Kazhdan-Lusztig cells in affine Weyl groups (with unequal parameters)

Jérémie Guilhot

University of Aberdeen, University of Lyon1

January 2008
Let V be an euclidean space of dim r, with inner product $\langle ., . \rangle$. A root system Φ is a set of non-zero vectors that satisfy the following:

- Φ spans V.
- For $\alpha \in \Phi$, we have $\mathbb{R} \alpha \cap \Phi = \{ \alpha, -\alpha \}$.
- For $\alpha \in \Phi$, let σ_α the orthogonal reflection with fixed point set the hyperplane perpendicular to α. We have $\sigma_\alpha(\Phi) = \Phi$.
- For any $\alpha, \beta \in \phi$ we have $\frac{2 \langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

Let Φ be an “irreducible” root system. The Weyl group of Φ is the group generated by $\{ \sigma_\alpha | \alpha \in \Phi \}$. It has a presentation of the form:

$$\{ \sigma_\alpha_1, ..., \sigma_\alpha_r | (\sigma_\alpha_i \sigma_\alpha_j)^{m_{i,j}} = 1, \sigma_{\alpha_i}^2 = 1 \}$$

where $m_{i,j} \in \{2, 3, 4, 6\}$ for $i \neq j$.
Let Q be the lattice generated by Φ:

$$\{n_1\alpha_1 + \ldots + n_k\alpha_k \mid n_i \in \mathbb{Z}, \alpha_i \in \Phi\}$$

The Weyl group W_0 of Φ acts on Q.

Thus we can form the semi-direct product:

$$W := W_0 \rtimes Q$$

This is the affine Weyl group associated to Φ.
V: Euclidean space of dimension r.

Φ: Irreducible root system of V.

For any $\alpha \in \Phi$ and $k \in \mathbb{Z}$ let:

$$H_{\alpha,k} = \{ x \in V \mid \frac{2\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} = k \}$$

The Weyl group W_0 of Φ is generated by the orthogonal reflections with fixed point set $H_{\alpha,0}$. We have:

$$W_0 = \langle \sigma_1, \sigma_2 \mid (\sigma_1 \sigma_2)^6 = 1, \sigma_i^2 = 1 \rangle$$
V: Euclidean space of dimension r.

Φ: Irreducible root system of V.

For any $\alpha \in \Phi$ and $k \in \mathbb{Z}$ let:

$$H_{\alpha,k} = \{ x \in V \mid \frac{2\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} = k \}$$

The Weyl group W_0 of Φ is generated by all the orthogonal reflections with fixed point set $H_{\alpha,0}$. We have:

$$W_0 = \langle \sigma_1, \sigma_2 \mid (\sigma_1 \sigma_2)^6 = 1, \sigma_i^2 = 1 \rangle$$

The affine Weyl group W of Φ is generated by all the orthogonal reflections $\sigma_{H_{\alpha,k}}$ with fixed point set $H_{\alpha,k}$.

Here we have:

$$W = \langle \sigma_1, \sigma_2, \sigma_3 \mid (\sigma_1 \sigma_2)^6 = 1, (\sigma_2 \sigma_3)^3 = 1, (\sigma_1 \sigma_3)^2 = 1, \sigma_i^2 = 1 \rangle$$
Affine Weyl groups

Classification

\[\tilde{A}_1: \bullet_{\infty} \]

\[\tilde{B}_2 = \tilde{C}_2: \bullet \quad \bullet \quad \bullet \]

\[\tilde{C}_n: \bullet \quad \bullet \quad \bullet \quad \cdots \quad \bullet \]

\[\tilde{E}_7: \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]

\[\tilde{E}_8: \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]

\[\tilde{E}_6: \bullet \quad \bullet \quad \bullet \quad \bullet \]

\[\tilde{A}_n: \bullet \quad \bullet \quad \cdots \quad \bullet \]

\[\tilde{B}_n: \bullet \quad \bullet \quad \cdots \quad \bullet \]

\[\tilde{C}_n: \bullet \quad \bullet \quad \bullet \quad \cdots \quad \bullet \]

\[\tilde{D}_n: \bullet \quad \bullet \quad \cdots \quad \bullet \]

\[\tilde{E}_7: \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]

\[\tilde{E}_8: \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]

\[\tilde{G}_2: \bullet \quad \bullet \]

Jérémie Guilhot (UoA, UCBL1)

Kazhdan-Lusztig cells

January 2008
Let W be an affine Weyl group with generating set S.

