CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE PARABOLIC PROBLEM ON A BOUNDED INTERVAL

Daniel Hauer

Université Paul Verlaine - Metz et CNRS, Laboratoire de Mathématique et Application de Metz, France, Universität Ulm, Institut für Angewandte Analysis, Ulm, Germany.

October 10, 2011,

At the Conference "Evolution Equations: Randomness and Asymptotics", Bad Herrenalb.

THE PROBLEM.

Let 1 . Then, we are interested in the following question:

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

THE PROBLEM.

Let 1 . Then, we are interested in the following question:

Does for every continuous function $f : [0,1] \times \mathbb{R} \to \mathbb{R}$, which is Lipschitz continuous in the second variable, uniformly with respect to the first one, each bounded solution u of

(1)
$$\begin{cases} u_t - \{|u_x|^{p-2}u_x\}_x + f(x,u) = 0 & \text{in } (0,1) \times \mathbb{R}_+, \\ u(0,t) = u(1,t) = 0 & \text{for } t \in \mathbb{R}_+, \end{cases}$$

converge to a solution φ of the stationary problem

(2)
$$\begin{cases} -\{|\varphi_x|^{p-2}\varphi_x\}_x + f(x,\varphi) = 0 \quad in \ (0,1), \\ \varphi(0) = \varphi(1) = 0. \end{cases}$$

as $t \to +\infty$?

BAD HERRENALB, OCTOBER 10, 2011

HISTORY AND METHODS.

BAD HERRENALB, OCTOBER 10, 2011

HISTORY AND METHODS.

For p = 2, the question has been solved by

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

BAD HERRENALB, OCTOBER 10, 2011

HISTORY AND METHODS.

For p = 2, the question has been solved by

• Zelenyak [7] (1986)

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

BAD HERRENALB, OCTOBER 10, 2011

HISTORY AND METHODS.

- For p = 2, the question has been solved by
 - Zelenyak [7] (1986)
 - Matano [5] (1978)

BAD HERRENALB, OCTOBER 10, 2011

HISTORY AND METHODS.

- For p = 2, the question has been solved by
 - Zelenyak [7] (1986)
 - Matano [5] (1978)

BAD HERRENALB, OCTOBER 10, 2011

HISTORY AND METHODS.

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

For p = 2,

• Zelenyak's method in [7] is based on the so-called Łojasiewicz-Simon gradient inequality ([4, 6])

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

For p = 2,

- Zelenyak's method in [7] is based on the so-called Łojasiewicz-Simon gradient inequality ([4, 6])
- Matano's method in [5] is based on:
 - the convergence $u(t_n) \to \varphi$ in $C^1[0,1]$ of a solution u of problem (1) to an ω -limit point φ ,

For p = 2,

- Zelenyak's method in [7] is based on the so-called Łojasiewicz-Simon gradient inequality ([4, 6])
- Matano's method in [5] is based on:
 - the convergence $u(t_n) \to \varphi$ in $C^1[0,1]$ of a solution u of problem (1) to an ω -limit point φ ,
 - a parabolic maximum principle on non-cylindrical open sets,

For p = 2,

- Zelenyak's method in [7] is based on the so-called Łojasiewicz-Simon gradient inequality ([4, 6])
- Matano's method in [5] is based on:
 - the convergence $u(t_n) \to \varphi$ in $C^1[0,1]$ of a solution u of problem (1) to an ω -limit point φ ,
 - a parabolic maximum principle on non-cylindrical open sets,
 - the unique solvability of the initial value problem

 $-\varphi_{xx} + f(x, \varphi(x)) = 0$ in [0, 1], $\varphi(x_0) = \varphi_0, \varphi_x(x_0) = \varphi_1$

for given $x_0 \in [0, 1]$, $\varphi_0, \varphi_1 \in \mathbb{R}$.

