GRADIENT SYSTEMS AND MAXIMAL REGULARITY

Daniel Hauer

University of Ulm

Berlin, March 30, 2010

Second Spring School at TU Berlin

Analytical and Numerical Aspects of Evolution Equations

ulm university universität **UUUIM**

INTRODUCTION L^P Maximal Regularity in X References WHAT IS A GRADIENT SYSTEMS? GRADIENT SYSTEMS ARE EVERYWHERE! HOW TO DEFINE SUCH A GRADIENT?

WHAT IS A GRADIENT SYSTEMS?

DEFINITION

We call an abstract Gradient System a differential equation of the form

 $\dot{u}+\nabla\mathcal{E}(u)=0,$

where

- $\mathcal{E} \in \mathcal{C}^1(\mathcal{U}, \mathbb{R})$, and $\mathcal{U} \subseteq V$ open subset of a Banach space V
- $\nabla \mathcal{E}(u)$ denotes a representation of $\mathcal{E}'(u)$ w.r.t. some duality pairing

Introduction LP Maximal Regularity in X References What is a Gradient Systems? Gradient Systems are everywhere! How to define such a gradient?

WHAT IS A GRADIENT SYSTEMS?

DEFINITION

We call an abstract Gradient System a differential equation of the form

$$\dot{u}+\nabla\mathcal{E}(u)=0,$$

where

- $\mathcal{E} \in \mathcal{C}^1(\mathcal{U}, \mathbb{R})$, and $\mathcal{U} \subseteq V$ open subset of a Banach space V
- $\nabla \mathcal{E}(u)$ denotes a representation of $\mathcal{E}'(u)$ w.r.t. some duality pairing

What is a Gradient Systems? Gradient Systems are everywhere! How to define such a gradient?

GRADIENT SYSTEMS ARE EVERYWHERE!

1. Example: The Reaction Diffusion Equation

$$\partial_t u(t,x) - \operatorname{div}(a(x)\nabla u(t,x)) + f(x,u(t,x)) = 0 \quad (0,T) \times \Omega$$

Can be rewritten as an abstract gradient system in *X*:

 $\dot{u} + \nabla_X \mathcal{E}(u) = 0$ in X on (0, T)

for the energy $\mathcal{E}: H^1_0(\Omega) \to \mathbb{R}$ given by

$$\mathcal{E}(u) = \frac{1}{2} \int_{\Omega} a(x) |\nabla u(x)|^2 dx + \int_{\Omega} \mathcal{F}(x, u(x)) dx$$

for $u \in H_0^1(\Omega)$. For $X = H^{-1}(\Omega)$ or $X = L^2(\Omega)$

INTRODUCTION LP MAXIMAL REGULARITY IN X REFERENCES What is a Gradient Systems? Gradient Systems are everywhere! How to define such a gradient?

GRADIENT SYSTEMS ARE EVERYWHERE!

1. EXAMPLE: THE REACTION DIFFUSION EQUATION

 $\partial_t u(t,x) - \operatorname{div}(a(x)\nabla u(t,x)) + f(x,u(t,x)) = 0 \quad (0, T) \times \Omega$

Can be rewritten as an abstract gradient system in *X*:

 $\dot{u} + \nabla_X \mathcal{E}(u) = 0$ in X on (0, T)

for the energy $\mathcal{E}: H^1_0(\Omega) \to \mathbb{R}$ given by

$$\mathcal{E}(u) = \frac{1}{2} \int_{\Omega} a(x) |\nabla u(x)|^2 \, dx + \int_{\Omega} \mathcal{F}(x, u(x)) \, dx$$

What is a Gradient Systems? Gradient Systems are everywhere! How to define such a gradient?

GRADIENT SYSTEMS ARE EVERYWHERE!

1. EXAMPLE: THE REACTION DIFFUSION EQUATION

$$\partial_t u(t,x) - \operatorname{div}(a(x)\nabla u(t,x)) + f(x,u(t,x)) = 0 \quad (0,T) \times \Omega$$

Can be rewritten as an abstract gradient system in *X*:

$$\dot{u} + \nabla_X \mathcal{E}(u) = 0$$
 in X on (0, T)

for the energy $\mathcal{E}: H^1_0(\Omega) \to \mathbb{R}$ given by

$$\mathcal{E}(u) = \frac{1}{2} \int_{\Omega} a(x) |\nabla u(x)|^2 dx + \int_{\Omega} \mathcal{F}(x, u(x)) dx$$

for $u \in H_0^1(\Omega)$. For $X = H^{-1}(\Omega)$ or $X = L^2(\Omega)$

What is a Gradient Systems? Gradient Systems are everywhere! How to define such a gradient?