For $w \in W$, let $\ell(w)$ be the smallest integer $n \in \mathbb{N}$ such that $w = s_1 \ldots s_n$ with $s_i \in S$. The function ℓ is called the length function.

Let L be a weight function, that is a function $L : W \rightarrow \mathbb{N}$ such that:

\[
L(ww') = L(w) + L(w') \quad \text{whenever } \ell(ww') = \ell(w) + \ell(w')
\]
\[
L(w) > 0 \quad \text{unless } w = 1
\]

The case $L = \ell$ is known as the equal parameter case.

From the above relations, one can see that:

- A weight function L is completely determined by its values on S
- Let $s, t \in S$, if the order of (st) is odd, then we must have $L(s) = L(t)$.
\[\hat{A}_1: \bullet \infty \bullet \]

\[\hat{B}_2 = \hat{C}_2: \bullet \bullet \bullet \]

\[\hat{F}_4: \bullet \bullet \bullet \bullet \]

\[\hat{G}_2: \bullet \bullet \bullet \]

\[\hat{B}_n: \bullet \bullet \bullet \bullet \bullet \]

\[\hat{C}_n: \bullet \bullet \bullet \bullet \bullet \]
\[\tilde{A}_1: \bullet \quad \infty \quad \bullet \]

\[\tilde{B}_2 = \tilde{C}_2: \quad \bullet \quad \bullet \quad \bullet \]

\[\tilde{F}_4: \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]

\[\tilde{B}_n: \quad \bullet \]

\[\tilde{C}_n: \quad \bullet \]

\[\tilde{G}_2: \quad \bullet \quad \bullet \quad \bullet \]
\[\tilde{A}_1: \quad \infty \]
\[\tilde{B}_2 = \tilde{C}_2: \quad \]
\[\tilde{F}_4: \quad \]
\[\tilde{G}_2: \quad \]
\[\tilde{B}_n: \quad \]
\[\tilde{C}_n: \quad \]
Kazhdan–Lusztig theory

Weight functions

\[\tilde{A}_1 : \bullet_{\infty} \]
\[\tilde{B}_2 = \tilde{C}_2 : \bullet \bullet \bullet \]
\[\tilde{B}_n : \bullet \bullet \bullet \bullet \]
\[\tilde{C}_n : \bullet \bullet \bullet \bullet \]
\[\tilde{F}_4 : \bullet \bullet \bullet \bullet \bullet \]
\[\tilde{G}_2 : \bullet \bullet \bullet \bullet \]

Jérémie Guilhot (UoA, UCBL1)

Kazhdan–Lusztig cells

January 2008
Kazhdan-Lusztig theory Weight functions

\[\tilde{A}_1: \quad \begin{array}{c} \infty \end{array} \]

\[\tilde{B}_2 = \tilde{C}_2: \quad \begin{array}{c} \infty \end{array} \]

\[\tilde{F}_4: \quad \begin{array}{c} \infty \end{array} \]

\[\tilde{B}_n: \quad \begin{array}{c} \infty \end{array} \]

\[\tilde{C}_n: \quad \begin{array}{c} \infty \end{array} \]

\[\tilde{G}_2: \quad \begin{array}{c} \infty \end{array} \]
Let \((W, S)\) be an affine Weyl group and \(L\) a weight function on \(W\). Let \(\mathcal{H}\) be the associated Iwahori-Hecke algebra over \(\mathcal{A} = \mathbb{Z}[\nu, \nu^{-1}]\). Standard basis \(\{T_w \mid w \in W\}\) with multiplication

\[
T_s T_w = \begin{cases}
T_{sw} & \text{if } \ell(sw) > \ell(w) \\
T_{sw} + (\nu^{L(s)} - \nu^{-L(s)})T_w & \text{if } \ell(sw) < \ell(w)
\end{cases}
\]

One can see that \(T_s^{-1} = T_s - (\nu^{L(s)} - \nu^{-L(s)})T_1\).