We follow also the idea of Matano and show in [3]:

• every global solution of problem (1) belongs to $C((0, +\infty); C^1[0, 1])$,

We follow also the idea of Matano and show in [3]:

- every global solution of problem (1) belongs to $C((0, +\infty); C^1[0, 1])$,
- if u is a solution of problem (1), which is bounded with values in $L^2(0, 1)$, then the set $\{u(t) \mid t \ge 1\}$ is relatively compact in $C^1[0, 1]$,

We follow also the idea of Matano and show in [3]:

- every global solution of problem (1) belongs to $C((0, +\infty); C^1[0, 1])$,
- if u is a solution of problem (1), which is bounded with values in $L^2(0, 1)$, then the set $\{u(t) \mid t \ge 1\}$ is relatively compact in $C^1[0, 1]$,
- a comparison principle for solutions of problem (1) on non-cylindrical open sets.

THE MAIN THEOREM.

THEOREM 1 (2011)

If $1 , then for every continuous function <math>f : [0, 1] \times \mathbb{R} \to \mathbb{R}$, which is Lipschitz continuous in the second variable, w.r.t. the first one, each global solution of problem (1), which is bounded with values in $L^2(0, 1)$, converges to a solution of the stationary problem (2) in $C^1[0, 1]$ as $t \to +\infty$.

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

BAD HERRENALB, OCTOBER 10, 2011

WHY ONLY 1 ?

For given $x_0 \in [0,1]$, $\varphi_0, \varphi_1 \in \mathbb{R}$ consider the initial value problem:

 $-\{|\varphi_{x}(x)|^{p-2}\varphi_{x}(x)\}_{x}+f(x,\varphi(x))=0,\quad \varphi(x_{0})=\varphi_{0},\varphi_{x}(x_{0})=\varphi_{1}.$

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

For given $x_0 \in [0,1]$, $\varphi_0, \varphi_1 \in \mathbb{R}$ consider the initial value problem:

$$-\{|\varphi_x(x)|^{p-2}\varphi_x(x)\}_x + f(x,\varphi(x)) = 0, \quad \varphi(x_0) = \varphi_0, \varphi_x(x_0) = \varphi_1$$

We transfer the ODE in a system of first order by setting

 $v_1 := \varphi$ and $v_2 := |\varphi_x|^{p-2} \varphi_x$

For given $x_0 \in [0,1]$, $\varphi_0, \varphi_1 \in \mathbb{R}$ consider the initial value problem:

$$-\{|\varphi_x(x)|^{p-2}\varphi_x(x)\}_x + f(x,\varphi(x)) = 0, \quad \varphi(x_0) = \varphi_0, \varphi_x(x_0) = \varphi_1$$

We transfer the ODE in a system of first order by setting

$$v_1 := \varphi$$
 and $v_2 := |\varphi_X|^{p-2} \varphi_X$

and obtain

$$\begin{pmatrix} \frac{d}{dx}v_1\\ \frac{d}{dx}v_2 \end{pmatrix} = \begin{pmatrix} |v_2|^{\frac{2-p}{p-1}}v_2\\ f(x,v_1) \end{pmatrix}, \quad v_1(x_0) = \tilde{\varphi}_0, v_2(x_0) = \tilde{\varphi}_1$$

For given $x_0 \in [0,1]$, $\varphi_0, \varphi_1 \in \mathbb{R}$ consider the initial value problem:

$$-\{|\varphi_{x}(x)|^{p-2}\varphi_{x}(x)\}_{x}+f(x,\varphi(x))=0, \quad \varphi(x_{0})=\varphi_{0},\varphi_{x}(x_{0})=\varphi_{1}$$

We transfer the ODE in a system of first order by setting

$$v_1 := \varphi$$
 and $v_2 := |\varphi_X|^{p-2} \varphi_X$

and obtain

$$\begin{pmatrix} \frac{d}{dx}v_1\\ \frac{d}{dx}v_2 \end{pmatrix} = \begin{pmatrix} |v_2|^{\frac{2-p}{p-1}}v_2\\ f(x,v_1) \end{pmatrix}, \quad v_1(x_0) = \tilde{\varphi}_0, v_2(x_0) = \tilde{\varphi}_1$$

This IVP admits for every $x_0 \in [0, 1]$, $\tilde{\varphi}_1, \tilde{\varphi}_2 \in \mathbb{R}$ a unique solution provided $s \mapsto |s|^{\frac{2-p}{p-1}}s$ is locally Lipschitz on \mathbb{R} .

