MATH2022 Week 07 Worksheet

MATH 2022 Week 7 Worksheet

QI/ Solve the following system working over Z3:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 0$$
 $x_1 + x_3 + x_4 + x_5 = 1$
 $x_1 + 2x_2 + x_3 + 2x_4 + x_5 = 2$
 $2x_2 + 2x_4 = 1$

What is the size of the solution set?

Q2/ Consider the following matrices where
$$\Theta \in \mathbb{R}$$
:

$$R_0 = \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, T_0 = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

Q3/ Put
$$M = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$$
,

$$A = \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Find elementary matrices E, E2, E3
such that

(a)
$$E, M = A$$
, $E, =$

(b)
$$E_2A = B$$
, $E_2=$

(c)
$$E_3B = I$$
, $E_3 =$

Express M as a product of elementary matrices:

Q4/ Let M be the following stochastic

$$M = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}$$

(a) Row reduce I-M and hence find the eigenspace corresponding to the eigensalve 1:

I-M=

(b) Now find the steady state probability vector of for M:

QS/ Let M be the following stochastic matrix $M = \begin{bmatrix} 0.3 & 0 & 0.2 \\ 0.3 & 0.5 & 0.3 \\ 0.4 & 0.5 & 0.5 \end{bmatrix}$

(a) Row reduce I-M and hence find the steady state probability vector of for M:

I-M=

Qb/ Consider

M = [000].

(a) Why is M doubly stochastic?

(b) Write down immediately a steady state probability vector of for M:

5 =

(c) Let $y_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $y_{k+1} = My_k$ for $k \ge 0$. Explain why $\lim_{n \to \infty} M^n y_0$ does not exist: Qt/ In each case find all Z such that Z = くそ〉 with respect to addition. (a) $\mathbb{Z}_3 = \langle \xi \rangle$ where **근** -Z4 = < 2> where

Z = ___

where (c) Z, = (2) 2=

where (d) 28 = (2)

where Zq = (2)

	0	1	-1	X	1+2	-1+2	-x	1-2	-1-2
0									
(
1									
x									
+x									
1+2									
- K									
- x	<u>.</u>								
1-x									
\mathcal{D}°	we	get	ا م	f, el d	?				
T 1	10 5 10 °	tero	eler	ments	for	`u 0	cye	بازد ع	grouf