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Abstract. In this paper, we study the precise asymptotics of non-
compact Type-IIb solutions to the mean curvature flow. Precisely, for
each real number γ > 0, we construct mean curvature flow solutions,
in the rotationally symmetric class, with the following precise asymp-
totics as t ↗ ∞: (1) The highest curvature concentrates at the tip of
the hypersurface (an umbilical point) and blows up at the Type-IIb rate

(2t+ 1)(γ−1)/2. (2) In a neighbourhood of the tip, the Type-IIb rescal-
ing of the solution converges to a translating soliton known as the bowl
soliton. (3) Near spatial infinity, the hypersurface has a precise growth
rate depending on γ.

1. Introduction

Given an embedded (more generally immersed) n-dimensional hypersur-
face ϕ0 : Mn → Rn+1 in Euclidean space, consider the one-parameter family
of hypersurfaces ϕ(t) : Mn → Rn+1, t0 < t < t1, generated by the mean
curvature flow (MCF), which is specified by the evolution equation

∂tϕ(p, t) = ~H, p ∈Mn, t0 6 t < t1.(1.1)

Geometrically, MCF deforms a hypersurface in the direction of its mean

curvature vector ~H, starting from the initial hypersurface ϕ (t0) = ϕ0.
Suppose we have a smooth solution to MCF on a maximal time interval

[0, T ). Let h(t) denote the second fundamental form of ϕ(t)(Mn). If T <∞,
then we say the finite-time solution is

• Type-I if sup
Mn×[0,T )

(T − t)|h|2 <∞,

• Type-IIa if sup
Mn×[0,T )

(T − t)|h|2 =∞.

If T =∞, then we say the infinite-time solution is

• Type-III if sup
Mn×[0,∞)

t|h|2 <∞,

• Type-IIb if sup
Mn×[0,∞)

t|h|2 =∞.
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Analogous categorizations hold for singularities occurring in Ricci flow with
|h|2 replaced by |Rm |, where Rm is the Riemann curvature tensor of a
metric evolving by Ricci flow [8].

The following questions (e.g., [8, Problem 8.6] in the context of Ricci flow)
are natural: What can be said about the specific blow-up rates of Type-IIa
or Type-IIb solutions to MCF? And what can be determined about the
asymptotic behaviour of MCF solutions of these types near the maximal
time of existence?

In dimension one (n = 1), MCF of closed embedded curves in R2 never
form a Type-IIa singularity [12]. However, Angenent and Velázquez have
constructed a MCF of a closed immersed curve in the plane that forms a

Type-IIa singularity with sup
S1

|h(·, t)| blowing up at the rate
√

ln ln(1/(T−t))
T−t ,

which is faster than (T − t)−1/2 but slower than any higher power (T −
t)−1/2−ε [2]. In dimension two or higher (n > 2), Type-IIa singularities can
form in MCF of embedded hypersurfaces. Compact examples with blow-up
rates (T−t)−1+1/m for any integerm > 3 have been constructed by Angenent

and Velázquez [3]. Noncompact examples with blow-up rates (T −t)−(γ+1/2)

for any real number γ > 1/2 have been obtained by the authors [14, 15].
There are corresponding results for Type-IIa solutions [5, 19] and Type-IIb
solutions [18] in Ricci flow.

Type-IIb solutions to MCF are necessarily noncompact because MCF of
any compact hypersurface must have finite time of existence by the avoid-
ance principle [9]. In this paper, we construct a class of Type-IIb MCF
solutions and describe their precise asymptotic properties. In particular, we
determine their Type-IIb curvature blow-up rates, and also determine the
behaviour of the solutions near where the curvature is the highest as well
as near spatial infinity. Our construction is carried out in the class of com-
plete noncompact hypersurfaces that are smooth, rotationally symmetric,
convex1, entire graphs with prescribed growth rate at spatial infinity.

Let us set up the notation. For any point (x0, x1, . . . , xn) ∈ Rn+1, we
write

x = x0, r =
√
x2

1 + · · ·+ x2
n.

A noncompact hypersurface Γ is said to be rotationally symmetric if

Γ = {(x0, x1, . . . , xn) : r = u(x0), a 6 x0 <∞} .

We assume that u is strictly concave so that the hypersurface Γ is (strictly)
convex and that u is strictly increasing with u(a) = 0 and has the asymptotic
growth condition lim

x0↗∞
u(x0) = ∞, which is a necessary condition for the

solution to be Type-IIb or Type-III. Indeed, if we assume the contrasting
condition that lim

x0↗∞
u(x0) = R for some finite positive value of R, then

1Throughout this paper, “convex” means “strictly convex”.
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the hypersurface is a complete graph over a ball Bn
R of radius R, and is

asymptotic to the cylinder Sn−1
R ×R, whose axis is the x0-axis. MCF starting

from such a hypersurface escapes to spatial infinity in finite time by the work
of Saez and Schnürer [16]. Among MCF solutions of this sort, the authors
have exhibited a class of Type-IIa solutions and have described their precise
asymptotics in [14] and [15].