There is a unique ring involution \(\mathcal{A} \to \mathcal{A}, a \mapsto \bar{a}\), such that \(\bar{\nu} = \nu^{-1}\). We can extend it to a ring involution \(\mathcal{H} \to \mathcal{H}, h \mapsto \bar{h}\), such that:

\[
\sum_{w \in W} a_w T_w = \sum_{w \in W} \bar{a}_w T_{w^{-1}}^{-1} \quad (a_w \in \mathcal{A}).
\]

For any $w \in W$, there exists a unique $C_w \in \mathcal{H}$ such that:

- $\overline{C_w} = C_w$
- $C_w = T_w + \sum_{\ell(y) < \ell(w)} P_{y,w} T_y$ where $P_{y,w} \in v^{-1} \mathbb{Z}[v^{-1}]$

Furthermore, the C_w’s form a basis of \mathcal{H} known as the Kazhdan-Lusztig basis.

For example, we have:

$$C_1 = T_1 \quad \text{and} \quad C_s = T_s + v^{-L(s)} T_1$$
Pre-order relation \leq_L defined by:

$$\mathcal{H}C_w \subset \sum_{y \leq_L w} \mathcal{A}C_y$$

Let $s \in S$ and $w \in W$ such that $\ell(w) < \ell(sw)$, then:

$$C_s C_w = C_{sw} + \ldots$$

so we have $sw \leq_L w$

Corresponding equivalence relation \sim_L.

The equivalence classes are called left cells.

Similarly we define \leq_R, \sim_R and right cells.
We say that $y \leq_{LR} w$ if there exists a sequence:

$$y = y_0, y_1, \ldots, y_n = w$$

such that for any $0 \leq i \leq n - 1$ we have:

$$y_i \leq_L y_{i+1} \text{ or } y_i \leq_R y_{i+1}$$

We get the equivalence relation \sim_{LR} and the two-sided cells.
Structure constants: Write

\[C_x C_y = \sum_{z \in W} h_{x,y,z} C_z \text{ where } h_{x,y,z} \in A. \]

G. Lusztig (1985): Define function \(a: W \rightarrow \mathbb{N}_0 \) by

\[a(z) = \min\{i \geq 0 \mid v^{-i} h_{x,y,z} \in \mathbb{Z}[v^{-1}] \ \forall x, y \in W\}. \]

If \(W \) is finite, then this function is clearly well defined. In the affine case, it is not clear that this minimum exists! But, it does... Let \(\tilde{v} = L(w_0) \) where \(w_0 \) is the longest element of the Weyl group \(W_0 \) associated to \(W \). We have:

\[v^{-\tilde{v}} h_{x,y,z} \in \mathbb{Z}[v^{-1}] \text{ for all } x, y, z \in W. \]

In other words, \(a(z) \leq \tilde{v} \) for all \(z \in W \).
The pre-order \leq_{LR} induces a partial order on the two-sided cells.

Theorem.

Let

$$c_0 = \{ w \in W \mid a(w) = \tilde{v} \}.$$

Then c_0 is a two-sided cell. Moreover, c_0 is the lowest two-sided cell.

Why lowest? Lusztig conjectures:

if $z \leq_{LR} z'$ then $a(z') \leq a(z)$.