For given $x_0 \in [0,1]$, $\varphi_0, \varphi_1 \in \mathbb{R}$ consider the initial value problem:

$$-\{|\varphi_{x}(x)|^{p-2}\varphi_{x}(x)\}_{x}+f(x,\varphi(x))=0, \quad \varphi(x_{0})=\varphi_{0},\varphi_{x}(x_{0})=\varphi_{1}$$

We transfer the ODE in a system of first order by setting

$$v_1 := \varphi$$
 and $v_2 := |\varphi_X|^{p-2} \varphi_X$

and obtain

$$\begin{pmatrix} \frac{d}{dx}v_1\\ \frac{d}{dx}v_2 \end{pmatrix} = \begin{pmatrix} |v_2|^{\frac{2-p}{p-1}}v_2\\ f(x,v_1) \end{pmatrix}, \quad v_1(x_0) = \tilde{\varphi}_0, v_2(x_0) = \tilde{\varphi}_1$$

This IVP admits for every $x_0 \in [0, 1]$, $\tilde{\varphi}_1, \tilde{\varphi}_2 \in \mathbb{R}$ a unique solution provided $s \mapsto |s|^{\frac{2-p}{p-1}}s$ is locally Lipschitz on \mathbb{R} .

$$s \mapsto |s|^{\frac{2-p}{p-1}}s$$
 locally Lipschitz on \mathbb{R} iff $1 .$

EXISTENCE OF GLOBAL SOLUTIONS.

Problem (1) can be rewritten as an abstract gradient system in $L^2(0, 1)$ associated with the energy

$$\mathcal{E}(u) = \frac{1}{p} \int_0^1 |u_x|^p \, dx + \int_0^1 F(x, u(x)) \, dx, \quad \text{for all } u \in W_0^{1, p}(0, 1).$$

Problem (1) can be rewritten as an abstract gradient system in $L^2(0, 1)$ associated with the energy

$$\mathcal{E}(u) = \frac{1}{p} \int_0^1 |u_x|^p \, dx + \int_0^1 F(x, u(x)) \, dx, \quad \text{for all } u \in W_0^{1, p}(0, 1).$$

By the theory of subdifferential operators in Hilbert spaces (see Brézis [2, Lem. 6., Prop. 7., Prop. 8.]), for every $u_0 \in L^2(0, 1)$, there exists a unique function

$$u \in C(\mathbb{R}_+; L^2(0, 1)) \cap W^{1,\infty}_{loc}((0, +\infty); L^2(0, 1))$$

... such that

• $u(\cdot, 0) = u_0(\cdot)$, and for all t > 0,

 $u(\cdot,t) \in W_0^{1,p}(0,1), \text{ and } |u_x(\cdot,t)|^{p-2}u_x(\cdot,t) \in W^{1,2}(0,1),$

... such that

• $u(\cdot, 0) = u_0(\cdot)$, and for all t > 0,

 $u(\cdot,t) \in W_0^{1,p}(0,1), \text{ and } |u_x(\cdot,t)|^{p-2}u_x(\cdot,t) \in W^{1,2}(0,1),$

• in every t > 0, u is differentiable from the right, and

 $\frac{du}{dt_+}(\cdot,t) - \{|u_X(\cdot,t)|^{p-2}u_X(\cdot,t)\}_X + f(\cdot,u(\cdot,t)) = 0 \quad \text{in } L^2(0,1),$

... such that

• $u(\cdot, 0) = u_0(\cdot)$, and for all t > 0,

 $u(\cdot,t) \in W_0^{1,p}(0,1), \text{ and } |u_x(\cdot,t)|^{p-2}u_x(\cdot,t) \in W^{1,2}(0,1),$

• in every t > 0, u is differentiable from the right, and

 $\frac{du}{dt_{+}}(\cdot,t) - \{|u_{X}(\cdot,t)|^{p-2}u_{X}(\cdot,t)\}_{X} + f(\cdot,u(\cdot,t)) = 0 \text{ in } L^{2}(0,1),$

• $t \mapsto \mathcal{E}(u(t))$ is locally absolutely continuous on $(0, +\infty)$, and $\int_{t_1}^{t_2} \|u_t(t)\|_{L^2(0,1)}^2 dt + \mathcal{E}(u(t_2)) = \mathcal{E}(u(t_1)) \quad \text{for all } 0 < t_1 < t_2.$

Continuity with values in $C^{1}[0, 1]$.

