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Abstract We survey results on mean curvature flow solutions with Type-

II curvature blow up in finite time in hope of understanding the singularity

profile.

1. Introduction

Let ϕ(t) : Mn → Rn+1, t0 < t < t1, be a one-parameter family of immer-

sions of n-dimensional hypersurfaces in the Euclidean space. Mean curvature flow

(MCF) evolves the hypersurface Mn in the direction of its mean curvature vector

~H according to the following nonlinear PDE system

∂tϕ(p, t) = ~H, p ∈Mn, tt < t < t1. (1.1)

Mean curvature flow is the negative gradient flow of the volume functional. If we

denote Mt := ϕ(t)(Mn), then

d

dt
Vol(Mt) = −

∫
Mt

H2.

The parablic nature of MCF means that it will smooth out the surface on small

time-scale, but over larger time-scale singularity in the solution can occur. For
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example, consider a round sphere Sn with radius r0, then under MCF the sphere

shrinks according to r(t) =
√
r0 − 2nt and collapses to a point in finite time.

The maximum principle for MCF implies that disjoint hypersurfaces remain

disjoint under MCF. Because we can always enclose a given compact hypersurface

inside a large sphere, MCF of compact hypersurface must have a finite extinction

time. Because the round cylinder Sn−1 ×R collapses to a line in finite time, MCF

starting from a noncompact hypersurface trapped inside a cylinder must have a

finite extinction time.

Let h(p, t) denote the second fundamental form at the point ϕ(p, t) ∈ Mt.

Suppose we have a MCF solution on a maximal time interval [0, T ). In this survey,

we always assume T < ∞, then lim supt↗T supMt
|h| = ∞. We say the solution

forms a Type-I singularity if supMt×[0,T )(T − t)|h|2 <∞ or a Type-II singularity

if supMt×[0,T )(T − t)|h|2 =∞.

When n = 1, MCF of (closed) embedded curves always form Type-I singular-

ity [11, 12]. However, if the curve is immersed in the plane, then Angenent and

Velázquez constructed solution with Type-II rate
√

ln ln(1/(T−t))
T−t , which is faster

than (T − t)−1/2 but slower than any higher power (T − t)−1/2−ε [2]. In dimension

two or higher, Type-II MCF solutions exist for embedded hypersurfaces: compact

examples with blow up rates (T − t)−1+1/m for integer m > 3, by Angenent and

Velázquez [3]; noncompact examples with blow up rates (T − t)−(1/2+γ) for real

number γ > 1/2 by Isenberg and the authors [18,19].

To study singularities, we use blow up analysis. For example, suppose MCF has

a Type-I singularity, then we can pick a sequence of points and times {xi, ti}∞i=0

with ti ↗ T and λi := |h(xi, ti)| ↗ ∞ as i ↗ ∞. Rescaling the embedding

parabolically

ϕi := λi
(
ϕ
(
x, λ−2

i t+ ti
)
− ϕ (xi, ti)

)
,

then compactness theorem implies that ϕi converges along a subsequence to a

limiting geometry called the (pointed) singularity model. In particular, this limit

is non-flat. By Huisken’s monotonicity formula [14], Type-I singularities in mean

convex (i.e. H := trgh > 0, where g = ϕ∗δ is the pull-back of the Euclidean metric

on the hypersurface) MCF are modelled by self-shrinking solution satisfying the

elliptic equation

H = 〈ϕ, ν〉,
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where ν is the (outer) unit normal to the hypersurface. If ϕ0 is a self-shrinking

soliton, then
√

1− 2tϕ is a homothetically shrinking MCF solution. By a similar

blow up, Huisken and Sinestrari [16] showed that Type-II singularities in mean

convex MCF are modelled by translating solitons which satisfy

H + 〈ν,~v〉 = 0

for some constant vector ~v ∈ Rn+1. If ϕ0 is a translating soliton, then ϕ0 + t~v is a

MCF solution.

2. Level Set Flow

Mean convex hypersurfaces Mt evolving by MCF can be represented as the level

set of a function v, called the arrival time,

Mt = {x ∈ Rn+1 : v(x) = t}.

Then v satisfies the level set equation

div

(
∇v
|∇v|

)
= − 1

|∇v|
. (1.2)

This equation is well studied in the literature, for example, the numerical work by

Osher and Sethian [20], and the theoretical justification via the theory of viscosity

solutions by Evans and Spruck [10], and independently, by Chen, Giga and Goto [4].