Let $z' \in c_0$. Let $z \leq_{LR} z'$. We have:

$$\tilde{v} = a(z') \leq a(z) \leq \tilde{v}$$

which implies $a(z) = \tilde{v}$ and $z \in c_0$.
• Shi (∼ 1987): c_0 is a two-sided cell (equal parameter case).
• Shi (∼ 1988): c_0 contains $|W_0|$ left cells (equal parameter).
• Bremke and Xi (∼ 1996): c_0 is a two-sided cell (unequal parameter).
• Bremke (∼ 1996): c_0 contains at most $|W_0|$ left cells.
• Bremke (∼ 1996): c_0 contains $|W_0|$ left cells when the parameters are coming from a graph automorphism

When we know the exact number of left cells in c_0, it involves some deep properties of Kazhdan-Lusztig polynomials, such as positivity of the coefficient. Problem: Not true in general!
Example: G_2

V: Euclidean space of dimension r.

Φ: Irreducible root system of V.

For any $\alpha \in \Phi$ and $n \in \mathbb{Z}$ let:

$$H_{\alpha,k} = \{x \in V \mid \frac{2\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} = k\}$$

An alcove is a connected component of:

$$V - \bigcup H_{\alpha,k}$$

Denote by X the set of alcoves.

Let $\Omega = \langle \sigma_{H_{\alpha,k}}, k \in \mathbb{Z}, \alpha \in \Phi \rangle$

Ω acts simply transitively on X.

Let A_0 be the fundamental alcove:

$$A_0 = \{x \in V \mid 0 < \frac{2\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} < 1\}$$

for all $\alpha \in \Phi^+$.
A face is a co-dimension 1 facet of an alcove.

Examples: The faces of A_0.
A face is a co-dimension 1 facet of an alcove.

Examples: The faces of A_0.

We look at the orbits of the faces under Ω.

Let S be the set of orbits.

Here we have 3 orbits, namely:

- $s_1 = \text{green}$
- $s_2 = \text{red}$
- $s_3 = \text{blue}$
A face is a co-dimension 1 facet of an alcove.

Examples: The faces of A_0.

We look at the orbits of the faces under Ω. Let S be the set of orbits. Here we have 3 orbits, namely:

- $s_1 = \text{green}$
- $s_2 = \text{red}$
- $s_3 = \text{blue}$

For $s \in S$, we define an involution $A \mapsto sA$ of X, where sA is the unique alcove which shares with A a face of type s. The set of such maps is a group of permutation of X which is a Coxeter group W. We have $W \simeq \Omega$.
The action of \mathcal{W} on X commutes with the action of Ω. We identify $w \in \mathcal{W}$ with the alcove wA_0.

Example:

- alcove $s_3s_2s_1s_2s_3A_0$.
The action of W on X commutes with the action of Ω.
We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$,
The action of \mathcal{W} on X commutes with the action of Ω.
We identify $w \in \mathcal{W}$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$,
The action of W on X commutes with the action of Ω.
We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0, \ s_2 s_3 A_0$,
The action of \mathcal{W} on X commutes with the action of Ω.
We identify $w \in \mathcal{W}$ with the alcove wA_0.

Example:
- alcove $s_3s_2s_1s_2s_3A_0$.
- s_3A_0, $s_2s_3A_0$,
The action of W on X commutes with the action of Ω. We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.

 $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$,
The action of W on X commutes with the action of Ω. We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3s_2s_1s_2s_3A_0$.
- s_3A_0, $s_2s_3A_0$, $s_1s_2s_3A_0$, s_3A_0, $s_2s_3A_0$, $s_1s_2s_3A_0$.
The action of \mathcal{W} on X commutes with the action of Ω.

We identify $w \in \mathcal{W}$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$,
- $s_2 s_1 s_2 s_3 A_0$,
- $s_3 s_2 s_1 s_2 s_3 A_0$.

Jérémie Guilhot (UoA, UCBL1)
Kazhdan-Lusztig cells
January 2008
18 / 23
The action of W on X commutes with the action of Ω.

We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$, $s_2 s_1 s_2 s_3 A_0$,
The action of W on X commutes with the action of Ω. We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3s_2s_1s_2s_3A_0$.
- s_3A_0, $s_2s_3A_0$, $s_1s_2s_3A_0$,
- $s_2s_1s_2s_3A_0$, $s_3s_2s_1s_2s_3A_0$,
The action of W on X commutes with the action of Ω. We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$,
- $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$, $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$,
The action of W on X commutes with the action of Ω.