• For all t > 0, we have $|u_X(\cdot, t)|^{p-2}u_X(\cdot, t) \in \mathbb{C}[0, 1]$, and so $s \mapsto |s|^{p-2}s$ in $\mathbb{C}(\mathbb{R})$ and bijective $\implies u(\cdot, t) \in \mathbb{C}^1[0, 1]$.

• For all t > 0, we have $|u_X(\cdot, t)|^{p-2}u_X(\cdot, t) \in \mathbb{C}[0, 1]$, and so $s \mapsto |s|^{p-2}s$ in $\mathbb{C}(\mathbb{R})$ and bijective $\implies u(\cdot, t) \in \mathbb{C}^1[0, 1]$.

• Now, let $t_0 \in (0, +\infty)$, $(t_n)_{n\geq 1} \subseteq (0, +\infty)$ s.t. $t_n \to t_0$.

- For all t > 0, we have $|u_x(\cdot, t)|^{p-2}u_x(\cdot, t) \in \mathbb{C}[0, 1]$, and so $s \mapsto |s|^{p-2}s$ in $\mathbb{C}(\mathbb{R})$ and bijective $\implies u(\cdot, t) \in \mathbb{C}^1[0, 1]$.
- Now, let $t_0 \in (0, +\infty)$, $(t_n)_{n \ge 1} \subseteq (0, +\infty)$ s.t. $t_n \to t_0$.

• We find

 $u(t_n) \rightarrow u(t_0) \text{ in } W_0^{1,p}(0,1), \quad u(t_n) \rightarrow u(t_0) \text{ in } C[0,1],$

- For all t > 0, we have $|u_x(\cdot, t)|^{p-2}u_x(\cdot, t) \in \mathbb{C}[0, 1]$, and so $s \mapsto |s|^{p-2}s$ in $\mathbb{C}(\mathbb{R})$ and bijective $\implies u(\cdot, t) \in \mathbb{C}^1[0, 1]$.
- Now, let $t_0 \in (0, +\infty)$, $(t_n)_{n \ge 1} \subseteq (0, +\infty)$ s.t. $t_n \to t_0$.

• We find

$$u(t_n)
ightarrow u(t_0)$$
 in $W_0^{1,p}(0,1)$, $u(t_n)
ightarrow u(t_0)$ in C[0,1],

• For $g_n := -f(\cdot, u(\cdot, t_n)) - \frac{du}{dt_+}(\cdot, t_n)$, the sequence $(g_n)_{n\geq 1}$ is bdd. in $L^2(0, 1)$, and for all $n \geq 1$,

- For all t > 0, we have $|u_x(\cdot, t)|^{p-2}u_x(\cdot, t) \in \mathbb{C}[0, 1]$, and so $s \mapsto |s|^{p-2}s$ in $\mathbb{C}(\mathbb{R})$ and bijective $\implies u(\cdot, t) \in \mathbb{C}^1[0, 1]$.
- Now, let $t_0 \in (0, +\infty)$, $(t_n)_{n \ge 1} \subseteq (0, +\infty)$ s.t. $t_n \to t_0$.

• We find

$$u(t_n)
ightarrow u(t_0)$$
 in $W_0^{1,p}(0,1)$, $u(t_n)
ightarrow u(t_0)$ in C[0,1],

• For $g_n := -f(\cdot, u(\cdot, t_n)) - \frac{du}{dt_+}(\cdot, t_n)$, the sequence $(g_n)_{n\geq 1}$ is bdd. in $L^2(0, 1)$, and for all $n \geq 1$,

$$-\{|u_{x}(\cdot,t_{n})|^{p-2}u_{x}(\cdot,t_{n})\}=g_{n} \text{ in } \mathcal{D}'(0,1),$$

- For all t > 0, we have $|u_x(\cdot, t)|^{p-2}u_x(\cdot, t) \in \mathbb{C}[0, 1]$, and so $s \mapsto |s|^{p-2}s$ in $\mathbb{C}(\mathbb{R})$ and bijective $\implies u(\cdot, t) \in \mathbb{C}^1[0, 1]$.
- Now, let $t_0 \in (0, +\infty)$, $(t_n)_{n \ge 1} \subseteq (0, +\infty)$ s.t. $t_n \to t_0$.

