MATH1902 Linear Algebra

Lecture 1
Week 1, Semester 1, 2001

26 February, 2000

Lecture Notes: Vectors by C. J. Durrant
Available from Kopystop
(36 Mountain Street, Broadway)

Lecturer: Associate Professor D. E. Taylor
Room: 711, Carslaw Building
Office Hour: Tuesday 1pm – 2pm

Enquiries to: First Year Mathematics Office,
5th floor, Carslaw Building
Objectives

• be able to identify and distinguish between scalar and vector quantities.

• know what is meant by the position vector of a point and illustrate this with a diagram.

• be able to explain how to add vectors using either the triangle rule or the parallelogram rule.

• be able to use position vectors to solve problems in geometry.

• know what it means for a point to divide a line segment in a given ratio.
Scalars and Vectors

A **scalar** is a real number. (Towards the end of the course we will allow complex numbers as well.)

Examples: mass, volume, temperature, density, electric charge, work, etc.

A **vector** is a quantity with a **length** and a **direction**.

Examples: velocity, acceleration, momentum, force, electric and magnetic field intensities.

A vector is represented by a **directed line segment**.

The **length** of a vector \(\mathbf{v} \) is written \(|\mathbf{v}| \).
Position Vectors

Given points A and B, the position vector of B relative to A is the vector, written \overrightarrow{AB} represented by the line segment starting at A and ending at B.

If we write $\mathbf{v} = \overrightarrow{AB}$, then we can think of \mathbf{v} as the vector which acts on A to get B.

If the line segments AB and DC have the same direction and the same length, then $ABCD$ is a parallelogram and the position vectors \overrightarrow{AB} and \overrightarrow{DC} are equal; we write this as $\overrightarrow{AB} = \overrightarrow{DC}$.
Vector addition

Given vectors \mathbf{a} and \mathbf{b} we can add them as follows. First choose a point O, then let P be the point such that $\mathbf{OP} = \mathbf{a}$ and finally let R be the point such that $\mathbf{PR} = \mathbf{b}$. Then $\mathbf{a} + \mathbf{b} = \mathbf{OR}$. This is the triangle rule for addition of vectors.

Alternatively, we can represent \mathbf{b} by the line segment from O to Q which is parallel to PR and the same length as PR. This picture is known as the parallelogram rule for addition.

Notice that the triangle rule gives:

$$\mathbf{OP} + \mathbf{PR} = \mathbf{OR}.$$

We can turn this around to obtain the head minus tail rule: $\mathbf{PR} = \mathbf{OR} - \mathbf{OP}$.

©2001 School of Mathematics and Statistics, The University of Sydney
Negatives

Each vector \(\mathbf{v} \) has a **negative**. This is the vector with the same length but the opposite direction. If \(\mathbf{v} = \overrightarrow{AB} \), then \(-\mathbf{v} = \overrightarrow{BA} \).

The vector which represents the position of \(A \) with respect to itself is the **zero vector** \(\mathbf{0} \). That is, \(\mathbf{0} = \overrightarrow{AA} \).

Multiplication by a scalar

Given a positive scalar \(s \) and a vector \(\mathbf{v} \), the vector \(s\mathbf{v} \) has the same direction as \(\mathbf{v} \) but its length is \(s|\mathbf{v}| \).

If \(s \) is negative, then \(s\mathbf{v} \) has the **opposite** direction to \(\mathbf{v} \). In general, we have \(|s\mathbf{v}| = |s||\mathbf{v}| \), where \(|s| \) is the **absolute value** of \(s \) and defined by

\[
|s| = \begin{cases}
 s & \text{if } s \geq 0 \\
 -s & \text{if } s < 0
\end{cases}
\]
Geometry and Vectors

Let ABC be a triangle and let D, E and F be the mid-points of the sides BC, CA and AB. Show that $\overrightarrow{FE} = \frac{1}{2} \overrightarrow{BC}$ and that the sum of the vectors \overrightarrow{AD}, \overrightarrow{BE} and \overrightarrow{CF} is the zero vector.

Choose a point in the plane and call it O. All our position vectors will be with respect to O.

In particular, we put $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OB}$ and $\mathbf{c} = \overrightarrow{OC}$.

Then $\overrightarrow{OE} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AC}$. But we know that $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$ and therefore $\overrightarrow{OE} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OC}) = \frac{1}{2}(\mathbf{a} + \mathbf{c})$.

Similarly, $\overrightarrow{OF} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}) = \frac{1}{2}(\mathbf{a} + \mathbf{b})$ and
therefore

\[
\overrightarrow{FE} = \overrightarrow{OE} - \overrightarrow{OF} = \frac{1}{2}(a + c) - \frac{1}{2}(a + b) = \frac{1}{2}(c - b) = \frac{1}{2}\overrightarrow{BC}.
\]

For the last part, we have

\[
\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \frac{1}{2}(b + c) - a,
\]

\[
\overrightarrow{BE} = \overrightarrow{OE} - \overrightarrow{OB} = \frac{1}{2}(a + c) - b, \text{ and}
\]

\[
\overrightarrow{CF} = \overrightarrow{OF} - \overrightarrow{OC} = \frac{1}{2}(a + b) - c.
\]

From this we calculate that

\[
\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \mathbf{0}.
\]
Division of a line segment in a given ratio (internal)

Suppose that we want to find the point \(P \) that divides a given line segment \(AB \) internally in the ratio \(m : n \). This means that

\[
\frac{|AP|}{|PB|} = \frac{m}{n}.
\]

Because \(\overrightarrow{AP} \) and \(\overrightarrow{PB} \) have the same direction we can write \(\overrightarrow{AP} = \frac{m}{n} \overrightarrow{PB} \) and, by the ‘head minus tail’ rule, \(\overrightarrow{PB} = \overrightarrow{AB} - \overrightarrow{AP} \). Therefore

\[
\overrightarrow{AP} = \frac{m}{n} \left(\overrightarrow{AB} - \overrightarrow{AP} \right)
\]

and solving for \(\overrightarrow{AP} \) gives

\[
\overrightarrow{AP} = \frac{m}{m+n} \overrightarrow{AB}.
\]

Given a point \(O \), we can find the formula for the position vector \(\overrightarrow{OP} \). We apply the ‘head minus tail’ rule to the equation \(n \overrightarrow{AP} = m \overrightarrow{PB} \) to obtain

\[
n(\overrightarrow{OP} - \overrightarrow{OA}) = m(\overrightarrow{OB} - \overrightarrow{OP})
\]

and then solve for \(\overrightarrow{OP} \). That is,

\[
\overrightarrow{OP} = \frac{n \overrightarrow{OA} + m \overrightarrow{OB}}{m + n}.
\]
Division of a line segment in a given ratio (general case)

The formula

\[\overrightarrow{OP} = \frac{n \overrightarrow{OA} + m \overrightarrow{OB}}{m + n} \]

makes sense even when one of \(m \) or \(n \) is negative.

If one of \(m \) or \(n \) is negative, then \(P \) is on the line joining \(A \) to \(B \), but outside the segment between \(A \) and \(B \).

In all cases, if \(P \) divides \(AB \) in the ratio \(m : n \), then we have \(n \overrightarrow{AP} = m \overrightarrow{PB} \).