We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$,
- $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,
- We have $(s_2 s_1)^6 = e$.
The action of \mathcal{W} on X commutes with the action of Ω.

We identify $w \in \mathcal{W}$ with the alcove wA_0.

Example:

- Alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$,
- $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,
- We have $(s_2 s_1)^6 = e$.
- We have $(s_2 s_3)^3 = e$.
The action of W on X commutes with the action of Ω. We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$,
- $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,

- We have $(s_2 s_1)^6 = e$.
- We have $(s_2 s_3)^3 = e$.
- We have $(s_1 s_3)^2 = e$.
The action of W on X commutes with the action of Ω.

We identify $w \in W$ with the alcove wA_0.

Example:

- alcove $s_3 s_2 s_1 s_2 s_3 A_0$.
- $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$,
- $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,
- We have $(s_2 s_1)^6 = e$.
- We have $(s_2 s_3)^3 = e$.
- We have $(s_1 s_3)^2 = e$.

Let $s, t \in S$. If a hyperplane H supports a face of type s and a face of type t then s and t are conjugate in W. Therefore we can associate to any hyperplane H a weight $c_H = L(s)$ if H supports a face of type s.
Let $w \in W$, we have $\ell(w) =$ number hyperplane which separate A_0 and wA_0.

Let $x, y \in W$. Consider yA_0 and xyA_0.
Let \(w \in \mathcal{W} \), we have \(\ell(w) \) = number hyperplane which separate \(A_0 \) and \(wA_0 \).

Let \(x, y \in \mathcal{W} \). Consider \(yA_0 \) and \(xyA_0 \).

First consider the hyperplanes which separate \(A_0 \) and \(yA_0 \);
Let $w \in W$, we have $\ell(w) =$ number hyperplane which separate A_0 and wA_0.

Let $x, y \in W$. Consider yA_0 and xyA_0.

First consider the hyperplanes which separate A_0 and yA_0;

next, the hyperplanes which separate yA_0 and xyA_0;
Let $w \in W$, we have $\ell(w) =$ number hyperplane which separate A_0 and wA_0.

Let $x, y \in W$. Consider yA_0 and xyA_0

First consider the hyperplanes which separate A_0 and yA_0;
next, the hyperplanes which separate yA_0 and xyA_0;
finally, let $H_{x,y}$ be the intersection.
Let $w \in W$, we have $\ell(w) =$ number hyperplane which separate A_0 and wA_0.

Let $x, y \in W$. Consider yA_0 and xyA_0

First consider the hyperplanes which separate A_0 and yA_0; next, the hyperplanes which separate yA_0 and xyA_0; finally, let $H_{x,y}$ be the intersection.

Let $c_{x,y}$ be...

On this example, we have $c_{x,y} = L(s_2) + L(s_1)$.

Jérémie Guilhot (UoA, UCBL1) Kazhdan-Lusztig cells January 2008 19 / 23
Let $w \in W$, we have $\ell(w)$ = number hyperplane which separate A_0 and wA_0.

Let $x, y \in W$. Consider yA_0 and xyA_0.
First consider the hyperplanes which separate A_0 and yA_0;
next, the hyperplanes which separate yA_0 and xyA_0;
finally, let $H_{x,y}$ be the intersection.
Let $c_{x,y}$ be...
On this example, we have $c_{x,y} = L(s_2) + L(s_1)$.

Proposition. G. (~ 2006)

We have:

$$T_x T_y = \sum_{z \in W} f_{x,y,z} T_z \text{ where } \text{deg}(f_{x,y,z}) \leq c_{x,y}.$$

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of W'. Then $X'.C$ is a union of left cells.
Theorem. GECK (~ 2003)

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of W'. Then $X'.C$ is a union of left cells.