GRADIENT SYSTEMS ARE EVERYWHERE!

2. EXAMPLE: THE HEAT EQUATION WITH THE P-LAPLACIAN

 $\partial_t u(t,x) - \operatorname{div}(|\nabla u(t,x)|^{p-2} \nabla u(t,x)) + f(x,u(t,x)) = 0 \quad (0,T) \times \Omega$

Can be rewritten as an abstract gradient system in X:

 $\dot{u} + \nabla_X \mathcal{E}(u) = 0$ in X on (0, T)

for the energy $\mathcal{E}: W^{1,p}_0(\Omega) \to \mathbb{R}$ given by

$$\mathcal{E}(u) = \frac{1}{p} \int_{\Omega} |\nabla u(x)|^p \, dx + \int_{\Omega} \mathcal{F}(x, u(x)) \, dx$$

for $u \in W_0^{1,p}(\Omega)$. For $X = W^{-1,p'}(\Omega)$ or $X = L^2(\Omega)$.

What is a Gradient Systems? Gradient Systems are everywhere! How to define such a gradient?

GRADIENT SYSTEMS ARE EVERYWHERE!

2. EXAMPLE: THE HEAT EQUATION WITH THE P-LAPLACIAN

$$\partial_t u(t,x) - \operatorname{div}(|\nabla u(t,x)|^{p-2} \nabla u(t,x)) + f(x,u(t,x)) = 0 \quad (0,T) \times \Omega$$

Can be rewritten as an abstract gradient system in *X*:

$$\dot{u} + \nabla_X \mathcal{E}(u) = 0$$
 in X on (0, T)

for the energy $\mathcal{E}: W_0^{1,\rho}(\Omega) \to \mathbb{R}$ given by

$$\mathcal{E}(u) = \frac{1}{p} \int_{\Omega} |\nabla u(x)|^p \, dx + \int_{\Omega} \mathcal{F}(x, u(x)) \, dx$$

for $u \in W_0^{1,p}(\Omega)$. For $X = W^{-1,p'}(\Omega)$ or $X = L^2(\Omega)$.

What is a Gradient Systems? Gradient Systems are everywhere! **How to define such a gradient?**

How to define such a gradient?

Let V be a Banach space and V' its dual space, $\mathcal{E} \in \mathcal{C}^1(V, \mathbb{R})$, and let B be a second Banach space such that $V \subseteq X \subseteq V'$.

Definition of the gradient $\nabla_X \mathcal{E}$

We define $\nabla_X \mathcal{E} : D(\nabla_X \mathcal{E}) \to X$ as an operator on X by

$$D(\nabla_{X}\mathcal{E}) = \{ u \in V \mid \mathcal{E}'(u) \in X \}$$

and $\nabla_X \mathcal{E}(u) = \mathcal{E}'(u)$ for $u \in D(\nabla_X \mathcal{E})$.

What is a Gradient Systems? Gradient Systems are everywhere! **How to define such a gradient?**

How to define such a gradient?

Let V be a Banach space and V' its dual space, $\mathcal{E} \in \mathcal{C}^1(V, \mathbb{R})$, and let B be a second Banach space such that $V \subseteq X \subseteq V'$.

Definition of the gradient $\nabla_X \mathcal{E}$

We define $\nabla_X \mathcal{E} : D(\nabla_X \mathcal{E}) \to X$ as an operator on X by

$$D(\nabla_{X}\mathcal{E}) = \{ u \in V \mid \mathcal{E}'(u) \in X \}$$

and $\nabla_{X} \mathcal{E}(u) = \mathcal{E}'(u)$ for $u \in D(\nabla_{X} \mathcal{E})$.