• We find

$$u(t_n)
ightarrow u(t_0)$$
 in $W_0^{1,p}(0,1)$, $u(t_n)
ightarrow u(t_0)$ in C[0,1],

• For $g_n := -f(\cdot, u(\cdot, t_n)) - \frac{du}{dt_+}(\cdot, t_n)$, the sequence $(g_n)_{n\geq 1}$ is bdd. in $L^2(0, 1)$, and for all $n \geq 1$,

$$-\{|u_{x}(\cdot,t_{n})|^{p-2}u_{x}(\cdot,t_{n})\}=g_{n} \text{ in } \mathcal{D}'(0,1),$$

• By Boccardo & Murat $[1] \Longrightarrow u_x(x, t_n) \to u_x(x, t_0)$ a.e. on (0, 1),

- For all t > 0, we have $|u_x(\cdot, t)|^{p-2}u_x(\cdot, t) \in \mathbb{C}[0, 1]$, and so $s \mapsto |s|^{p-2}s$ in $\mathbb{C}(\mathbb{R})$ and bijective $\implies u(\cdot, t) \in \mathbb{C}^1[0, 1]$.
- Now, let $t_0 \in (0, +\infty)$, $(t_n)_{n \ge 1} \subseteq (0, +\infty)$ s.t. $t_n \to t_0$.
 - We find

$$u(t_n)
ightarrow u(t_0)$$
 in $W_0^{1,p}(0,1)$, $u(t_n)
ightarrow u(t_0)$ in C[0,1].

• For $g_n := -f(\cdot, u(\cdot, t_n)) - \frac{du}{dt_+}(\cdot, t_n)$, the sequence $(g_n)_{n\geq 1}$ is bdd. in $L^2(0, 1)$, and for all $n \geq 1$,

$$-\{|u_{x}(\cdot,t_{n})|^{p-2}u_{x}(\cdot,t_{n})\}=g_{n} \text{ in } \mathcal{D}'(0,1),$$

- By Boccardo & Murat $[1] \Longrightarrow u_x(x, t_n) \to u_x(x, t_0)$ a.e. on (0, 1),
- Unif. L^p-integr.,

- For all t > 0, we have $|u_x(\cdot, t)|^{p-2}u_x(\cdot, t) \in \mathbb{C}[0, 1]$, and so $s \mapsto |s|^{p-2}s$ in $\mathbb{C}(\mathbb{R})$ and bijective $\implies u(\cdot, t) \in \mathbb{C}^1[0, 1]$.
- Now, let $t_0 \in (0, +\infty)$, $(t_n)_{n \ge 1} \subseteq (0, +\infty)$ s.t. $t_n \to t_0$.
 - We find

$$u(t_n)
ightarrow u(t_0)$$
 in $W_0^{1,\rho}(0,1)$, $u(t_n)
ightarrow u(t_0)$ in C[0,1],

• For $g_n := -f(\cdot, u(\cdot, t_n)) - \frac{du}{dt_+}(\cdot, t_n)$, the sequence $(g_n)_{n\geq 1}$ is bdd. in $L^2(0, 1)$, and for all $n \geq 1$,

$$-\{|u_{x}(\cdot,t_{n})|^{p-2}u_{x}(\cdot,t_{n})\}=g_{n} \text{ in } \mathcal{D}'(0,1),$$

- By Boccardo & Murat $[1] \Longrightarrow u_x(x, t_n) \to u_x(x, t_0)$ a.e. on (0, 1),
- Unif. L^p-integr., & Vitali's Thm., $u_x(\cdot, t_n) \rightarrow u_x(\cdot, t_0)$ in L^p(0, 1),
- Thus $(|u_x(\cdot, t_n)|^{p-2}u_x(\cdot, t_n))_{n\geq 1}$ is bounded in $W^{1,2}(0, 1)$.

