u}\| + \|\mathbf{v}\|$$

Verify that the triangle inequality is holding in parts (e) and (f).

- **2.** Let $\mathbf{u} = (2, -1, 1)$ and $\mathbf{v} = (1, 1, 2)$. Find $\mathbf{u} \cdot \mathbf{v}$ and the angle θ between \mathbf{u} and \mathbf{v} .
- 3. Let $P_0(0,0,0)$, $P_1(1,1,0)$, $P_2(1,0,1)$, $P_3(0,1,1)$ be the vertices of a tetrahedron in \mathbb{R}^3 .
 - (a) Verify that the tetrahedron is regular (all faces are equilateral triangles).
 - (b) Find the angle θ between two rays joining the centre to two vertices (the "bond angle" of a methane molecule).
- 4. Use the dot product to verify that the angle inscribed in a semicircle is a right angle.
- 5. Let $\mathbf{u} = (2, 0, -1, 3)$ and $\mathbf{v} = (5, 4, 7, -1)$. Find $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, $\|\mathbf{u} + \mathbf{v}\|$, $\mathbf{u} \cdot \mathbf{v}$ and the angle θ between \mathbf{u} and \mathbf{v} . Verify (as expected) that $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$. Verify, however, that

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

Is this to be expected? (See Exercise 13 below.)

- **6.** (a) Write down a vector \mathbf{v} , as a linear combination of \mathbf{i} and \mathbf{j} , pointing in the direction of the line y = 2x in the xy-plane.
 - (b) Find $\hat{\mathbf{v}}$, the unit vector pointing in the direction of \mathbf{v} .
 - (c) Write down the position vector \mathbf{u} of the point (-1,5) as a linear combination of \mathbf{i} and \mathbf{j} .
 - (d) Find $\operatorname{proj}_{\mathbf{v}}\mathbf{u} = (\mathbf{u} \cdot \widehat{\mathbf{v}})\widehat{\mathbf{v}}$, the projection of \mathbf{u} in the direction of \mathbf{v} .
 - (e) Now find the distance from the point (-1,5) to the line y=2x and the nearest point on this line.
- 7.* Let W be the plane defined by the equation

$$x + 2y - z = 0.$$

Let
$$\mathbf{b}_1 = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$$
 and $\mathbf{b}_2 = (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$.

- (a) Check that $\{\mathbf{b}_1, \mathbf{b}_2\}$ is an orthonormal basis for the subspace W.
- (b) Find $\operatorname{proj}_W \mathbf{v} = \langle \mathbf{v}, \mathbf{b}_1 \rangle \mathbf{b}_1 + \langle \mathbf{v}, \mathbf{b}_2 \rangle \mathbf{b}_2$ where $\mathbf{v} = (4, 2, -5)$.
- (c) Find the distance from the point (4, 2, -5) to W and the nearest point on W.
- 8.* Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ where $\mathbf{u} \neq \mathbf{0}$.
 - (a) Put $\lambda = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2}$ and expand and simplify $(\lambda \mathbf{u} \mathbf{v}) \cdot (\lambda \mathbf{u} \mathbf{v})$.
 - (b) Deduce that $\|\mathbf{u} \cdot \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\|$ if and only if \mathbf{v} is a scalar multiple of \mathbf{u} .

3

Further Exercises:

9. Verify from the definition of dot product that, for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$,

$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$
 and $\lambda (\mathbf{u} \cdot \mathbf{v}) = (\lambda \mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (\lambda \mathbf{v})$.

10. Verify the identity

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

in \mathbb{R}^n , and interpret this geometrically in \mathbb{R}^2 .

- 11. Use the Cauchy-Schwarz inequality to verify the triangle inequality in \mathbb{R}^n .
- 12. If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, recall that the distance from \mathbf{u} to \mathbf{v} is

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

Deduce the following triangle inequality from the usual one:

$$d(\mathbf{u}, \mathbf{w}) \leq d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$$

for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.

13. Let \mathbf{v} , \mathbf{w} be orthogonal elements of an inner product space. Verify the so-called *Generalised Theorem of Pythagoras*:

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$
.

14. Let V be an inner product space and W be the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$, that is,

$$W = \{\lambda_1 \mathbf{v} +_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n \mid \lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}\}.$$

Verify that an arbitrary vector $\mathbf{v} \in V$ is orthogonal to every vector in W if and only if \mathbf{v} is orthogonal to each of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

15.* Let V be the vector space of all continuous functions: $[a,b] \to \mathbb{R}$ and define, for $f,g \in V$,

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$
.

Verify that V becomes an inner product space.

16.* In the previous exercise, take a = -1 and b = 1. Let $f, g, h \in V$ where f(x) = 1, g(x) = x and $h(x) = x^3$ for $x \in [-1, 1]$.

4

- (a) Find ||f||, ||g||, ||h||, $\langle f, g \rangle$, $\langle f, h \rangle$, $\langle g, h \rangle$ and the distance between f and g. Which pairs of functions are orthogonal?
- (b) More generally, let $p(x) = x^m$ and $q(x) = x^n$, where m, n are nonnegative integers. Find a simple condition on m and n characterising orthogonality of p and q in V.