Classical motivztion. (Wry stoly perverex sleaces?)
Reference: Kirwzu \& Woolf 'An introdection to intersection honology Reay! (2006)
\$1. Ne role of R homolasy of a minnipld

- Inkersection thars.

Let $n \in \mathbb{Z}_{\geqslant 0}, M$ a compact oriented mriffold $w / \operatorname{dim}_{\mathbb{R}} M=n$. For chang $0 \leq i \leq n$ hare is a b:licerv priving

$$
\begin{align*}
& H_{i}(M) \underset{\mathbb{C}}{\otimes} H_{n-i}(x)
\end{align*}
$$

> 2appumitatives in
> "gheric" position

Poincré wolity states soch biliese privings we man legenerite in both varisbles, then for each i-dim suboman: fold Y the there \therefore anoter sobmmifold A of dimension i and a solurinifold B of divension $n-i$ which ie in "geveral psstion" which nespect eoch other. In pewtiwlev,

$$
\operatorname{dim}_{\mathbb{C}} H_{i}(M)=\operatorname{din}_{\mathbb{C}} H_{n-i}(M) .
$$

- Morse Nuns

Let X a compact smooth manifold. Let $f: X \longrightarrow \mathbb{R}$ be a smooth. "generic" function (mane precis by a "Mores function"). By Mores Lemma such a function near a critical point $p \in X$ cain be expressed as a diagonal wadvetic form for sac suitable chart.

$$
f\left(x_{1}, \ldots, x_{n}\right)=-x_{1}^{2}-x_{2}^{2}-\cdots-x_{\alpha}^{2}+x_{\alpha+1}^{2}+\cdots+x_{n}^{2}
$$

index of ! ${ }^{2} t$.
wou the inkx of f ot p is the dimanasion of the bovest sobspore of $t_{p} X$ on which the Itessizn $H_{p}(f)$ is negstive definite.
Condley, te set of uriticrl points of f se istoted and hence fraite.
Let p critict piut of t.

$$
H_{p}(f): T_{p} X \times T_{p} X \longrightarrow \mathbb{R}
$$

soppore f "esprote" critiorl points. We have
Prop.

- If $y \neq f(x) \quad \forall x$ crititel the ;s $\varepsilon>0$ s.t $M_{\text {indel sion }}$

$$
x_{y-\varepsilon} \stackrel{\iota}{\longleftrightarrow} x_{y+\varepsilon} \quad\left(x_{z}:=f^{-1}((-\infty, z))\right)
$$

ind cas x in mouphism

$$
H_{i}\left(x_{y-\varepsilon}\right) \xrightarrow{\simeq} H_{i}\left(x_{y+\varepsilon}\right) \quad \forall i \text {, or }
$$

- If $y=f(x)$ soo sere unifer x vitiout

$$
H_{k}\left(X_{y+\varepsilon}, X_{y-\varepsilon}\right)=\left\{\begin{array}{lll}
0 & \text { if } & k \neq \alpha(x) \\
\mathbb{C} & \text { if } & k=\alpha(x) .
\end{array}\right.
$$

NB. $\alpha(x)=d\left\{\right.$ nexytivivilues of $\left.H_{x}(t)\right\}$
This leads to

$$
\begin{aligned}
& \sum_{x \in C(f)} t^{\alpha(x)}-\sum_{i \geq 0} t^{i} \operatorname{drm} \mathbb{C}^{H}(x)=(1+t) R(t) \\
& \in \mathbb{Z}_{20}[t] \\
& \text { set of critioul points of } f
\end{aligned}
$$

which leads to

$$
\operatorname{dim}_{\mathbb{C}} H_{i}(X) \leq \notin\{x \in C(\nmid): \alpha(x)=i\} .
$$

Marse inequalitics

$f:(0) \rightarrow \mathbb{R}$ yiven by the height $P \longmapsto h t(P)$ w.r.t a tament plout

By looking it the liession of f ot a, b, c, d :

$$
\begin{aligned}
\alpha(a) & =0, d(b)=1, \alpha(c)=1, \alpha(d)=2 \\
X_{0}=f^{-1}(\{<0)) & =\phi \quad,
\end{aligned}
$$

For $\varepsilon>0$ smoll enongh
$X_{1}=f^{-1}(\{<\varepsilon\})=\sim \sim p t$ by the propsition thoue we hove

$$
\begin{aligned}
& H_{i}\left(X_{1}, \phi\right)=\left\{\begin{array}{lll}
0 & \text { if } & i \neq 1 \\
\mathbb{C} & \text { if } & i=1
\end{array}\right. \\
\Rightarrow & 0 \rightarrow H_{0}(\phi) \rightarrow H_{0}\left(X_{1}\right) \rightarrow \mathbb{C} \rightarrow H_{1}(\phi) \rightarrow H_{1}\left(X_{1}\right) \rightarrow 0 \\
\Rightarrow & H_{i}\left(X_{1}\right)= \begin{cases}\mathbb{C} & i=0 . \\
0 & i \neq 0 .\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
f^{-1}(\{<f(b)-\varepsilon\}) \sim x_{1} \sim 0 \\
x_{2}=f^{-1}(\{<f(b)+\varepsilon\}) \sim \sim \sim \sim S^{\prime}
\end{gathered}
$$

