1. Suppose that M is an A-module, N is a submodule of N and a is an ideal of A. Prove that $a(M/N) = (aM + N/N)$.

2. Let a be an ideal of A. Suppose that $aM = M$ implies $M = 0$ for all finitely generated A-modules M. Prove that a is contained in the Jacobson radical of A.

3. If $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ is a short exact sequence of A-modules, prove that if M' and M'' are finitely generated, then so is M.

4. Suppose that M_1 and M_2 are submodules of the A-module M.

 (i) Show that the the sequence
 \[0 \rightarrow M_1 \cap M_2 \xrightarrow{\phi} M_1 \oplus M_2 \xrightarrow{\psi} M_1 + M_2 \rightarrow 0 \]
 is exact, where $\phi(m) = (m, m)$ for $m \in M_1 \cap M_2$ and $\psi(m_1, m_2) = m_1 - m_2$ for $m_1 \in M_1$ and $m_2 \in M_2$.

 (ii) Show that the the sequence
 \[0 \rightarrow M/(M_1 \cap M_2) \xrightarrow{\eta} M/M_1 \oplus M/M_2 \xrightarrow{\theta} M/(M_1 + M_2) \rightarrow 0 \]
 is exact, where $\eta(x + M_1 \cap M_2) = (x + M_1, x + M_2)$ for $x \in M$ and $\theta(y + M_1, z + M_2) = y - z + (M_1 + M_2)$ for $y, z \in M$.

 (iii) If a and b are ideals of A, use (ii) to show that a and b are coprime if and only if the map $A \rightarrow A/a \times A/b : x \mapsto (x + a, x + b)$ is surjective.

5. Suppose that M_1 and M_2 are submodules of an A-module M. If $M_1 + M_2$ and $M_1 \cap M_2$ are finitely generated, prove that M_1 and M_2 are finitely generated.

6. Suppose that A is a local ring and that M and N are A-modules.

 (i) If m is the maximal ideal of A, show that there is a homomorphism from $M \otimes_A N$ onto $(M/mM) \otimes_{A/m} (N/mN)$.

 (ii) If M and N are finitely generated, show that $M \otimes_A N = 0$ if and only if $M = 0$ or $N = 0$.