Norm-Euclidean domains

The rings $\mathbb{Z}[\tau_d]$ considered last week are known as the rings of integers of the quadratic fields $\mathbb{Q}[\tau_d]$. For these rings it is sometimes the case that the norm map is also a Euclidean function. If this is the case, the ring is said to be norm-Euclidean.

Dedekind wrote a famous supplement to Dirichlet’s 1893 book Vorlesungen über Zahlentheorie. It was in this supplement that he extended Kummer’s concept of “ideal number” to a more general setting. He also showed that $\mathbb{Z}[\tau_d]$ is norm-Euclidean for

$$d = -11, -7, -3, -2, -1, 2, 3, 5, 13.$$

This list is complete for $d < 0$ but for $d > 0$ there are the following additional values

$$d = 6, 7, 11, 17, 19, 21, 29, 33, 37, 41, 57, 73.$$
Some history

Our result so far show that

\[
\text{norm-Euclidean } \Rightarrow \text{ Euclidean } \Rightarrow \text{ PID } \Rightarrow \text{ UFD}
\]

However, none of the converse implications are true.

In 1973, assuming the generalised Riemann hypothesis, Weinberger showed that for \(d > 0 \), the ring \(\mathbb{Z}[\tau_d] \) is a Euclidean domain if and only if it is a PID.

On the other hand, for \(d \in \{-163, -67, -47, -19\} \), the ring \(\mathbb{Z}[\tau_d] \) is a PID but not a Euclidean domain.

In 1994 David Clark showed that \(\mathbb{Z}[\tau_{69}] \) is a Euclidean domain but not norm-Euclidean. This was the first example of this type.

Generalities

Theorem

If \(\alpha \in \mathbb{Z}[\tau_d] \) and if \(N(\alpha) \) is a rational prime, then \(\alpha \) is irreducible.

Theorem

If \(\pi \) is a prime element of \(\mathbb{Z}[\tau_d] \), then \(\pi \) is a divisor of exactly one positive rational prime.

Theorem

If \(\alpha \in \mathbb{Z}[\tau_d] \), \(\alpha \neq 0 \) and \(\alpha \) is not a unit, then \(\alpha \) is a product of irreducible elements.

Theorem

If \(\alpha \in \mathbb{Z}[\tau_d] \), then \(N(\alpha) = |\mathbb{Z}[\tau_d]/\mathbb{Z}[\tau_d]\alpha| \).
The ring $\mathbb{Z}[i]$

Theorem

The ring $\mathbb{Z}[i]$ is norm-Euclidean.

Proof.

For $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$ we can write $\alpha/\beta = r + is$, where $r, s \in \mathbb{Q}$. Thus there exist $x, y \in \mathbb{Z}$ such that $|r - x| \leq \frac{1}{2}$ and $|s - y| \leq \frac{1}{2}$. Therefore

$$\left| \frac{\alpha}{\beta} - (x + iy) \right|^2 = |(r - x) + i(s - y)|^2 = (r - x)^2 + s - y)^2 \leq \frac{1}{2}$$

Put $q = x + iy$ and $\rho = \alpha - q\beta$. Then $N(\rho) = |\alpha - q\beta|^2 \leq \frac{1}{2} |\beta|^2 \leq \frac{1}{2} N(\beta)$. \qed

The primes of $\mathbb{Z}[i]$

If π is a prime element of $\mathbb{Z}[i]$, then π divides a rational prime p and we may write $p = \pi \lambda$. Then $p^2 = N(\pi)N(\lambda)$.

If $\pi = a + bi$, then $N(\pi) = a^2 + b^2 \equiv 3 \mod 4$.

i) $p = 2$. In this case $2 = i(1 - i)^2$ and $1 - i$ is a prime.

ii) $p \equiv 3 \mod 4$. In this case $N(\pi) = p^2$ and λ is a unit. That is, π is an associate of the rational prime p.

iii) $p \equiv 1 \mod 4$. In this case -1 is a square in $\mathbb{Z}/p\mathbb{Z}$; that is $-1 \equiv d^2 \mod p$ for some $d \in \mathbb{Z}$ and therefore $p \mid d^2 + 1 = (d + i)(d - i)$. If p were prime in $\mathbb{Z}[i]$, then $p \mid d + i$ or $p \mid d - i$, which is impossible.