By our proposition

$$
H_{i}(\because, O)= \begin{cases}\mathbb{1} & i=1 \\ 0 & 0 / w\end{cases}
$$

$$
\begin{aligned}
0 \rightarrow \underbrace{H_{1}\left(x_{1}\right)}_{0} & \rightarrow H_{1}\left(x_{2}\right) \rightarrow \mathbb{C} \rightarrow \underbrace{H_{2}\left(x_{1}\right)}_{0} \rightarrow H_{2}\left(x_{2}\right) \rightarrow 0 \\
& \rightarrow H_{i}\left(x_{2}\right)
\end{aligned} \begin{aligned}
& \mathbb{C} \begin{array}{ll}
\mathbb{1} i=0 \text { or } 1 \text { is expected } \\
0 & 0 / w
\end{array}
\end{aligned}
$$

In the sure way we can compte the honology of

$$
x_{3}=0 \text { and } x_{4}=0 \text {. }
$$

- derer intevpuctations.
- $H_{*}(M, \mathbb{R}) \rightarrow$ diffenential forms M coarict upld -v hamenic forms
- Lefshetz hyporpiole Rearms

velates $H^{i}(x)$ and $H^{i}(x \cap H)$.
§2. The siturition with singulav spous
Derling with wal singutiv manifolds is a hase task. In gemerre, it is not possible to houe z rich interpertition far Hox spaces. Haveruv, ove con restuict the atthention to singutov projective vavectios and tiy to she This problem. This is the cortext whe pweree shezese, the devied categay of conshurifible sleaves and the interection handoryy play an impertant role.
0.9.

Consilev, $x \subset \mathbb{C} \mathbb{P}^{2}$ yer comples pejuctive voriety:

$$
X=\left\{[x ; y ; z] \in \mathbb{C P P}^{2} \mid y z=0\right\} .
$$

$\operatorname{drm}_{\mathbb{C}} X=1$. es. in the bry open ut $U_{0}=\{x \neq 0\}$.

$$
x \cap u_{0}=\left\{[1 ; y ; z] \in G \mathbb{P}^{2} \mid y z=0\right\}
$$

$\tilde{\Xi}\left\{(y, z) \in \mathbb{C}^{2} \mid y z=0\right\}$ iffre suburu of $A^{2} \mathbb{C}$.

$$
\cong \underset{\{ }{\mathbb{C}} \cup \underset{\substack{u 1 \\\{y=0\}}}{\mathbb{G}=0\}}
$$

$\mathbb{C} \cap \mathbb{C}=$

we hive to slue o.
2ub
Therfors the red picture :i

$$
O=\mathbb{R} \mathbb{P}^{\prime} \vee \mathbb{R} \mathbb{P}^{\prime} \text {. }
$$

Thepere $X=\mathbb{C} \mathbb{P}^{\prime} \vee \mathbb{C} \mathbb{P}^{\prime}$. The coplex pichue,

$$
H_{i}\left(s^{2} \vee s^{2}\right)=\left\{\begin{array}{cc}
\mathbb{C}, & i=0: \\
0, & i=1: \\
\mathbb{C} \oplus \mathbb{C}, & i=2
\end{array}\right\} \text { crow be compled }
$$

The ofer way to ce thi) is b oxe the pact that $S^{2} V s^{2}$ is carected thm $H_{0}\left(s^{2} v s^{2}\right)=\mathbb{C}$ and

$$
H_{i}\left(s^{2} v s^{2}\right)=H_{i}\left(s^{2}\right) \oplus H_{i}\left(s^{2}\right) \text { for } i>0 \text {. }
$$

(Con be dediad ham Mrawn-Viporis.)
We see that

Tese two asts x e lones to $\mathbb{C P P}^{\prime}$ and :iverrect in $[1: 0: 0]$.
gueper Poinane wality fails sinu

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{R}} X=2, \operatorname{dim}_{\mathbb{C}} X=1 \text {. So } n=2 . \\
& \operatorname{dim}_{\mathbb{C}} H_{0}(x)=1 \neq \operatorname{dim}_{\mathbb{C}} H_{2}(x)=2 .
\end{aligned}
$$

One solotion :is intolecing in intersection lonolagy stapps $I H_{*}(X)$ of X. Rexe me (x. vecter spres) which re toplogecol simeronts of X. Rey hare
 exd divension 2n) wether singsonv or not, thes ine non-derenesik privings (in both vaidus) :

$$
I H_{i}(x) \otimes I H_{2 n-i}(x) \longrightarrow \mathbb{C}
$$

lor $0 \leq i \leq 2 n$. For nom- singitiv X there is a natoral isonovphism of fuctors

$$
I H_{*}(x) \simeq H_{*}(x)
$$

The existuce of the privings for siterecition handogy is a puels toplog:al fact ; it does ast relly or M conplex geometry of X.

This is a huse vesturotion in the topolagy, far lirmple, if X is a cx proj variety we hre $\operatorname{dim}_{\mathbb{R}} X$ is even. Howiver, the thay glow us to have the some interputitions is befove (Maret thas, de Rhom stowevphimas, ete... and new things without a chasicil inoloy aperv.