Notion of Solutions of $\dot{u} + \nabla_{\mathbf{X}} \mathcal{E}(u) = \mathbf{f}$ $L^{\mathbf{p}}$ Maximal Regularity of $\nabla_{\mathbf{X}} \mathcal{E}$ in \mathbf{X} Maximal Regularity of the \mathbf{p} -Laplacian

Notion of Solutions of $\dot{u} + \nabla \mathcal{E}(u) = f$

Let $J \subseteq \mathbb{R}$ be an interval and $f : J \rightarrow X$ a measurable function.

DEFINITION

We call a function $u: J \rightarrow V$ a solution of the gradient system

$$\dot{u} + \nabla_X \mathcal{E}(u) = f$$
 in X on J, if

- $u \in W^{1,1}(J; X)$,
- $u(t) \in D(\nabla_X \mathcal{E})$ for a.e. $t \in J$, and
- *u* satisfies the equation (GS) for a.e. $t \in J$.

(GS)

Notion of Solutions of $\dot{u} + \nabla_X \mathcal{E}(u) = f$ L^p Maximal Regularity of $\nabla_X \mathcal{E}$ in XMaximal Regularity of the p-Laplacian

L^p Maximal Regularity of $\nabla_{\!X} \mathcal{E}$ in X

For $1 \le p \le \infty$ we say:

DEFINITION

The operator $\nabla_X \mathcal{E} : D(\nabla_X \mathcal{E}) \to \mathbb{R}$ has L^p maximal regularity in X if for every given $f \in L^p(J; X)$ there is a solution $u : J \to V$ of the gradient system (GS) such that

•
$$u \in L^p(J; X)$$
, and

• $\dot{u} \in L^p(J; X)$.

Notion of Solutions of $\dot{u} + \nabla_X \mathcal{E}(u) = f$ L^p Maximal Regularity of $\nabla_X \mathcal{E}$ in X Maximal Regularity of the *p*-Laplacian

The Energy of the p-Laplacian

Let $\Omega \subseteq \mathbb{R}^d$ be an open subset and $1 . If we take <math>V = W_0^{1,p}(\Omega) \cap L^2(\Omega)$ and $H = L^2(\Omega)$ then we have that

$$V \stackrel{d}{\hookrightarrow} H \stackrel{d}{\hookrightarrow} V'$$
 .

The energy $\mathcal{E}: V \to \mathbb{R}$ defined by

$$\mathcal{E}(u) = \frac{1}{p} \int_{\Omega} |\nabla u(x)|^p dx$$

is \mathcal{C}^1 and its derivative $\mathcal{E}': V \to V'$ is given by

$$\mathcal{E}'(u)h = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla h \, dx \quad \forall \, u, h \in V.$$

Notion of Solutions of $\dot{u} + \nabla_X \mathcal{E}(u) = f$ L^p Maximal Regularity of $\nabla_X \mathcal{E}$ in XMaximal Regularity of the p-Laplacian

The *p*-Laplacian in $W^{-1,p'}(\Omega)$

For
$$1 , $p' = \frac{p}{p-1}$, we take the domain$$

$$D(\nabla_{W^{-1,p'}}\mathcal{E}) = \{ u \in V \mid \mathcal{E}'(u) \in W^{-1,p'}(\Omega) \}.$$

DEFINITION

We call the operator $- {}^{D}_{W}\Delta_{p} : D(\nabla_{W^{-1,p'}}\mathcal{E}) \to W^{-1,p'}(\Omega)$ defined by

$$- {}^{D}_{W} \Delta_{p} u := \nabla_{W^{-1}, p'} \mathcal{E}(u) \quad \forall \ u \in D(\nabla_{W^{-1}, p'} \mathcal{E})$$

the negative Dirichlet *p*-Laplace operator on $W^{-1,p'}(\Omega)$.

