1. Suppose that A is a PID and that S is a multiplicatively closed subset of A. Prove that $S^{-1}A$ is a PID.

2. Suppose that S is a multiplicatively closed subset of a ring A and that A is a subring of B. Let p be a prime ideal of A such that $p \cap S = \emptyset$ and let q be a prime ideal of B such that $q \cap S = \emptyset$. Prove that $p = A \cap q$ if and only if $S^{-1}p = S^{-1}A \cap S^{-1}q$.

3. Suppose that S is a multiplicatively closed subset of a ring A. Prove that an ideal a of A is contracted (with respect to the natural homomorphism $A \to S^{-1}A$) if and only if $(a : s) = a$ for all $s \in S$. Prove that $a \mapsto S^{-1}a$ is a one-to-one correspondence between the contracted ideals of A and the ideals of $S^{-1}A$.

4. Suppose that A is a ring such that $x^2 = x$ for all $x \in A$ and let $X = \text{Spec}(A)$.
 (i) Prove that X_f is both open and closed in the Zariski topology of X.
 (ii) For $f_1, \ldots, f_n \in A$, show that $X_{f_1} \cup \cdots \cup X_{f_n} = X_f$ for some $f \in A$.
 (iii) Prove that the sets X_f are the only subsets of X which are open and closed. [Use the facts that every open subset of X is a union of basic open sets and every closed subset is compact.]
 (iv) Prove that X is a compact Hausdorff space.

5. If M is an A-module, prove that $\text{Hom}_A(A, M) \to M : \varphi \mapsto \varphi(1)$ is an isomorphism.

6. Let A be an integral domain with field of fractions K and suppose that $f \in A$ is nonzero and not a unit. Let $A[1/f]$ denote the subring of K generated by A and $1/f$. Prove that $A[1/f]$ is not finitely generated by showing that if $A[1/f]$ were to have a finite set of generators, then some finite collection of powers of $1/f$ would generate $A[1/f]$ and then f would be a unit.

7. If A is a local ring, prove that A^m and A^n are isomorphic as A-modules if and only if $m = n$.