Analytically, the level set equation (1.2) is degenerate elliptic. While solution

is known to be Lipschitz [10], a priori it is not even differentiable. In [6], Colding

and Minicozzi proved that the the singular set of MCF corresponds to the critical

set {∇v = 0} of v and obtained the following differentiability result for v.

Theorem 1 (Colding-Minicozzi 2016). For a MCF starting at a closed smooth

mean convex hypersurface M0, the arrival time is twice differentiable everywhere

and smooth away from the critical set, and has uniformly bounded second derivative.

Moreover:

• The critical set is contained in finitely many compact embedded (n − 1)-

dimensional Lipschitz submanifolds plus a set of dimension at most n− 2.

• At each critical point the Hessian is symmetric and has only two eigenvalues

0 and − 1
k ; 0 has multiplicity n−k (which could be 0) and − 1

k has multiplicity

k + 1 for some k ∈ {1, 2, . . . , n}.
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• It satisfies the level set equation (1.2) everywhere in the classical sense.

If the initial hypersurface is convex, then the flow is smooth except at the point

it becomes extinct and Huisken showed that the arrival time is C2 [14, 15]. For

curves in the plane, Kohn and Serfaty showed that the arrival time is at least

C3, but for n > 2, Sesum gave examples of convex initial hypersurfaces where the

arrival time is not three times differentiable, so Huisken’s result is optimal. In [7],

Colding and Minicozzi gave a necessary and sufficient condition for u to be C2.

Theorem 2 (Colding-Minicozzi 2018). The arrival time is C2 if and only if both

of the following hold:

(1) There is exactly one singular time T (where MCF becomes extinct).

(2) The singular set S is a k-dimensional closed connected embedded C1 subman-

ifold of singularities where the blowup is a cylinder Sn−k × Rk at each point

and S is tangent to the Rk factor.

On the other hand, there are rotationally symmetric mean convex dumbbell

solutions by Angenent, Altschuler and Giga [1], and Ilmanen [17] for which the

arrival time is not C2.

3. Type-II Examples

While Type-I MCF solutions clearly exist, the existence of Type-II solution

is not immediately obvious and often speculated as a critical phenomenon when

MCF solutions undergo phase changes. Consider a one-parameter family of Sn

(n > 2) with the parameter controlling the amount of cinching at the equator.

There are three possible scenarios: (1) for very loose cinching, MCF of convex

hypersurface forms a Type-I singularity modelled by the round sphere [13]; (2)

for very tight cinching, under MCF the equator shrinks more rapidly than the two

“dumbbell” ends, the flow forms a Type-I singularity whose blow up at the equator

is a shrinking cylinder soliton; (3) for some critical cinching in between, the flow

behaves differently from (1) or (2) and is expected to form a Type-II singularity.

This heuristic picture for Type-II MCF solution was rigorously justified by

Angenent, Altschuler and Giga [1] on mean convex rotationally symmetric hyper-

surfaces. In particular, the solution shrinks to a point without ever becoming
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convex. Their proof was by contradiction, and did not provide any quantitative

information.

Using different method, Angenent and Velázquez [3] constructed Type-II solu-

tions explicitly. Their result can be summarised as follows (for details see [3]).

Theorem 3 (Angenent-Velázquez 1997). For each integer m > 3 , there exists

rotationally symmetric MCF solution on Sn (n > 2) such that

• The solution forms a Type-II singularity: supSn |h| ∼ (T − t)−(1−1/m).

• The singular region for the surface is described by three (overlapping) regions:

tip, intermediate and neck. At the neck, the Type-I blow up of the solution

converges to a shrinking cylinder soliton. At the tip, it achieves maximum

curvature and the Type-II blow up of the solution converges to a translating

soliton known as the bowl soliton.

The case of odd m is the main concern in [3] which corresponds to the asymmet-

ric dumbbell. The case of even m is also considered in [3] as the peanut example.

We note that these Type-II blow up rates form a quantised subset of [2/3, 1), which

is consistent with the non-genericity of compact Type-II solutions by Colding and

Minicozzi [5].

