MATH2022 Week 08 Worksheet

MATH 2022 Week 8 Worksheet

Ql/ Consider the linear transformation

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 where

f(x,y) = (2x+y, 2x-y, y-x)

$$f(1,0) =$$

$$f(0,1) =$$

and the matrix M representing f:

Check that $M[x] = (f(x,y))^T$:

$$M[x] =$$

Q2y Consider
$$f: \mathbb{R}^4 \to \mathbb{R}^3$$
 where

$$f(x,y,z,\omega) = (y-z+\omega, x-y+z, 2x-3\omega).$$
Find
$$f(1,0,0,0) =$$

$$f(0,1,0,0) =$$

$$f(0,0,0,1) =$$
and the matrix M representing $f: M =$

Check that $M \begin{bmatrix} x \\ y \end{bmatrix} = (f(x,y,z,\omega))^T:$

Check that $M\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (f(x,y,z,\omega))^T$: $M\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ z \end{pmatrix}$

Q3/ Consider
$$f, g, h : \mathbb{R}^2 \rightarrow \mathbb{R}^2$$
represented respectively by

 $M_f = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, M_J = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, M_h = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$

Find the following rules:

 $f(x,y) = \\ f(x,y) = \\ h(x,y) = \\ h(x,y) = \\ f(g(x,y)) = \\ (f \circ g)(x,y) = f(g(x,y)) = \\ (g \circ f)(x,y) = g(f(x,y)) = \\ (f \circ h)(x,y) = \\ (f \circ h)(x,y) = \\ (h \circ h)(x,y) = \\$

Find the following matrix products:

$$M_{1} M_{2} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1-1 \\ -1 2 \end{bmatrix} = \begin{bmatrix} 1-1 \\ -1 2 \end{bmatrix} = \begin{bmatrix} 1-1 \\ 1 \end{bmatrix} \begin{bmatrix} 2-1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2-1 \\ 1 \end{bmatrix} \begin{bmatrix} 3-4 \\ 4-3 \end{bmatrix} = \begin{bmatrix} 3+1 \\$$

Check that you obtain the transposes of the previous rules, using matrix multiplication:

Walt [x]=

Qty Find all powers of 3 in
$$\mathbb{Z}_{13}$$
:

 $3'=3$, $3^2=$

Thus

 $(3)=$

Find all powers of 2 in \mathbb{Z}_{13} :

 $2'=2$, $2^2=$

Thus

 $(2)=$

True or False:

 $\mathbb{Z}_{13} \setminus \{0\}$ is a cyclic group? $\mathbb{Z}_{13} \setminus \{0\}$ to $(\mathbb{Z}_{12}, +)$:

 $2' \mapsto [-1]$

for $i=1,...,12$.

Q5/ The symbols < > need to be real in context. In this exercise, generation is with respect to addition + True or False: (a) Z/ = <1> TF (b) Z6 = <27 TF (c) Z is cyclic. TF TF (1) 22×23= <(1,1)> TF (e) 22×23= <(1,2)> TF (f) Z2 x Z3 is cyclic. TF (4) $2_3 \times 2_3 = \langle (1,1) \rangle$ て F (h) $\mathbb{Z}_3 \times \mathbb{Z}_3 = \langle (1,2) \rangle$ TF (i) 23 x 23 is cyclic. TF (i) 23 x 24 is eyelic. TF (k) Z4×Z6 is cyclic. TF (1) Z2×Z3×Z5 is yelia.

Q6/ Consi	her the	. 15-pu	zzle:	
	1 2	3 4		
	5 6 3			
	9 10			
	13 14 1			
Consider th	e follow	ing conf	iguration:	
	1 5	8 10		
	11 2	6 9		
	14 12 3	3 7		
	15 1	13 4		
Write Lown	the asso	ciatel pe	crantation wher	و
the blank	8quare is	labelled	. 16 :	
Is it ever	n or od	Q ? [
13 the con	figuration	on possil	le? Y N	

Q7/ Let $G = \langle x, \beta \rangle$ be the group of symmetries of a regular n-gon where $n \geqslant 3$ and x = rotation x = rotation, y = reflection in a fixed axis of symmetry.

rew

G = { 1, d, d², ..., d , p, dp, ..., d r | p}

retlections

and $a^2 = \beta^2 = 1$, $\alpha \beta = \beta \alpha^{-1}$, $\beta \alpha = \alpha^{-1} \beta$ Put $\alpha \beta = \beta^2 = 1$, $\alpha \beta = \beta \alpha^{-1}$, $\beta \alpha = \alpha^{-1} \beta$

Put $X = \lambda^4 \beta^3 \lambda^{-2} \beta \lambda^5 \beta \lambda^{-3}$.

Simplify X in the following cases

Simplify & in the following cases:

(a) n=5:

(b) ~= b:

(c) n=7: