MATH2022 LINEAR AND ABSTRACT ALGEBRA

Semester 1

Week 9 Hints and Short Solutions

2018

1. Complex numbers are expressed uniquely as linear combinations of 1 and $i = \sqrt{-1}$.

- **2.** (a) $[\mathbf{v}]_B = \begin{bmatrix} 3 \\ -2 \\ -5 \end{bmatrix}$ (b) $[\mathbf{v}]_B = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ (c) $[\mathbf{v}]_B = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$
- **3.** Both have rank 2, and C = A + 2B.
- **4.** Rank is 2 and any pair of linearly independent rows and columns generate the row space and column space respectively. Null space is spanned by $\{(1, -2, 3, 0), (-2, 16, 0, 3)\}$.
- **5.** (a) Linearly dependent by inspection.
 - (b) Linearly independent, seen by row reducing matrix of coefficients.
 - (c) Linearly independent by inspection.
 - (d) Linearly dependent using trigonometric identity.
- **6.** Elements of $\mathbb{Q}(\sqrt{2})$ are linear combinations of 1 and $\sqrt{2}$. These are linearly independent because $\sqrt{2}$ is irrational.
- 7. (a) $[\mathbf{v}]_B = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$ (b) $[\mathbf{v}]_B = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ (c) $[\mathbf{v}]_B = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$
- 8. Use matrices all of whose entries are zero except for one entry which is 1.
- **9.** (a) Rank is 3 over \mathbb{R} and \mathbb{Z}_3 . Rank is 2, nullspace spanned by $\{(1,1,1)\}$, over \mathbb{Z}_2 .
 - (b) Rank is 3 over \mathbb{R} . Rank is 2, nullspace spanned by $\{(3,2,1)\}$, over \mathbb{Z}_5 .
 - (c) Rank is 3, nullspace spanned by $\{(1, -2, 1, 1)\}$, over \mathbb{R} . Rank is 2, nullspace spanned by $\{(3, 3, 2, 0), (3, 0, 0, 1)\}$, over \mathbb{Z}_5 .
- **10.** (a) Independent over \mathbb{R} and \mathbb{Z}_3 , dependent over \mathbb{Z}_2 .
 - (b) (c) (d) Independent over \mathbb{R} , but dependent over \mathbb{Z}_5 .
 - (e) Dependent over both fields.
- 11. 12. Rearrange equations back and forth.
- 13. Show that the image of a basis from the domain is a basis for the codomain.
- 14. If \mathbf{v} is a scalar multiple of \mathbf{w} , apply matrix multiplication and compare scalars.
- 15. If \mathbf{v}_1 is a linear combination of \mathbf{v}_2 and \mathbf{v}_3 , apply matrix multiplication and compare scalars, and use the result of the previous exercise.