$L^{p'}$ Maximal Regularity of the p-Laplacian in $W^{-1,p'}(\Omega)$

Due to J. L. Lions in [4, Thm. 1.2bis] (see also Hauer [3, Thm. 4]) we have the following $L^{p'}$ maximal regularity result in $W^{-1,p'}(\Omega)$:

1. Theorem (J. L. LIONS, 1968)

If 1 and <math>T > 0, then for every $f \in L^{p'}(0, T; W^{-1,p'}(\Omega))$ and every $u_0 \in L^2(\Omega)$ there is a unique solution $u \in W^{1,p'}(0, T; W^{-1,p'}(\Omega)) \cap L^p(0, T; W_0^{1,p}(\Omega))$ of

$$\begin{cases} \dot{u} - {}^D_W \Delta_p u = f & \text{in } W^{-1,p'}(\Omega) \text{ a.e. on } (0, T), \text{ and} \\ u(0) = u_0. \end{cases}$$

Introduction *LP* Maximal Regularity in *X* References Notion of Solutions of $\dot{\boldsymbol{u}} + \nabla_{\boldsymbol{X}} \mathcal{E}(\boldsymbol{u}) = \boldsymbol{f}$ $\boldsymbol{L}^{\boldsymbol{p}}$ Maximal Regularity of $\nabla_{\boldsymbol{X}} \mathcal{E}$ in \boldsymbol{X} Maximal Regularity of the \boldsymbol{p} -Laplacian

The *p*-Laplacian in $L^2(\Omega)$

For $1 , <math>p' = \frac{p}{p-1}$, we take now the domain

$$D(\nabla_{L^2}\mathcal{E}) = \{ u \in V \mid \mathcal{E}'(u) \in L^2(\Omega) \} .$$

Then:

DEFINITION

We call the operator $-L^{D}_{2}\Delta_{p}: D(\nabla_{L^{2}}\mathcal{E}) \to L^{2}(\Omega)$ defined by

$$- {}_{L^2}^{D} \Delta_p u := \nabla_{L^2} \mathcal{E}(u) \quad \forall \ u \in D(\nabla_{L^2} \mathcal{E})$$

the negative Dirichlet *p*-Laplace operator on $L^2(\Omega)$.

L^2 Maximal Regularity of the *p*-Laplacian in $L^2(\Omega)$

The following L^2 maximal regularity result in $L^2(\Omega)$ results from the theory of maximal monotone operators in Hilbert spaces due to the pioneering work of H. Brezis in [1, Thm. 3.4 and Thm. 3.6]. See also R. Chill and E. Fašangová in [2, Thm. 6.1] using the theory of gradient systems in infinite dimensional spaces:

2. Theorem (H. BREZIS, 1973)

Let the dimension $d \ge 2$, $\frac{2d}{2+d} \le p < \infty$, $\Omega \subset \mathbb{R}^d$ open and bounded, T > 0. Then, for every $u_0 \in W_0^{1,p}(\Omega)$ and every $f \in L^2(0, T; L^2(\Omega))$ there is a unique solution $u \in W^{1,2}(0, T; L^2(\Omega)) \cap L^{\infty}(0, T; W_0^{1,p}(\Omega))$ of

$$\begin{cases} \dot{u} - {}_{L^2}^D \Delta_p u = f & \text{in } L^2(\Omega) \text{ a.e. on } (0, T), \text{ and} \\ u(0) = u_0. \end{cases}$$

Notion of Solutions of $\dot{\boldsymbol{u}} + \nabla_{\boldsymbol{X}} \mathcal{E}(\boldsymbol{u}) = \boldsymbol{f}$ $\boldsymbol{L}^{\boldsymbol{p}}$ Maximal Regularity of $\nabla_{\boldsymbol{X}} \mathcal{E}$ in \boldsymbol{X} Maximal Regularity of the \boldsymbol{p} -Laplacian

A FIRST OPEN RESEARCH PROBLEM

QUESTION

- Does there exist a realization on $L^q(\Omega)$ for the negative p-Laplacian $-\Delta_p$ and
- is it possible to obtain L^r maximal regularity in $L^q(\Omega)$ for this realization?

References

- [1] H. Brezis, Opérateur maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, 1973.
- [2] R. Chill and E. Fašangová, Gradient Systems 13th international internet seminar 2010.
- [3] D. Hauer, Nonlinear heat equations associated with convex functionals – an Introduction based on the Dirichlet *p*-Laplace Operator, Diplomarbeit, University of Ulm, May 2007.
- [4] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1968.

|--|

Thank You for Your Attention!! Thank You to the organizer of the second Spring School!!!

Thank You for Your Attention!!

Thank You to the organizer of the second Spring School!!!

L ^P Maximal Regularity in X References References

Thank You for Your Attention!! Thank You to the organizer of the second Spring School!!!