Returning to our construction of mean curvature flows which exhibit
Type-IIb behaviour, we note that the function u is assumed to be smooth
except at x = a. This particular non-smoothness of u is a consequence of the
choice of the coordinates; in fact, as seen below, if the time-dependent flow
function u(x, t) is inverted in a particular way, this irregularity is removed.
We label the moving point where u(x, t) = 0 as the tip of the hypersurface.

We now denote by Γt the solution to MCF which starts at a specified
choice of the initial embedding of Γ (as described above). If we represent Γt
by a graph r = u(x, t), then under MCF the function u satisfies the PDE

ut =
uxx

1 + u2
x

− n− 1

u
.(1.2)

To help carry out analysis, especially in a neighbourhood of the tip, it is
useful to define the following rescaled quantities

τ = log
√

2t+ 1,(1.3)

y = x(2t+ 1)−(γ+1)/2,(1.4)

φ(y, τ) = u(x, t)(2t+ 1)−1/2,(1.5)

where γ is a free parameter to be specified. In particular, the rescaling (1.4)
is according to the Type-IIb blow-up rate, whereas the rescaling (1.5) is ac-
cording to the Type-III curvature blow-up rate. These anisotropic rescalings
form a crucial ingredient in our construction in the present paper as well
as in earlier works concerning Type-IIa and Type-IIb singularities in mean
curvature flow and Ricci flow [3,5, 14,15,18,19].

To motivate the rescaled quantities (1.3)–(1.5), we first recall that the

Type-III blow-up rate is t−1/2 ∼ (2t+1)−1/2, whereas the Type-IIb blow-up
rate is faster than the Type-III rate. If we seek MCF solutions with the
Type-IIb curvature blow-up rate (2t+ 1)(γ−1)/2, where γ > 0, then the part
of the hypersurface where the curvature is Type-IIb covers a distance on
the order of (2t + 1)(γ+1)/2, as it is moving at a speed proportional to the

curvature blow-up rate on the order of (2t+ 1)(γ−1)/2. Therefore, we rescale
the x-coordinate according to (1.4) to bring the hypersurface that is moving
to spatial infinity to a finite distance away from the origin. The rescaling
(1.5) is at the Type-III rate and serves as an intermediate step to capture
the geometry of the hypersurface where the curvature blow-up is not Type-
IIb (cf. Section 2). To further study the geometry of the hypersurface near
where the curvature is Type-IIb, we introduce a further rescaled quantity
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(cf.(2.3))

z := φeγτ = u(2t+ 1)(γ−1)/2.(1.6)

Substituting the rescaled quantities (1.3)–(1.5) into equation (1.2), we
obtain the following PDE for φ(y, τ):

∂τ |y φ =
e−2γτφyy

1 + e−2γτφ2
y

+ (γ + 1)yφy −
(n− 1)

φ
− φ,(1.7)

where ∂τ |y means taking the partial derivative in τ while keeping y fixed.

We note the resemblance between equation (1.7) and equation (1.3) in [14]
or [15].

It is useful to invert the coordinates and work with

y(φ, τ) = y (φ(y, τ), τ) ;

this inversion can be done because the hypersurface under consideration is
a convex entire graph (opening in the positive x-axis). In terms of y(φ, τ),
the equation corresponding to mean curvature flow, which is equivalent to
equation (1.7) and hence equivalent to equation (1.2), is the following:

∂τ |φ y =
yφφ

1 + e2γτy2
φ

+

(
n− 1

φ
+ φ

)
yφ − (γ + 1)y.(1.8)

Equation (1.8) closely resembles its counterparts in [14] and [15]. Note
that the difference occurs in the zeroth order term and the first order term
involving φyφ. As a result, the approach in [14] and [15] is promising in the
current setting.

We use the notation “A ∼ B” to indicate that there exist positive con-
stants c and C such that cB 6 A 6 CB. Our main result is the following.