Let us elaborate on the theorem. Suppose the rotationally symmetric is ob-

tained by rotating a curve r = u(x) around the x-axis. Then MCF is:

∂

∂t
u =

uxx
1 + u2

x

− n− 1

u
. (1.3)

The result says the highest curvature occurs at the tip (where u = 0) and is of

order (T − t)−(1−1/m). The axial direction (x-axis) for the tip region is roughly of

size (T − t)1− 1
m . The geometry looks like a translating bowl soliton scaled down by

(T − t)−1+ 1
m . In the neck region (around the equator of the sphere), the curvature

is (T − t)− 1
2 , the radius shrinks at the rate of (T − t) 1

2 , and the axial direction is

roughly of size (T−t) 1
2 . The geometry looks like a shrinking cylinder with decaying

error given by the m-th Hermite polynomial.

The intermediate region is the transition region between the tip and the neck.

The axial direction is roughly of size (T−t) 1
m . The rescaled geometry looks like the

rotation of the profile curve given by φ2 +Kym = 2(n−1) with constant K > 0. To
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formally explain this profile, let us introduce the following multi-scaled parameters

τ = − log(T − t), y = x(T − t)−1/m, φ(y, τ) = u(x, t)(T − t)−1/2,

then Equation (1.3) becomes

φτ =
1

2
φ− y

m
φy −

n− 1

φ
+

e(−1+ 2
m )τφyy

1 + e(−1+ 2
m )τφ2

y

. (1.4)

Assuming there is a strong limit φ(y) as τ ↗ ∞, it must satisfy the limiting

equation

1

2
φ− y

m
φy −

n− 1

φ
= 0, (1.5)

whose solution is nothing but the profile curve. For the case of even m with

the surface being mirror symmetric, we see that the MCF solution converges to a

point, or an interval if rescaled to have fixed diameter. We call this the singularity

profile in contrast with the notion of singularity model mentioned before, which is

at the maximum curvature locus. The above description says that the tip region (of

maximum curvature) is much smaller than the rest, and so one should not merely

restrict to it when trying to describe the global geometry.

The existence of Type-II MCF solutions can also be posed for non-compact

hypersurfaces. Consider a smooth complete convex graph over the ball Bn such

that the graph is asymptotic to the cylinder ∂Bn×R = Sn−1×R. Under MCF, the

graph remains smooth and asymptotic to the contracting cylinder, and disappears

at spatial infinity in finite time T , the same time when the cylinder collapses.

In the work [21] by Sáez-Schnürer, there is general discussion of this picture in

the analytic setting. Because the hypersurface must travel infinite distance in

finite amount of time and the speed is proportional to the curvature, we expect

the solution to have “fast” (Type-II) curvature blow up. Again, let us work with

rotationally symmetric hypersurfaces for which the MCF equation is given in (1.3).

Introducing the following rescaled quantities

τ = − log(T − t), y = x(T − t)γ−1/2, φ(y, τ) := u(x, t)(T − t)−1/2,

the first author and Isenberg proved the following result in [18].

Theorem 4 (Isenberg-Wu 2019). For each real number γ > 1/2, there exists a

family of MCFs of complete, strictly convex, graphical hypersurfaces in Rn+1 (n >
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2) over a (shrinking) n-ball and inside a cylinder s.t. each such hypersurface Γt

escapes at spatial infinity while the cylinder becomes singular in finite time T <∞.

The precise asymptotic properties towards time T are the following:

• The highest curvature occurs at the tip with Type-II rate

sup
Γt

|h| ∼ (T − t)−(γ+1/2) as t↗ T.

• Near the tip, the Type-II blow up of Γt converges to a bowl soliton.

• Near spatial infinity, the Type-I blow up of Γt is asymptotic to a cylinder at

a precise rate depending on γ:

2(n− 1)− φ2 ∼ y
1

1/2−γ as y ↗∞.

We note that these Type-II blow up rates form a continuum (1,∞). Comparing

this result with that by Angenent-Velázquez, we see that the parameter −γ − 1/2

corresponds to −1+1/m as the rate of curvature blow up, and γ−1/2 corresponds

to −1/m as the scaling from x to y. While there are essential differences in the

non-compact solutions with γ > 1/2 and the compact solutions with m > 3, if we

let γ → 1/2+ and m → ∞, then we arrive at the Type-II curvature blow up rate

(T − t)−1, which might be considered as a “critical” Type-II solution. The analysis

in [18] does not carry through to the limit as γ → 1/2. Instead, we work with the

following rescalings

τ = − log(T − t), y = x+ a log(T − t), φ(y, τ) := u(x, t)(T − t)−1/2,

Then, in a joint work with Isenberg, we have the following result corresponding to

the critical case γ = 1/2 in [19].

