Semester 1

Second Quiz Practice Exercises

2018

The Second Quiz on 07 May 2018 lasts forty minutes and will consist of fifteen multiple choice exercises, similar to a selection from the exercises below.

1. Consider the following system of equations over \mathbb{Z}_3 :

Working over \mathbb{Z}_3 , how many distinct solutions are there for (x, y, z, w)?

- (a) infinitely many
- (b) no solutions
- (c) exactly one

- (d) exactly three
- (e) exactly nine

2. Consider the following matrices over \mathbb{R} , where θ is a real number:

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} , T_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

Which one of the following statements is true?

- (a) $R_{\pi/3}^3 = I = T_{\pi/3}^2$
- (b) $R_{\pi}^2 = I = T_{\pi}^3$
- (c) $R_{\pi/4}^8 = I = T_{\pi/4}^8$
- (d) $R_{\pi/2}T_{2\pi/3}R_{\pi/2} = T_{4\pi/3}$ (e) $T_{\pi/2}R_{2\pi/3}T_{\pi/2} = R_{2\pi/3}$

3. Consider the real matrix

$$M = \begin{bmatrix} 0 & 2 \\ 3 & 9 \end{bmatrix} \sim \begin{bmatrix} 3 & 9 \\ 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and elementary matrices

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}, E_2 = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Use the chain of equivalences above, or otherwise, to express $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ as a product of these elementary matrices with M.

- (a) $I = ME_4E_2E_1E_3$
- (b) $I = E_4 E_2 M E_1 E_3$
 - (c) $I = E_3 E_1 E_2 E_4 M$

- (d) $I = E_4 E_2 E_1 E_3 M$ (e) $I = M E_3 E_1 E_2 E_4$

4. Working over \mathbb{Z}_5 , the eigenvalues of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ are

(a) 1 and 2.

(b) 2 and 3.

(c) 4 only.

(d) 2 and 4.

(e) 1 only.

- **5**. Which one of the following is a true statement about the real matrix $M = \begin{bmatrix} 0 & 2 \\ -3 & -5 \end{bmatrix}$?
 - (a) -2 is an eigenvalue of M with corresponding eigenspace $\left\{ \left| \begin{array}{c} t \\ t \end{array} \right| \mid t \in \mathbb{R} \right\}$.
 - (b) 2 is an eigenvalue of M with corresponding eigenspace $\left\{ \begin{array}{c|c} t \\ t \end{array} \middle| t \in \mathbb{R} \right\}$.
 - (c) 3 is an eigenvalue of M with corresponding eigenspace $\left\{ \left| \begin{array}{c} -t \\ t \end{array} \right| \mid t \in \mathbb{R} \right\}$.
 - (d) -2 is an eigenvalue of M with corresponding eigenspace $\left\{ \left| \begin{array}{c} \frac{2t}{3} \\ t \end{array} \right| \mid t \in \mathbb{R} \right\}$.
 - (e) -3 is an eigenvalue of M with corresponding eigenspace $\left\{ \left| \begin{array}{c} -\frac{2t}{3} \\ t \end{array} \right| \mid t \in \mathbb{R} \right\}$.
- **6.** Let $M = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$ with entries from \mathbb{Z}_7 . Then $M = PDP^{-1}$ where
 - (a) $D = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and $P = \begin{bmatrix} 6 & 1 \\ 4 & 1 \end{bmatrix}$ (b) $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 6 \\ 1 & 4 \end{bmatrix}$

 - (c) $D = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 1 \\ 4 & 6 \end{bmatrix}$ (d) $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ and $P = \begin{bmatrix} 6 & 1 \\ 4 & 1 \end{bmatrix}$
 - (e) $D = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 6 \\ 1 & 4 \end{bmatrix}$
- 7. Working over \mathbb{R} , suppose that $M = PDP^{-1}$ where $P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Then, for any positive integer k, we have that M^k is
 - (a) $\begin{bmatrix} -3^k & 2^k 3^k \\ 0 & -2^k \end{bmatrix}$ (b) $\begin{bmatrix} 3^k & 2^k 3^k \\ 0 & 2^k \end{bmatrix}$ (c) $\begin{bmatrix} 2^k & 3^k 2^k \\ 0 & 3^k \end{bmatrix}$

