MATH2022 Week 08 Worksheet

QV Find all powers of 3 in Z7:

 $3' = \square$, $3' = \square$,

 $3^4 = \square$, $3^5 = \square$, $3^6 = \square$

Thus, under multiplication,

< 3 > =

True or false:

7/2/{o} is a cyclic group. TF

Find the rule for an isomorphism from 727/203 under multiplication to

Z6 under addition:

3 H

Q2/ Find all powers of 3 in Z13: 3' = 3, 3' =Thus < 3> = Find all powers of 2 in Z13: 2'=2,2'= Thus
<2> = True or false: 713/20} is a cyclic group. TF Find the rule for an isomorphism from 72,3\{of to (Z,2,+): 2 For i=0,...,11.

Q3/ The symbols <x> need to be read in context. In this exercise generation is with respect to addition. True or false: TF $(a) \quad \mathbb{Z}_6 = \langle i \rangle$ TF (b) 726 = <2> TF 76 is cyclic. (v) TF $\mathbb{Z}_2 \times \mathbb{Z}_3 = \langle (1,1) \rangle$ (\mathcal{A}) TF $\mathbb{Z}_2 \times \mathbb{Z}_3 = \langle (1,2) \rangle$ (e) Z₂ × Z₂ is cyclic. TF (f) TF $\mathbb{Z}_3 \times \mathbb{Z}_3 = \langle (1,1) \rangle$ (g) TF < (1,2)> 23×23 = (h) TF is yelic $\mathbb{Z}_3 \times \mathbb{Z}_3$ (i)is cyclic TF 23× 24 (i)is cyclic TF 24 x 26 (k)

Q4/ Let G = < x, p> be the group of symmetries of a regular n-gon where n > 3 and d = rotation 2T/n, B = reflection in an axis of Recall that $d = \beta^2 = 1$ and $[\alpha\beta=\beta\alpha^{-1}]$ and $[\beta\alpha=\alpha^{-1}\beta]$ Put \[8 = \(\alpha \\ \beta \\ \alpha \\ \ext{\beta} \\ \alpha \\ \alpha \\ \ext{\beta} \\ \alpha \\ \alpha \\ \ext{\beta} \\ \alpha \\ \alpha \\ \alpha \\ \ext{\beta} \\ \alpha \\ \al Simplify & in the following cases:

(b) n=6:

(a) n=5:

(c) ~= 7:

Consider the permutations (123)(45)(678), (246)(37)(158). Find XB = Bd = B-1 & B = 2 B & = such that Find a permutation B = 5 d S. Answer (one of many): S = How many such & are possible?

26/	Consi	th	the 15 -			
		1	2	3	4	
		5	6	7	8	
		9	10	U	12	
		1.3	1.1	IC		

Consider the following contiguration

2	14	4	٦
10	•	15	r t
8	9	13	11
12	5	3	

~			•
	~	~	~

MAYIC Acouse in	
Is it even or odd?	
Is the configuration pos	ssible?

Q7/ Consider the 15-puzzle:

1	2	3	4
5	6	7	8
9	10	-	12
13	14	15	

Consider the following contiguration:

l	5	8	10
11	ما	ی	٩
14	2	M	7
	15	13	4

Write down the associated permutation where the blank square is labelled 16:

	_
4.0.5	

Is it even or odd?

Q8/	W	lork;	~g	over	12	com	plete 1	the following
multiplication table mod x + x+1, that is,								
Q8/ Norking over \mathbb{Z}_2 , complete the following multiplication table mod $x^3 + x + 1$, that is, $x^3 + x + 1 = 0$, so $x^3 = x + 1 = 1 + x$.								
	0	1	x	1+2	n ²	1+22	x+x ²	1+2+22
0								
1								
x								
1+x								
χ	· · · · ·			-				
1+22								
x +x²								
14242								
Do we get a field? [] The nonzero elements form a cyclic group,								
and each element \$ 1 is a generator.								
of the for anylore of x								
Venty this for powers of x:								