Theorem 5 (Isenberg-Wu-Zhang 2019). There exists a family of MCFs of com-

plete, strictly convex, graphical hypersurfaces in Rn+1 (n > 2) over a (shrinking)

n-ball and inside a cylinder s.t. each such hypersurface Γt escapes at spatial infinity

while the cylinder becomes singular in finite time T < ∞. The precise asymptotic

properties near time T are the following:

• The highest curvature occurs at the tip with Type-II rate

sup
Γt

|h| ∼ (T − t)−1 ast↗ T.
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• Near the tip, the Type-II blow up of Γt converges to a bowl soliton.

• Near spatial infinity, the Type-I blow up of Γt is asymptotic to a cylinder at

a precise rate depending on γ:

2(n− 1)− φ2 ∼ e−y as y ↗∞.

4. Local Analysis for Symmetric Type-II Solutions

In this section, we carry out local analysis for the mirror symmetric Type-II

solutions with examples in [3] (for even m > 2). For them, MCF shrinks the

hypersurface to a non-convex point, where in light of the results in [6] and [7] on

the level set flow, all the singular information will be coded. Thus we consider the

Taylor expansion at y = 0 for the scaled picture described by Equation (1.4). This

can be understood as a step to justify the convergence to the singularity profile.

Before diving into the analysis, we provide some heuristic arguments as moti-

vation. If there is a strong smooth limit φ(y) as τ →∞. Then the limit φ(y) must

satisfy the following limiting equation (1.5):

1

2
φ− y

m
φy −

n− 1

φ
= 0,

and we solve it to get the profile curve for the singularity as follows. Start with

φ2 − 2

m
yφφy = 2(n− 1)

and set V = φ2 − 2(n− 1). Then

V − y

m
Vy = 0, then

Vy
V

=
m

y
, so log |V | = m log |y|+ C.

Thus V +Kym = 0, and so

φ2 +Kym = 2(n− 1) (1.6)

for some constant K. Since φ needs to be 0 at the tips, K is positive. This is

exactly the function used to construct the intermediate region in [3].

Now we investigate the dynamic property of the scaled evolution equation (1.4),

i.e. the possible convergence to the singularity profile (1.6).



8 Haotian Wu, Zhou Zhang

First, we make the following observation. For Equation (1.4), if we could control

φ and its derivatives uniformly near y = 0, then formally the equation could be

simplified to

vτ =
1

2
v − y

m
vy −

n− 1

v
,

but the limiting behaviour of v is unstable at y = 0, as explained below. One

restricts to the case of v being even as is clearly preserved the simplified flow.

Considering the value at y = 0, A = v(0, τ) satisfies

Aτ =
1

2
A− n− 1

A
.

We see A =
√

2(n− 1) is an unstable equilibrium solution for this ODE, which

indicates the delicate nature of the problem.

Now we study the Taylor expansion of φ(y, τ) at y = 0. We impose the

Boundedness Assumption (simplified as BA): φyy(y, τ) is uniformly bounded

for τ ∈ [0,∞) in a small neighbourhood of y around y = 0, or all y-derivatives of

φ at y = 0 are uniformly bounded for τ ∈ [0,∞). Obviously, it implies that the

curvature is of Type-I rate at y = 0. We point out that the examples in [3] all

satisfy this assumption.

The analyticity with respect to y is standard. Since φy(0, τ) = 0 by evenness,

for r(τ) = φ(0, τ), (1.4) gives

rτ =
1

2
r − n− 1

r
+ e(−1+ 2

m )τφyy(0, τ).

By BA, r and φyy(0, τ) are uniformly bounded. So we have

[r2 − 2(n− 1)]τ = [r2 − 2(n− 1)] +O
(
e(−1+ 2

m )τ
)
,

[e−τ
(
r2 − 2(n− 1)

)
]τ = O

(
e(−2+ 2

m )τ
)
,

e−τ
(
r(τ)2 − 2(n− 1)

)
− e−S

(
r(S)2 − 2(n− 1)

)
= O(1)

(
e(−2+ 2

m )τ − e(−2+ 2
m )S

)
.