- (d) $\begin{bmatrix} 2^k & 1 \\ 0 & 3^k \end{bmatrix}$ (e) $\begin{bmatrix} 2k & k \\ 0 & 3k \end{bmatrix}$
- 8. The characteristic polynomial of the real matrix $M = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{bmatrix}$ is
 - (a) $\lambda^3 5\lambda^2 + 6\lambda$.
 - (a) $\lambda^3 5\lambda^2 + 6\lambda$. (b) $\lambda^3 5\lambda^2 + 8\lambda 4$. (d) $\lambda^3 \lambda^2 4\lambda + 4$. (e) $\lambda^3 5\lambda^2 + 4\lambda + 4$.
 - (c) $\lambda^3 + 5\lambda^2 + 8\lambda + 4$.

- **9.** Which of the following expressions describes M^{-1} where $M = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 3 \end{bmatrix}$ and I is the
 - 3×3 identity matrix, working over \mathbb{R} ?
 - (a) $\frac{1}{4}(M^2 5M + 8I)$ (b) $M^2 5M + 6I$
- (c) $-\frac{1}{4}(M^2 5M + 4I)$
- (d) $-\frac{1}{4}(M^2 + 5M + 8I)$ (e) $\frac{1}{4}(M^2 M 4I)$

10. Find the steady state probability vector of the following 3×3 stochastic matrix:

$$\begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{2}{3} \\ \frac{1}{2} & \frac{2}{3} & 0 \end{bmatrix}$$
(a)
$$\begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$
(b)
$$\begin{bmatrix} \frac{1}{4} \\ \frac{3}{8} \\ \frac{3}{8} \end{bmatrix}$$
(c)
$$\begin{bmatrix} \frac{3}{8} \\ \frac{3}{8} \\ \frac{1}{4} \end{bmatrix}$$
(d)
$$\begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix}$$
(e)
$$\begin{bmatrix} 0 \\ \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$$

11. Which one of the following matrices is not diagonalisable, working over \mathbb{C} ?

(a)
$$\begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & -1 \\ -1 & -2 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}$

12. Which one of the following rules for $f: \mathbb{R}^2 \to \mathbb{R}^2$ defines a linear transformation?

(a)
$$f(x,y) = (x^2, y^2)$$
 (b) $f(x,y) = (y-x, x-y)$ (c) $f(x,y) = (y+1, x+y)$
(d) $f(x,y) = (xy,y)$ (e) $f(x,y) = (2x, 3y + 4)$

13. Find the matrix corresponding to the linear transformation $f: \mathbb{R}^2 \to \mathbb{R}^3$ with the following rule:

$$f(x,y) = (6x - y, x + 2y, y - x) .$$

(a)
$$\begin{bmatrix} 6 & -1 \\ 1 & 2 \\ -1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 6 & -1 \\ 1 & 2 \\ 1 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 6 \\ 2 & 1 \\ 1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 6 & 1 & 1 \\ -1 & 2 & -1 \end{bmatrix}$ (e) $\begin{bmatrix} 6 & 1 & -1 \\ -1 & 2 & -1 \end{bmatrix}$

14. Suppose $f: \mathbb{R}^3 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}^4$ are linear transformations such that

$$M_f = \begin{bmatrix} 2 & 0 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$
 and $M_g = \begin{bmatrix} 0 & 1 \\ 4 & 1 \\ 1 & 0 \\ -1 & -1 \end{bmatrix}$.

Find the rule for the linear transformation $gf: \mathbb{R}^3 \to \mathbb{R}^4$.

(a)
$$(gf)(x, y, z) = (2x - 3y + 2z, x - y + 8z, -y - 4z, 3x + 2y)$$

(b)
$$(gf)(x, y, z) = (x + 9y + 2z, -x - y, 3x + 7y + z, 3x - 2y)$$

(c)
$$(gf)(x, y, z) = (x + y - 3z, 9x + y - 7z, 3x - y + 4z, -3x + y - 4z)$$

(d)
$$(gf)(x,y,z) = (x-y+3z, 9x-y+7z, 2x+z, -3x+y-4z)$$

(e)
$$(gf)(x,y,z) = (x-y+3z, 9x-y+7z, -3x+y-4z, 2x+z)$$

15 .	Whic	ch of the	followi	ng group	s, under	ado	dition, is	not cycl	ic?			
	(a)	\mathbb{Z}_3	(1)	b) \mathbb{Z}_4		(c)	$\mathbb{Z}_2 imes \mathbb{Z}_5$	3 (d)	$\mathbb{Z}_3 imes \mathbb{Z}$	3 (e)	\mathbb{Z}	

16. Consider the group G of symmetries of a regular pentagon, generated by a rotation α and a reflection β . Simplify the following expression in G:

$$\beta\alpha^3\beta^3\alpha^{-2}\beta^{-3}\alpha^8\beta$$
 (b) $\alpha\beta$ (c) $\alpha^2\beta$ (d) α^2 (e) β

17. Consider the permutations

(a) α

$$\alpha = (1\ 3\ 2)(4\ 6\ 5)(7\ 8)$$
 and $\beta = (1\ 4\ 2)(8\ 6\ 3)(5\ 7)$

of $\{1, 2, 3, 4, 5, 6, 7, 8\}$ expressed in cycle notation. Which one of the following is a correct expression for the permutation

$$\gamma = \beta^{-1} \alpha \beta$$

where we compose from left to right?

(a)
$$\gamma = (4\ 6\ 2)(8\ 7\ 1)(5\ 3)$$
 (b) $\gamma = (5\ 6\ 8)(4\ 3\ 1)(7\ 2)$ (c) $\gamma = (2\ 6\ 4)(1\ 8\ 7)(3\ 5)$ (d) $\gamma = (7\ 3\ 2)(8\ 4\ 1)(6\ 5)$ (e) $\gamma = (2\ 3\ 7)(1\ 4\ 8)(6\ 5)$

18. Consider the permutations

$$\alpha = (1\ 3\ 2)(4\ 6\ 5)(7\ 8)$$
 and $\beta = (1\ 4\ 2)(8\ 6\ 3)(5\ 7)$

of $\{1, 2, 3, 4, 5, 6, 7, 8\}$ expressed in cycle notation. Which one of the following is a correct expression for a permutation γ with the property

$$\beta = \gamma^{-1} \alpha \gamma$$

where we compose from left to right?

(a)
$$\gamma = (5\ 7\ 8\ 4\ 3)$$
 (b) $\gamma = (5\ 8\ 3\ 4)$ (c) $\gamma = (3\ 8\ 5\ 7\ 4)$ (d) $\gamma = (1\ 8\ 7\ 5\ 2\ 3\ 6\ 4)$ (e) $\gamma = (1\ 8\ 2\ 3\ 6)$

19. Which one of the following configurations is possible to reach from the 15-puzzle

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

by moving squares in and out of the space?

(b)

 15
 2
 3
 13

 5
 6
 10
 8

 9
 7
 11
 12

 4
 14
 1

(c)

15	14	13	12
11	10	9	8
7	6	5	4
3	2	1	

(d)

14	12	3	15
5	2	10	8
13	7	11	6
9	4	1	

(e)

12	8	9	13
2	10	7	15
3	6	11	14
4	5	1	

20. Which one of the following configurations is impossible to reach from the 15-puzzle

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

by moving squares in and out of the space?

(a)

4	3	2	1
5	8	7	
9	10	11	12
13	14	15	6

(b)

1	2	3	4
5	6		8
9	10	11	12
13	14	15	7

(c)

1	8	9	
2	7	10	15
3	6	11	14
4	5	12	13

(d)

	3	6	15
5	2	10	8
13	7	11	12
9	4	1	14

(e)

	15	14	13
12	11	10	9
8	7	6	5
4	3	2	1