Let’s take the example of \tilde{G}_2 with $W' = \langle s_1, s_2 \rangle$ and parameters:

\[
\begin{align*}
 a & \succ b \\
 s_1 & \quad s_2 & s_3
\end{align*}
\]
Theorem. GECK (~ 2003)

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of W'. Then $X'C$ is a union of left cells.

Let’s take the example of \tilde{G}_2 with $W' = \langle s_1, s_2 \rangle$ and parameters:

$\begin{align*}
 a & > b \\
 s_1 & = s_2 \\
 s_2 & = s_3 \\
 b & = b
\end{align*}$

Now, $X'A_0$ has the following shape.
Theorem. GECK (~ 2003)

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of W'. Then $X'.C$ is a union of left cells.

Let’s take the example of \tilde{G}_2 with $W' = \langle s_1, s_2 \rangle$ and parameters:

$$a > b \quad s_1 \quad s_2 \quad b \quad s_3$$

Now, $X'A_0$ has the following shape. The decomposition into left cells is as follows.
Theorem. \textbf{Geck} (\sim 2003)

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all $w \in W$ such that w has minimal length in the coset wW'. Let \mathcal{C} be a left cell of W'. Then $X'.\mathcal{C}$ is a union of left cells.

Let's take the example of G_2 with $W' = \langle s_1, s_2 \rangle$ and parameters:

Now, $X'A_0$ has the following shape. The decomposition into left cells is as follows. Thus the theorem gives:
\[W = \tilde{G}_2 : \begin{array}{c} \bullet \\ s_1 \\ \end{array} \begin{array}{c} a \\ b \\ \end{array} \begin{array}{c} \bullet \\ s_2 \\ \end{array} \begin{array}{c} b \\ s_3 \\ \end{array} \]

\[W_0 := \begin{array}{c} \bullet \\ s_1 \\ \end{array} \begin{array}{c} \bullet \\ s_2 \\ \end{array} \]

For \(J \subset S \), we denote by \(W_J \) the group generated by \(J \) and by \(w_J \) the longest element of \(W_J \). We look at the subsets \(J \) of \(S \) such that the group generated by \(J \) is isomorphic to \(W_0 \). Here, we find just \(J = \{s_1, s_2\} \) and \(w_J = s_1s_2s_1s_2s_1s_2 \)

Then:

\[c_0 = \{ w \in W | w = z.w_J.z', \; z, z' \in W \} \]
For $J \subseteq S$, we denote by W_J the group generated by J and by w_J the longest element of W_J. We look at the subsets J of S such that the group generated by J is isomorphic to W_0. Here, we find just $J = \{s_1, s_2\}$ and $w_J = s_1s_2s_1s_2s_1s_2$. Then:

$$c_0 = \{w \in W | w = z.w_J.z', z, z' \in W\}$$
For $J \subset S$, we denote by W_J the group generated by J and by w_J the longest element of W_J. We look at the subsets J of S such that the group generated by J is isomorphic to W_0. Here, we find just $J = \{s_1, s_2\}$ and $w_J = s_1s_2s_1s_2s_1s_2$

Then:

$$c_0 = \{w \in W | w = z.w_J.z', \ z, z' \in W\}$$

Moreover, let $M_J = \{z \in W | sw_Jz \notin c_0, \text{ for all } s \in J\}$. We have:

$$c_0 = \bigcup_{z \in M_J} \{w \in W | w = x.w_J.z, \ x \in W\}$$
We have:

Theorem. G. (≈ 2007)

Let \(z \in M_J \). The set \(\{ w \in W \mid w = x.w_J.z, \ x \in W \} \) is a union of left cells.

This implies that:

1. \(c_0 \) contains exactly \(|W_0| \) left cells.
2. For \(z \in M_J \), the set \(\{ w \in W \mid w = x.w_J.z, \ x \in W \} \) is a left cell.
Decomposition in left cells

\[a \cdot s_1 \cdot b \cdot s_2 \cdot b \cdot s_3, \text{ for all } a > 3b \]