Noticing m > 2, we let S →∞ and apply the boundedness of r to arrive at

r2 − 2(n− 1) = O
(
e(−1+ 2

m )τ
)
,

and conclude

r =
√

2(n− 1) +O
(
e(−1+ 2

m )τ
)
.
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It’s also clear from the equation that

rτ = O
(
e(−1+ 2

m )τ
)
.

Now we consider (1.4) using the Taylor expansion at y = 0. Set

φ(y, τ) = r(τ) +

∞∑
k=1

fk(τ)y2k, (1.7)

and we have

φy =

∞∑
k=1

2kfk(τ)y2k−1,

φyy =

∞∑
k=1

2k(2k − 1)fk(τ)y2k−2,

φ2 − 2(n− 1) = r2 − 2(n− 1) + 2r

∞∑
k=1

fk(τ)y2k +

( ∞∑
k=1

fk(τ)y2k

)2

.

So (1.4) becomes

[φ2 − 2(n− 1)]τ = [φ2 − 2(n− 1)]− y

m
[φ2 − 2(n− 1)]y +

2e(−1+ 2
m )τφφyy

1 + e(−1+ 2
m )τφ2

y

which is then, denoting d
dτ by ′,

2rr′ + 2r′
∞∑
k=1

fk(τ)y2k + 2r

∞∑
k=1

f ′k(τ)y2k + 2

∞∑
k=1

fk(τ)y2k ·
∞∑
k=1

f ′k(τ)y2k

= r2 − 2(n− 1) + 2r

∞∑
k=1

fk(τ)y2k +

( ∞∑
k=1

fk(τ)y2k

)2

− 2r

∞∑
k=1

2k

m
fk(τ)y2k − 2

∞∑
k=1

fk(τ)y2k ·
∞∑
k=1

2k

m
fk(τ)y2k

+
2e(−1+ 2

m )τφφyy

1 + e(−1+ 2
m )τφ2

y

.

(1.8)

We now analyse fk’s by comparing the coefficients for powers of y. Recall that

m > 2 is an even interger.

1. For the constant term: we have

2rr′ = r2 − 2(n− 1) + 2e(−1+ 2
m )τr · 2f1 · 1.

By the previous obtained expressions of r and r′ and the boundedness of f1,

i.e. φyy(0), both sides are terms like O
(
e(−1+ 2

m )τ
)

.
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2. For y2 term: we point out that, up to a term of O
(
e(−1+ 2

m )τ
)

, in light of

BA, we can ignore that last term on the right have side of (1.4). Since one

can take y-derivatives for the above equation on series and set y = 0 for

equivalent discussion, we can use either version of BA for this simplification.

Thus we have

2r′f1 + 2rf ′1 = 2rf1 −
4r

m
f1 +O

(
e(−1+ 2

m )τ
)
.

By BA and the expression of r′, we have

f ′1 =

(
1− 2

m

)
f1 +O

(
e(−1+ 2

m )τ
)
,

[e(−1+ 2
m )τf1]τ = O

(
e(−2+ 4

m )τ
)
.

Integrate over [τ, S] to arrive at

e(−1+ 2
m )τf1(τ)− e(−1+ 2

m )Sf1(S) = O(1)
(
e(−2+ 4

m )τ − e(−2+ 4
m )S

)
Letting S →∞ and applying the boundedness of f1, we conclude

f1 = O
(
e(−1+ 2

m )τ
)

and by the above ODE evolution,

f ′1 = O
(
e(−1+ 2

m )τ
)
.

Note: since 1 − 2
m > 0, if we ignore the remainder in the ODE evolution

of f1, f1(0) clearly has to vanish for the boundedness. This is the major

difference in the study of fk for k < m
2 and otherwise.

3. For y4 term: similarly absorbing controlled terms to the remainder, we have

2rf ′2 = 2rf2 −
8r

m
f2 +O

(
e(−1+ 2

m )τ
)
,

f ′2 =

(
1− 4

m

)
f2 +O

(
e(−1+ 2

m )τ
)
,

[e(−1+ 4
m )τf2]τ = O

(
e(−2+ 6

m )τ
)
.

Then we consider the following cases:
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• m > 4: we proceed as for y2 term and integrate over [τ, S] to get

e(−1+ 4
m )τf2(τ)− e(−1+ 4

m )Sf2(S) = O(1)
(
e(−2+ 6

m )τ − e(−2+ 6
m )S

)
.