Thus $p = N(\pi) = a^2 + b^2 = (a + bi)(a - bi)$.

Up to associates, the primes of $\mathbb{Z}[i]$ are: $1 + i$, the rational primes $p \equiv 3 \mod 4$, and the factors $a + bi$ of the rational primes $p \equiv 1 \mod 4$, where $p = a^2 + b^2$.

Primitive polynomials

We now turn our attention to factorisation in polynomial rings. We have already mentioned that if \(F \) is a field, then \(F[x] \) is a Euclidean domain and hence a PID.

A polynomial ring in more than one variable is never a PID but we shall see that all polynomial rings over a field are UFDs.

Definition

A polynomial \(f = a_0 + a_1 x + \cdots + a_m x^m \) in \(A[x] \) is primitive if \(A = (a_0, a_1, \ldots, a_n) \); that is, the coefficients of \(f \) have no common factors in \(A \) other than units.

Gauß’s Lemma

Lemma (Gauß)

The polynomials \(f \) and \(g \) are primitive if and only if \(fg \) is primitive.

Proof.

Suppose that \(f = a_0 + a_1 x + \cdots + a_m x^m \), \(g = b_0 + b_1 x + \cdots + b_n x^n \) and \(fg = c_0 + c_1 x + \cdots + c_{m+n} x^{m+n} \). Then \(c_j = \sum_i a_i b_{j-i} \) and therefore \((c_0, c_1, \ldots, c_{m+n}) \subseteq (a_0, \ldots, a_m) \cap (b_0, \ldots, b_n)\).

It follows immediately that if \(fg \) is primitive, then \(f \) and \(g \) are primitive.
Proof (continued)

Conversely, suppose that \(f \) and \(g \) are primitive but that \(c = (c_0, \ldots, c_{m+n}) \neq A \).

Choose a maximal ideal \(m \) containing \(c \) and then choose \(r \) and \(s \) as large as possible such that \(a_r \notin m \) and \(b_s \notin m \).

Then \(cr^s + \cdots + arb_s + \cdots \in m \), hence \(arb_s \in m \), which is a contradiction.

Thus if \(f \) and \(g \) are primitive, then \(fg \) is primitive.

Content and reduced expressions

Let \(A \) be a UFD and let \(K \) be its field of fractions. If \(f \in K[x] \) and \(f(x) = a_0 + a_1x + \cdots + a_mx^m \), then we can write \(f(x) = cf_1(x) \), where \(c \in K \) and \(f_1(x) \in A[x] \) is primitive; this is called a reduced expression for \(f \).

The element \(c \) is defined up to a unit factor and called the content of \(f \).

It follows from Gauß’s lemma that if \(f = cf_1 \) and \(g = dg_1 \) are reduced expressions for \(f \) and \(g \), then \(fg = cd_{f_1}g_1 \) is a reduced expression for \(fg \).

Lemma

Let \(A \) be a UFD, let \(K \) be the field of quotients of \(A \) and let \(f(x) \) be a primitive polynomial in \(A[x] \). Then \(f(x) \) is irreducible in \(A[x] \) if and only if \(f(x) \) is irreducible in \(K[x] \).
The polynomial ring of a UFD

Theorem

If A is a UFD, then A[x] is a UFD.

Corollary

If A is a UFD, then A[x_1, \ldots, x_n] is a UFD.

Corollary

If k is a field, then k[x_1, \ldots, x_n] is a UFD.

Nilpotents and the radical

An element x is **nilpotent** if x^n = 0 for some n > 0. A ring is **reduced** if 0 is its only nilpotent element.

The set Spec(A) of all prime ideals of a ring A is called the **spectrum** of A.

Theorem

The set \(\mathfrak{N} \) of all nilpotent elements of a ring A is an ideal of A called the nilradical. The ring A/\(\mathfrak{N} \) is reduced.

Theorem

\[\mathfrak{N} = \bigcap_{p \in \text{Spec}(A)} p. \]