BAD HERRENALB, OCTOBER 10, 2011

SKETCH OF THE PROOF OF THEOREM 1.

We assume that $\omega(u)$ is not discrete.

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

We assume that $\omega(u)$ is not discrete.

• For every $\varphi \in \omega(u)$ there exists a $t_0 > 0$ s.t.

 $x\mapsto u(x,t)-\varphi(x)$ has finite sign changes in [0,1],

We assume that $\omega(u)$ is not discrete.

• For every $\varphi \in \omega(u)$ there exists a $t_0 > 0$ s.t.

 $x\mapsto u(x,t)-\varphi(x)$ has finite sign changes in [0,1],

• For every $\varphi \in \omega(u)$ there is a $t_0 > 0$ such that

 $t \mapsto u_x(0, t) - \varphi_x(0)$ does not change sign along $[t_0, +\infty)$,

We assume that $\omega(u)$ is not discrete.

• For every $\varphi \in \omega(u)$ there exists a $t_0 > 0$ s.t.

 $x\mapsto u(x,t)-\varphi(x)$ has finite sign changes in [0,1],

• For every $\varphi \in \omega(u)$ there is a $t_0 > 0$ such that

 $t \mapsto u_x(0, t) - \varphi_x(0)$ does not change sign along $[t_0, +\infty)$,

• We take three distinct elements of $\omega(u)$; denoted by $\varphi^1, \varphi^2, \varphi^3$. Then,

We assume that $\omega(u)$ is not discrete.

• For every $\varphi \in \omega(u)$ there exists a $t_0 > 0$ s.t.

 $x\mapsto u(x,t)-\varphi(x)$ has finite sign changes in [0,1],

• For every $\varphi \in \omega(u)$ there is a $t_0 > 0$ such that

 $t \mapsto u_x(0, t) - \varphi_x(0)$ does not change sign along $[t_0, +\infty)$,

• We take three distinct elements of $\omega(u)$; denoted by $\varphi^1, \varphi^2, \varphi^3$. Then,

 $\varphi_x^1(0) < \varphi_x^2(0) < \varphi_x^3(0).$

We assume that $\omega(u)$ is not discrete.

• For every $\varphi \in \omega(u)$ there exists a $t_0 > 0$ s.t.

 $x \mapsto u(x, t) - \varphi(x)$ has finite sign changes in [0, 1],

• For every $\varphi \in \omega(u)$ there is a $t_0 > 0$ such that

 $t \mapsto u_x(0, t) - \varphi_x(0)$ does not change sign along $[t_0, +\infty)$,

• We take three distinct elements of $\omega(u)$; denoted by $\varphi^1, \varphi^2, \varphi^3$. Then,

$$\varphi_x^1(0) < \varphi_x^2(0) < \varphi_x^3(0).$$

• If
$$u_x(0, t) \ge \varphi_x^2(0)$$
 for all $t \ge t_0$, then

$$0 < \varphi_x^2(0) - \varphi_x^1(0) \le \|u_x(\cdot, t) - \varphi_x^1\|_{C[0,1]}.$$

REFERENCES.

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. **19** (1992), no. 6, 581-597.

 H. Brézis, Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. Math. 9 (1971), 513-534.

D. Hauer, Convergence of bounded solutions of degenerate parabolic problems on a bounded interval, submitted.

S. Łojasiewicz, *Une propriété topologique des sous-ensembles analytiques réels*, Colloques internationaux du C.N.R.S.: Les équations aux dérivées partielles, Paris (1962) (Paris Editions du C.N.R.S., ed.), 1963, pp. 87-89.

REFERENCES.

H. Matano, *Convergence of solutions of one-dimensional semilinear parabolic equations*, Journal of Math. Kyoto Univ., **18-2**, 1978, p. 221-227

L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math. **118**, 1983, 525–571.

T. I. Zelenyak, Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differ. Eq. 4, 1968, 17–22.

Thank you for your attention!!!

CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

• For $(x_0, t_0) \in \mathbb{R}^2$ and for ho > 0, we set

$$\mathcal{Q}((x_0, t_0), \rho) := \left\{ (x, t) \in \mathbb{R}^2 \mid |x - x_0| < \rho, \ t_0 - \rho < t < t_0 \right\}$$

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION

• For $(x_0, t_0) \in \mathbb{R}^2$ and for ho > 0, we set

$$\mathcal{Q}((x_0, t_0), \rho) := \left\{ (x, t) \in \mathbb{R}^2 \mid |x - x_0| < \rho, \ t_0 - \rho < t < t_0 \right\}$$

• For any open subset $\mathcal{C} \subseteq \mathbb{R}^2$, we define by

 $\mathcal{PC} := \left\{ (x,t) \in \partial \mathcal{C} \mid \mathcal{Q}((x,t),\rho) \cap \mathcal{C}^{c} \neq \emptyset \text{ for all } \rho > 0 \right\}$

the parabolic boundary of C,

• For $(x_0, t_0) \in \mathbb{R}^2$ and for ho > 0, we set

$$\mathcal{Q}((x_0, t_0), \rho) := \left\{ (x, t) \in \mathbb{R}^2 \mid |x - x_0| < \rho, \ t_0 - \rho < t < t_0 \right\}$$

• For any open subset $\mathcal{C} \subseteq \mathbb{R}^2$, we define by

$$\mathcal{PC} := \left\{ (x, t) \in \partial \mathcal{C} \mid \mathcal{Q}((x, t), \rho) \cap \mathcal{C}^{c} \neq \emptyset \text{ for all } \rho > 0 \right\}$$

the parabolic boundary of C,

• for every $T \in \mathbb{R}$, we define $C_T := \{(x, t) \in C \mid t < T\}$, and

• For $(x_0, t_0) \in \mathbb{R}^2$ and for ho > 0, we set

 $\mathcal{Q}((x_0, t_0), \rho) := \left\{ (x, t) \in \mathbb{R}^2 \mid |x - x_0| < \rho, \ t_0 - \rho < t < t_0 \right\}.$

• For any open subset $\mathcal{C} \subseteq \mathbb{R}^2$, we define by

 $\mathcal{PC} := \left\{ (x,t) \in \partial \mathcal{C} \mid \mathcal{Q}((x,t),\rho) \cap \mathcal{C}^{c} \neq \emptyset \text{ for all } \rho > 0 \right\}$

the parabolic boundary of C,

- for every $T \in \mathbb{R}$, we define $C_T := \{(x, t) \in C \mid t < T\}$, and
- by t_{bot} the infimum of all t ∈ ℝ for which there exists an x ∈ ℝ such that (x, t) ∈ C.

A COMPARISON PRINCIPLE.

Lemma 1

Let $C \subseteq \mathbb{R}^2$ be an open subset such that for all $T \in \mathbb{R}$, C_T is bounded and topological regular, that is, the interior $int(\overline{C_T}) = C_T$. If u and $v \in C(\overline{C})$ satisfy for all bounded $(a_0, b_0) \times (t_0, t_1) \subseteq C$,

u, v
$$\in W^{1,2}(t_0, t_1; L^2(a_0, b_0)) \cap C([t_0, t_1]; W^{1,p}(a_0, b_0))$$

and for all non-negative $\xi \in C^1_c(\mathcal{C})$,

$$\begin{split} \int_{\mathcal{C}} [u_t - v_t] \,\xi \, d(x, t) &+ \int_{\mathcal{C}} \left[|u_x|^{p-2} u_x - |v_x|^{p-2} v_x \right] \,\xi_x \, d(x, t) \\ &+ \int_{\mathcal{C}} [f(x, u) - f(x, v)] \,\xi \, d(x, t) \le 0 \;, \end{split}$$

then

$$\sup_{(x,t)\in\overline{\mathcal{C}}}e^{-L(t-t_{bot})}(u-v)(x,t)\leq \sup_{(x,t)\in\mathcal{PC}}e^{-L(t-t_{bot})}[u-v]^+(x,t).$$

DANIEL HAUER

CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION