Unimodality of Bruhat intervals

Gaston Burrull

The University of Sydney
December 7, 2021

65th Annual Meeting of the AustMS

Plan

- Overview about unimodality and top-heaviness

Plan

- Overview about unimodality and top-heaviness
- The Top-Heavy Conjecture

Plan

- Overview about unimodality and top-heaviness
- The Top-Heavy Conjecture
- The affine Weyl group

Plan

- Overview about unimodality and top-heaviness
- The Top-Heavy Conjecture
- The affine Weyl group
- Towards unimodality

Introduction

Let us take look at the following graph.

Introduction

Let us take look at the following graph.

Introduction

Let us take look at the following graph.

By removing a vertex we obtain smaller subgraphs.

Introduction

Let us take look at the following graph.

$$
1
$$

3
By removing a vertex we obtain smaller subgraphs.

Introduction

Let us take look at the following graph.

By removing a vertex we obtain smaller subgraphs.

Introduction

Let us take look at the following graph.

By removing a vertex we obtain smaller subgraphs.

Introduction

Let us take look at the following graph.

By removing a vertex we obtain smaller subgraphs.

Introduction

Let us take look at the following graph.

By removing a vertex we obtain smaller subgraphs.

Introduction

We observe a "unimodal" and "top-heavy" behaviour

[^0]
Introduction

Unimodal and top-heavy behaviours also appear in partitions

The Top-Heavy Conjecture

Top-Heavy Conjecture (Dowling and Wilson, 1974) (for vector spaces). Let V be a vector space and E a finite set of vectors which span V.

The Top-Heavy Conjecture

Top-Heavy Conjecture (Dowling and Wilson, 1974) (for vector spaces). Let V be a vector space and E a finite set of vectors which span V. For $i \leq \operatorname{dim}(V)$, let

$$
b_{i}=\sharp\left\{\begin{array}{c}
i \text {-dimensional subspaces of } V \\
\text { which are spanned by vectors of } E
\end{array}\right\} .
$$

The Top-Heavy Conjecture

Top-Heavy Conjecture (Dowling and Wilson, 1974) (for vector spaces). Let V be a vector space and E a finite set of vectors which span V. For $i \leq \operatorname{dim}(V)$, let

$$
b_{i}=\sharp\left\{\begin{array}{c}
i \text {-dimensional subspaces of } V \\
\text { which are spanned by vectors of } E
\end{array}\right\} .
$$

Then

$$
b_{i} \leq b_{n-i}, \text { for all } i \leq \frac{\operatorname{dim}(V)}{2}
$$

The Top-Heavy Conjecture: An example

$$
\begin{aligned}
& \text { Let } V=\mathbb{R}^{3} \text { and } \\
& \qquad E=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

The Top-Heavy Conjecture: An example

Let $V=\mathbb{R}^{3}$ and

$$
E=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} .
$$

Then we have $b_{0}=1, b_{1}=4, b_{2}=6$, and $b_{3}=1$.

The Top-Heavy Conjecture: An example

Let $V=\mathbb{R}^{3}$ and

$$
E=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} .
$$

Then we have $b_{0}=1, b_{1}=4, b_{2}=6$, and $b_{3}=1$.

Note

$$
1=b_{0} \leq b_{3}=1,
$$

and

$$
4=b_{1} \leq b_{2}=6
$$

The Top-Heavy Conjecture

A matroid is a structure that generalizes the notion of linear independent sets.

The Top-Heavy Conjecture

A matroid is a structure that generalizes the notion of linear independent sets. It borrows and abstracts notions from graph theory, linear algebra, and number theory.

The Top-Heavy Conjecture

A matroid is a structure that generalizes the notion of linear independent sets. It borrows and abstracts notions from graph theory, linear algebra, and number theory.

Top-Heavy Conjecture (Dowling and Wilson, 1974). Let M be matroid. For $i \leq \operatorname{rank}(M)$, let b_{i} be the number of elements of M of rank i.