Letting S →∞ and by the boundedness of f2 from BA, we conclude

f2 = O
(
e(−1+ 2

m )τ
)
, f ′2 = O

(
e(−1+ 2

m )τ
)
.

• m = 4: we have

f ′2 = O
(
e(−1+ 2

m )τ
)
.

Then by integration, one has f2(S)→ A1 for some A1 as S →∞ and

f2 = A1 +O
(
e(−1+ 2

m )τ
)
.

4. Suppose we have done for y2K , and now consider y2(K+1) term.

• 2K < m: by induction, we have f ′k = O(e−ετ ) and fk = O(e−ετ ) for

some ε > 0 and k = 1, · · · ,K, which take care of the product terms in

(1.8) and we have:

2rf ′K+1 = 2rfK+1 −
4r(K + 1)

m
fK+1 +O(e−ετ ), (1.9)

f ′K+1 =

(
1− 2(K + 1)

m

)
fK+1 +O(e−ετ ).

Now we can recycle the consideration for y4 term. For some (possibly

different) ε > 0:

(a) If 2(K + 1) < m, recycling the treatment for the case of m > 4 for

y4, we conclude

f ′K+1 = O(e−ετ ), fK+1 = O(e−ετ ).

(b) If 2(K + 1) = m, then as in the case of m = 4 for y4, we conclude

f ′K+1 = O(e−ετ ), fK+1 = A1 +O(e−ετ ).

• 2K = m: by induction, for some ε > 0, we have f ′k = O(e−ετ ) for k =

1, · · · ,K and fk = O(e−ετ ) for k = 1, · · · ,K−1 and fK = A1+O(e−ετ ).

Then for K+1, the left hand side from (1.8) remains the same since the

relevant f ′k is always O(e−ετ ). There could be extra terms on the right
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hand side coming from the product terms, but it only happens when

2(K + 1) is a multiple of m, which is not possible since 2K = m. So the

equation is the same as (1.9):

2rf ′K+1 = 2rfK+1 −
4r(K + 1)

m
fK+1 +O(e−ετ ),

f ′K+1 =

(
1− 2(K + 1)

m

)
fK+1 +O(e−ετ )

but now we have m = 2K < 2(K + 1). Then we just need to integrate

over [0, τ ] to conclude

f ′K+1 = O(e−ετ ), fK+1 = O(e−ετ )

without making use of BA.

• 2K > m: the equation for fK+1 remains the same as (1.9) until we reach

2(K + 1) = 2m. Then for y2m term, there is an extra constant A2, in

comparison to (1.9), coming from the product terms:

f ′K+1 = −fK+1 +A2 +O(e−ετ ). (1.10)

By considering fK+1 −A2 instead, we see

fK+1 = A2 +O(e−ετ ), f ′K+1 = O(e−ετ ).

without any assumption.

This is for fk when k is an integer multiple of m
2 .

Finally, we summarise the above in the following theorem.

Theorem 6. Let the constant m be an even integer greater than 2. Impose Bound-

edness Assumption and consider the Taylor expansion of the solution φ (1.7) at

y = 0 to (1.4) for all time. For some constant ε > 0 which might change from line

to line,

fk = O(e−ετ ), f ′k = O(e−ετ );

except that for constants Aµ for µ = 1, 2, · · · ,

fµm
2

= Aµ +O(e−ετ ).
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Remark 7. When k < m
2 , after ignoring the remainder term, the evolution of fk

says that the initial value has to vanish for it to stay bounded for all τ , as a hint

for the bad impact of lower power terms in the construction. Intuitively, the term

y2k for small k provides a “steeper” neck in the middle, i.e. with value changing at

a faster rate when leaving 0. So by the result in [1], a neck pinch will likely appear

with a perturbation of any small size.

The pattern of the coefficients described in the above theorem is also compatible

with the level set flow picture and fits the formal limit φ2 +Kym = 2(n− 1) very

well. Namely, for the level set flow, the scaling is (x, u) =
(
y(T−t)1/m, φ(T−t)1/2

)
.

Assume the level set function is V (x, u) and we have

V (x, u) = V
(
y(T − t)1/m, φ(T − t)1/2

)
= T − t.

The powers ym and φ2 naturally come up for the leading term consideration.
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