THE UNIVERSITY OF SYDNEY

MATH2022 Linear and Abstract Algebra

Semester 1

Week 11 Hints and Short Solutions

2020

- **1.** (a) (-4, -4, 8) (b) $4\sqrt{6}$ (c) 2 (d) (2, -2, 2) (e) $2\sqrt{3}$ (f) $\sqrt{14} + \sqrt{2}$
- **2.** 3, $\frac{\pi}{3}$
- 3. (a) Check distances between any two vertices are the same. (b) $\cos^{-1}(-\frac{1}{3}) \approx 109.5^{\circ}$
- **4.** Check dot product of sum and difference of two vectors representing the radius is zero, provided the vectors are different and do not point in opposite directions.
- **5.** $\sqrt{14}$, $\sqrt{91}$, $\sqrt{105}$, 0, $\frac{\pi}{2}$
- **6.** (a) $\mathbf{i} + 2\mathbf{j}$ (b) $\frac{1}{\sqrt{5}}(\mathbf{i} + 2\mathbf{j})$ (c) $-\mathbf{i} + 5\mathbf{j}$ (d) $\frac{9}{5}\mathbf{i} + \frac{18}{5}\mathbf{j}$ (e) $(\frac{9}{5}, \frac{18}{5}), \frac{7\sqrt{5}}{5}$
- 7. (b) $(\frac{11}{6}, -\frac{7}{3}, -\frac{17}{6})$ (c) $\frac{13\sqrt{6}}{6}$
- 8. (a) $\|\mathbf{v}\|^2 \frac{(\mathbf{u} \cdot \mathbf{v})^2}{\|\mathbf{u}\|^2}$
- 9. Routine checking with coordinate-wise operations.
- 10. Routine checking using properties of the dot product. In \mathbb{R}^2 , the sum of the squares of the diagonals of a parallelogram add up to the sum of the squares of the lengths of the sides.
- 11. Use properties of the dot product applied to the square of the length of the sum of two vectors, and then take square roots.
- **12.** Apply the triangle inequality to the expression $(\mathbf{u} \mathbf{v}) + (\mathbf{v} \mathbf{w})$.
- 13. Use properties of the inner product and fact that $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.
- 14. Routine checking using properties of the inner product.
- **15.** Routine checking using properties of the definite integral for all but the last inner product axiom. To verify that $\langle f, f \rangle = 0$ implies f is the zero function, argue by contradiction and use continuity of f to find a nonzero area contributing to $\int_{-1}^{1} (f(x))^2 dx$.
- **16.** (a) $\sqrt{2}$, $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{2}{7}}$, 0, 0, $\frac{2}{5}$, $2\sqrt{\frac{2}{3}}$. The pairs f, g and f, h are orthogonal.
 - (b) p and q are orthogonal if and only if m and n have different parity.