The Top-Heavy Conjecture

A matroid is a structure that generalizes the notion of linear independent sets. It borrows and abstracts notions from graph theory, linear algebra, and number theory.

Top-Heavy Conjecture (Dowling and Wilson, 1974). Let M be matroid. For $i \leq \operatorname{rank}(M)$, let b_{i} be the number of elements of M of rank i. Then

$$
b_{i} \leq b_{n-i}, \text { for all } i \leq \frac{\operatorname{rank}(V)}{2}
$$

The Top-Heavy Conjecture

A matroid is a structure that generalizes the notion of linear independent sets. It borrows and abstracts notions from graph theory, linear algebra, and number theory.

Top-Heavy Conjecture (Dowling and Wilson, 1974). Let M be matroid. For $i \leq \operatorname{rank}(M)$, let b_{i} be the number of elements of M of rank i. Then

$$
b_{i} \leq b_{n-i}, \text { for all } i \leq \frac{\operatorname{rank}(V)}{2}
$$

This was recently proved (Braden, Huh, Matherine, Proudfood, and Wang, 2020).

The affine Weyl group

Let V be a m-dimensional Euclidean vector space with inner product $(-,-)$.

The affine Weyl group

Let V be a m-dimensional Euclidean vector space with inner product $(-,-)$.

A root system Φ is a spanning set of vectors of V with good properties, the two main ones are:

The affine Weyl group

Let V be a m-dimensional Euclidean vector space with inner product $(-,-)$.

A root system Φ is a spanning set of vectors of V with good properties, the two main ones are:

- The only scalar multiples of a root $\alpha \in \Phi$ that belong to ϕ are α itself and $-\alpha$.

The affine Weyl group

Let V be a m-dimensional Euclidean vector space with inner product $(-,-)$.

A root system Φ is a spanning set of vectors of V with good properties, the two main ones are:

- The only scalar multiples of a root $\alpha \in \Phi$ that belong to ϕ are α itself and $-\alpha$.
- For every root $\alpha \in \Phi$, the set ϕ is closed under reflection s_{α} through the hyperplane perpendicular to α.

Example: Type A_{2}

An example of a root system of rank 2 is the following

Example: Type A_{2}

An example of a root system of rank 2 is the following

$$
\alpha+\beta
$$

The affine Weyl group

Let $\alpha \in \Phi \subset V$ be a root.

The affine Weyl group

Let $\alpha \in \Phi \subset V$ be a root. We define the dual root $\alpha^{\vee} \in V^{*}$ of α by

$$
\left\langle\alpha^{\vee}, \lambda\right\rangle=\frac{2(\alpha, \lambda)}{(\alpha, \alpha)},
$$

for every $\lambda \in V$.

The affine Weyl group

Let $\alpha \in \Phi \subset V$ be a root. We define the dual root $\alpha^{\vee} \in V^{*}$ of α by

$$
\left\langle\alpha^{\vee}, \lambda\right\rangle=\frac{2(\alpha, \lambda)}{(\alpha, \alpha)},
$$

for every $\lambda \in V$.

By following simple rules on the root system one can choose a subset Φ_{+}of positive roots of Φ.

The affine Weyl group

Let $\alpha \in \Phi \subset V$ be a root. We define the dual root $\alpha^{\vee} \in V^{*}$ of α by

$$
\left\langle\alpha^{\vee}, \lambda\right\rangle=\frac{2(\alpha, \lambda)}{(\alpha, \alpha)},
$$

for every $\lambda \in V$.

By following simple rules on the root system one can choose a subset Φ_{+}of positive roots of Φ.

We define the dominant chamber C_{+}of V by

The affine Weyl group

Let $\alpha \in \Phi \subset V$ be a root. We define the dual root $\alpha^{\vee} \in V^{*}$ of α by

$$
\left\langle\alpha^{\vee}, \lambda\right\rangle=\frac{2(\alpha, \lambda)}{(\alpha, \alpha)},
$$

for every $\lambda \in V$.

By following simple rules on the root system one can choose a subset Φ_{+}of positive roots of Φ.

We define the dominant chamber C_{+}of V by

$$
C_{+}=\left\{v \in V \mid\left\langle\alpha^{\vee}, v\right\rangle>0 \text { for every } \alpha \in \Phi_{+}\right\} .
$$

The affine Weyl group

Let us denote by $\operatorname{Aff}(V)$ the group of all rigid motions on V.

The affine Weyl group

Let us denote by $\operatorname{Aff}(V)$ the group of all rigid motions on V. The Weyl group W_{f} associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all the s_{α} where $\alpha \in \Phi$.

The affine Weyl group

Let us denote by $\operatorname{Aff}(V)$ the group of all rigid motions on V. The Weyl group W_{f} associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all the s_{α} where $\alpha \in \Phi$.

The affine Weyl group W associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all $s_{\alpha, d}$ for $\alpha \in \Phi$ and $d \in \mathbb{Z}$

The affine Weyl group

Let us denote by $\operatorname{Aff}(V)$ the group of all rigid motions on V. The Weyl group W_{f} associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all the s_{α} where $\alpha \in \Phi$.

The affine Weyl group W associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all $s_{\alpha, d}$ for $\alpha \in \Phi$ and $d \in \mathbb{Z}$, where

$$
s_{\alpha, d}(\mu)=\mu-\left\langle\alpha^{\vee}, \mu\right\rangle \alpha+d \alpha
$$

The affine Weyl group

Let us denote by $\operatorname{Aff}(V)$ the group of all rigid motions on V. The Weyl group W_{f} associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all the \boldsymbol{s}_{α} where $\alpha \in \Phi$.

The affine Weyl group W associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all $s_{\alpha, d}$ for $\alpha \in \Phi$ and $d \in \mathbb{Z}$, where

$$
s_{\alpha, d}(\mu)=\mu-\left\langle\alpha^{\vee}, \mu\right\rangle \alpha+d \alpha
$$

is the reflection with respect to the affine hyperplane $H_{\alpha, d}$ given by

The affine Weyl group

Let us denote by $\operatorname{Aff}(V)$ the group of all rigid motions on V. The Weyl group W_{f} associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all the s_{α} where $\alpha \in \Phi$.

The affine Weyl group W associated with Φ is the subgroup of $\operatorname{Aff}(V)$ generated by all $s_{\alpha, d}$ for $\alpha \in \Phi$ and $d \in \mathbb{Z}$, where

$$
s_{\alpha, d}(\mu)=\mu-\left\langle\alpha^{\vee}, \mu\right\rangle \alpha+d \alpha
$$

is the reflection with respect to the affine hyperplane $H_{\alpha, d}$ given by

$$
H_{\alpha^{\vee}, m}=\left\{v \in V \mid\left\langle\alpha^{\vee}, v\right\rangle=m\right\} .
$$

The affine Weyl group

Equivalently, the affine Weyl group W associated with Φ is the semidirect product $W_{f} \ltimes \mathbb{Z} \Phi$.

The affine Weyl group

Equivalently, the affine Weyl group W associated with Φ is the semidirect product $W_{f} \ltimes \mathbb{Z} \Phi$. The elements of W will be represented by pairs (λ, w) where $\lambda \in \mathbb{Z} \Phi$ and $w \in W_{f}$.

The affine Weyl group

Equivalently, the affine Weyl group W associated with Φ is the semidirect product $W_{f} \ltimes \mathbb{Z} \Phi$. The elements of W will be represented by pairs (λ, w) where $\lambda \in \mathbb{Z} \Phi$ and $w \in W_{f}$. The group multiplication is given by

$$
(\lambda, w) \cdot\left(\lambda^{\prime}, w^{\prime}\right)=\left(\lambda+w \lambda^{\prime}, w \cdot w^{\prime}\right)
$$

The affine Weyl group

Equivalently, the affine Weyl group W associated with Φ is the semidirect product $W_{f} \ltimes \mathbb{Z} \Phi$. The elements of W will be represented by pairs (λ, w) where $\lambda \in \mathbb{Z} \Phi$ and $w \in W_{f}$. The group multiplication is given by

$$
(\lambda, w) \cdot\left(\lambda^{\prime}, w^{\prime}\right)=\left(\lambda+w \lambda^{\prime}, w \cdot w^{\prime}\right)
$$

The group $\mathbb{Z} \Phi$ is a lattice and its called the root lattice.

Example: Type A_{2}

Let us see the root system from before

Example: Type A_{2}

Let us see the root system from before

Example: Type A_{2}

Let us see the root system from before

In this case the finite Weyl group

$$
W_{f}=\left\langle s_{\alpha}, s_{\beta}: s_{\alpha}^{2}=s_{\beta}^{2}=\mathrm{id},\left(s_{\alpha} s_{\beta}\right)^{3}=\mathrm{id}\right\rangle
$$

is isomorphic to the symmetric group $S_{3}=\operatorname{Sym}(\{1,2,3\})$ consisting of 6 elements.

Example: Type A_{2}

Let us add all the affine hyperplanes corresponding to $s_{\alpha, d}$ for $\alpha \in \Phi$ and $d \in \mathbb{Z}$.

Example: Type A_{2}

Let us add all the affine hyperplanes corresponding to $s_{\alpha, d}$ for $\alpha \in \Phi$ and $d \in \mathbb{Z}$.

Example: Type A_{2}

Let us add all the affine hyperplanes corresponding to $s_{\alpha, d}$ for $\alpha \in \Phi$ and $d \in \mathbb{Z}$.

The points in the root lattice $\mathbb{Z} \Phi$ are the orange circles in the picture.

The affine Weyl group

Consider \mathcal{A} the set of alcoves of V with respect to W

The affine Weyl group

Consider \mathcal{A} the set of alcoves of V with respect to W, which is the set of connected components of

$$
V \backslash \bigcup\left\{H_{\alpha \vee}, d: \alpha \in \Phi \text { and } d \in \mathbb{Z}\right\} .
$$

The affine Weyl group

Consider \mathcal{A} the set of alcoves of V with respect to W, which is the set of connected components of

$$
V \backslash \bigcup\left\{H_{\alpha \vee}, d: \alpha \in \Phi \text { and } d \in \mathbb{Z}\right\} .
$$

Let $A_{+} \in \mathcal{A}$ be the fundamental alcove:

The affine Weyl group

Consider \mathcal{A} the set of alcoves of V with respect to W, which is the set of connected components of

$$
V \backslash \bigcup\left\{H_{\alpha \vee}, d: \alpha \in \Phi \text { and } d \in \mathbb{Z}\right\} .
$$

Let $A_{+} \in \mathcal{A}$ be the fundamental alcove: The unique alcove contained in C_{+}whose closure contains the origin.

The affine Weyl group

Consider \mathcal{A} the set of alcoves of V with respect to W, which is the set of connected components of

$$
V \backslash \bigcup\left\{H_{\alpha \vee}, d: \alpha \in \Phi \text { and } d \in \mathbb{Z}\right\}
$$

Let $A_{+} \in \mathcal{A}$ be the fundamental alcove: The unique alcove contained in C_{+}whose closure contains the origin. There is a bijection

$$
\begin{gathered}
W \rightarrow \mathcal{A} \\
w \mapsto w A_{+} .
\end{gathered}
$$

Towards unimodality

Let us define a length function $\ell: W \rightarrow \mathbb{N}$. Given by:

Towards unimodality

Let us define a length function $\ell: W \rightarrow \mathbb{N}$. Given by:

$$
\ell(w)=\sharp\left\{\begin{array}{c}
\text { Hyperplanes separating the alcove } w A_{+} \\
\text {from the alcove } A_{+}
\end{array}\right\} .
$$

Towards unimodality

Let us define a length function $\ell: W \rightarrow \mathbb{N}$. Given by:

$$
\ell(w)=\sharp\left\{\begin{array}{c}
\text { Hyperplanes separating the alcove } w A_{+} \\
\text {from the alcove } A_{+}
\end{array}\right\} .
$$

An alcove A is called dominant if it is contained in C_{+}

Towards unimodality

Let us define a length function $\ell: W \rightarrow \mathbb{N}$. Given by:

$$
\ell(w)=\sharp\left\{\begin{array}{c}
\text { Hyperplanes separating the alcove } w A_{+} \\
\text {from the alcove } A_{+}
\end{array}\right\} .
$$

An alcove A is called dominant if it is contained in C_{+} Let us consider ${ }^{f} W=W_{f} \backslash W$ the set of minimal length right W_{f}-coset representatives of W.

Towards unimodality

Let us define a length function $\ell: W \rightarrow \mathbb{N}$. Given by:

$$
\ell(w)=\sharp\left\{\begin{array}{c}
\text { Hyperplanes separating the alcove } w A_{+} \\
\text {from the alcove } A_{+}
\end{array}\right\} .
$$

An alcove A is called dominant if it is contained in C_{+} Let us consider ${ }^{f} W=W_{f} \backslash W$ the set of minimal length right W_{f}-coset representatives of W. The set of dominant alcoves is in bijection with ${ }^{f} W$.

Towards unimodality

Let us define a length function $\ell: W \rightarrow \mathbb{N}$. Given by:

$$
\ell(w)=\sharp\left\{\begin{array}{c}
\text { Hyperplanes separating the alcove } w A_{+} \\
\text {from the alcove } A_{+}
\end{array}\right\} .
$$

An alcove A is called dominant if it is contained in C_{+} Let us consider ${ }^{f} W=W_{f} \backslash W$ the set of minimal length right W_{f}-coset representatives of W. The set of dominant alcoves is in bijection with ${ }^{f} W$.

There is also a partial order in W called the Bruhat order,

Towards unimodality

Let us define a length function $\ell: W \rightarrow \mathbb{N}$. Given by:

$$
\ell(w)=\sharp\left\{\begin{array}{c}
\text { Hyperplanes separating the alcove } w A_{+} \\
\text {from the alcove } A_{+}
\end{array}\right\} .
$$

An alcove A is called dominant if it is contained in C_{+} Let us consider ${ }^{f} W=W_{f} \backslash W$ the set of minimal length right W_{f}-coset representatives of W. The set of dominant alcoves is in bijection with ${ }^{f} W$.

There is also a partial order in W called the Bruhat order, it is generated by the relation

$$
t x<x
$$

Towards unimodality

Let us define a length function $\ell: W \rightarrow \mathbb{N}$. Given by:

$$
\ell(w)=\sharp\left\{\begin{array}{c}
\text { Hyperplanes separating the alcove } w A_{+} \\
\text {from the alcove } A_{+}
\end{array}\right\} .
$$

An alcove A is called dominant if it is contained in C_{+} Let us consider ${ }^{f} W=W_{f} \backslash W$ the set of minimal length right W_{f}-coset representatives of W. The set of dominant alcoves is in bijection with ${ }^{f} W$.

There is also a partial order in W called the Bruhat order, it is generated by the relation

$$
t x<x
$$

where t is a reflection with respect to an hyperplane in W, and the alcoves $t \times A_{+}$and A_{+}lie in the same side of such hyperplane.

Example: Type A_{2}

Towards unimodality

The Poincaré polynomial of an interval $[i d, w] \subset{ }^{f} W$ is given by

Towards unimodality

The Poincaré polynomial of an interval $[i d, w] \subset{ }^{f} W$ is given by

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

Towards unimodality

The Poincaré polynomial of an interval [id, $w] \subset{ }^{f} W$ is given by

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

An open question is. Are the Poincaré polynomials for the intervals [id, w] $\subset{ }^{f} W$ unimodal?

Towards unimodality

The Poincaré polynomial of an interval [id, $w] \subset{ }^{f} W$ is given by

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

An open question is. Are the Poincaré polynomials for the intervals [id, w] $\subset{ }^{f} W$ unimodal?

A similar question for the whole group W is false in type A. A counterexample comes from an element in the associated Schubert variety $X=\operatorname{Gr}_{4}\left(\mathbb{C}^{12}\right)$

Towards unimodality

The Poincaré polynomial of an interval $[i d, w] \subset{ }^{f} W$ is given by

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

An open question is. Are the Poincaré polynomials for the intervals [id, w] $\subset{ }^{f} W$ unimodal?

A similar question for the whole group W is false in type A. A counterexample comes from an element in the associated Schubert variety $X=\mathrm{Gr}_{4}\left(\mathbb{C}^{12}\right)$, where the corresponding Betti numbers $b_{2 i}=f_{i}($ which count the number of cells of dimension $2 i$ in $X)$ are

$$
1,1,2,3,5,6,9,11,15,17,21,23,27,28,31,30,31,27,24,18,14,8,5,2,1 .
$$

Towards unimodality

For $[\mathrm{id}, w] \subset{ }^{f} W$

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

Towards unimodality

For $[$ id, $w] \subset{ }^{f} W$

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

We know a partial results for W, and ${ }^{f} W$: The Poincaré polynomial is top-heavy, and it is unimodal in the first half.

Towards unimodality

For $[\mathrm{id}, w] \subset{ }^{f} W$

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

We know a partial results for W, and ${ }^{f} W$: The Poincaré polynomial is top-heavy, and it is unimodal in the first half.

Theorem (Björner and Ekhedal, 2009). The Betti numbers $b_{2 i}$ for a "good stratified" variety X satisfy:

$$
\begin{aligned}
& b_{2 \ell(w)-i} \leq b_{2 \ell(w)+i}, \text { for } i \leq n, \\
& \\
& \qquad b_{i} \leq b_{i+2 j}, \text { for } 0 \leq j \leq n-i .
\end{aligned}
$$

Towards unimodality

For $[\mathrm{id}, w] \subset{ }^{f} W$

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

Towards unimodality

For $[\mathrm{id}, w] \subset{ }^{f} W$

$$
P([i d, w])=\sum_{y \leq w} q^{\ell(y)}=\sum f_{i} q^{i} .
$$

A direct corollary of the previous theorem (by taking $f_{i}=b_{2 i}$) is:

$$
\begin{aligned}
& \quad f_{i} \leq f_{j}, \text { for } i \leq j \leq \ell(w) / 2 \\
& f_{i} \leq f_{\ell(w)-i}, \text { for } i<\ell(w) / 2
\end{aligned}
$$

Example: Type A_{2}

The Poincare polynomial for [id, w] in the picture

Example: Type A_{2}

The Poincare polynomial for [id, w] in the picture

Example: Type A_{2}

The Poincare polynomial for [id, w] in the picture

is

$$
1+q+2 q^{2}+2 q^{3}+3 q^{4}+3 q^{5}+4 q^{6}+2 q^{7}+q^{8}
$$

Example: Type A2

In bar graphics.

Example: Type $A 2$

In bar graphics.

Example: Type F4

The Poincare polynomial for the dominant lattice interval $[0,2 \rho]$.

Example: Type F4

The Poincare polynomial for the dominant lattice interval $[0,2 \rho]$.

Example: Type F4

The Poincare polynomial for the interval $[\mathrm{id},(2 \rho, \mathrm{id})] \subset{ }^{f} W$.

Example: Type F4

The Poincare polynomial for the interval $[\mathrm{id},(2 \rho, \mathrm{id})] \subset{ }^{f} W$.

The End

Thank you!

[^0]: Number of subgraphs