Theorem 1.1. For any choice of an integer n > 2 and a pair of real numbers
γ > 0, and Ã > 0, there is a family G of n-dimensional, smooth, rotationally
symmetric, strictly convex, entire graphs over Rn such that MCF evolution
Γt starting at each hypersurface Γ ∈ G escapes to spatial infinity at T =∞,
and has the following precise asymptotic properties as t↗∞:

(1) The highest curvature occurs at the tip, where u(x, t) = 0, of the
hypersurface Γt, and it blows up at the Type-IIb rate

sup
p∈Γt

|h(p, t)| ∼ (2t+ 1)(γ−1)/2 as t↗∞.(1.9)

(2) Near the tip, the Type-IIb rescaling of Γt converges to a translating
bowl soliton; precisely,

y(e−γτz, τ) = y(0, τ) + e−2γτ

 P̃
(

(γ + 1)Ãz
)

(γ + 1)Ã
+ o(1)

 as τ ↗∞

(1.10)
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uniformly on compact z intervals, where z = φeγτ , and P̃ is defined
in equation (2.10).

(3) Near spatial infinity, in the (φ, y)-coordinates, the solution Γt grows
at the rate

y ∼ (φ2 + n− 1)(γ+1)/2 as φ↗∞.(1.11)

In particular, the solution constructed has the asymptotics predicted by the
formal solution described in Section 2.

The asymptotic condition (1.11) of our MCF solutions says that y ∼ φγ+1

as φ↗∞. Using the relations y = x(2t+ 1)−(γ+1)/2 and φ = u(2t+ 1)−1/2

to convert y and φ back to the unscaled coordinates x and u respectively,
then

x ∼ uγ+1 as u↗∞.(1.12)

Since γ > 0, the entire graphical hypersurfaces moving by MCF described
in Theorem 1.1 have super-linear growth in u (cf. [6, Table 1]). On the
other hand, suppose a smooth entire graph, not one of those constructed
in Theorem 1.1, grows linearly in u near spatial infinity, i.e., x ∼ u as
u ↗ ∞, which is the case if γ = 0 in (1.12). Then MCF staring from this

hypersurface is Type-III with the curvature blow-up rate (2t + 1)−1/2 by
the work of Ecker and Huisken [10]. For asymptotic behaviour of Type-III
solutions to MCF, we refer the reader to the classical results of Ecker and
Huisken [10,11] and the recent work of Cheng and Sesum [7].

The proof of Theorem 1.1 uses matched asymptotic analysis and bar-
rier arguments for nonlinear PDE, the same strategy that has been imple-
mented for Type-IIa solutions in [14] and [15]. In Section 2, we describe the
construction of the approximate (formal) solutions using formal matched
asymptotics. In Section 3, we use these approximate solutions to construct
regional supersolutions and subsolutions to the rescaled PDE. The regional
supersolutions and subsolutions are ordered and we patch them together
to form barriers for the rescaled PDE in Section 4; a comparison principle
for the barriers is also proved there. In Section 5, we use these results to
complete the proof of Theorem 1.1.

Acknowledgements. J. Isenberg is partially supported by NSF grant PHY-
1707427; H. Wu thanks the support by ARC grant DE180101348; Z. Zhang
thanks the support by ARC grant FT150100341. We thank the anonymous
referee for valuable comments on the manuscript.

2. Formal solutions

2.1. The formal solutions in the form y(z, τ) or y(φ, τ). To derive the

formal solutions, we assume that for τ large, the terms ∂τ |φ y and
yφφ

1 + e2γτy2
φ
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in equation (1.8) are negligible, so the PDE (1.8) is approximated by the
ODE (

n− 1

φ
+ φ

)
ỹφ − (γ + 1)ỹ = 0,(2.1)

whose general solution is

ỹ(φ) = C1

(
φ2 + n− 1

)(γ+1)/2
,(2.2)

where C1 is an arbitrary constant, and φ ∈ [0,∞). For γ > 0, as we presume
in this paper, ỹ is convex and grows super-linearly.

To check the consistency of the assumptions we have made in obtaining
the ODE (2.1), we substitute the solution ỹ given in (2.2) into the quantity

yφφ
1 + e2γτy2

φ

, obtaining

ỹφφ
1 + e2γτ ỹ2

φ

=
C1(γ + 1)(φ2 + n− 1)(γ−1)/2(n− 1 + γφ2)

n− 1 +
[
φ2 + φ2e2γτ γ(1 + γ)2(φ2 + n− 1)2C2

1

] .
This suggests that ỹ is a reasonable approximate solution, provided that the
boxed term φ2e2γτ is sufficiently large.

As in the statement of Theorem 1.1, we define

z := φeγτ .(2.3)

We label the dynamic (i.e., time-dependent) region where z = O(1) as the
interior region and call its complement the exterior region. Note that the
condition z = O(1) is equivalent to the condition φ = O (e−γτ ), which
corresponds to a region near the tip (at which φ = 0). Since

∂τ |zy = ∂τ |φy − γzyz,

we obtain from equation (1.8) the evolution equation for y(z, τ):

∂τ |z y =
yzz

e−2γτ + e2γτy2
z

+

(
n− 1

z
e2γτ + (1− γ)z

)
yz − (γ + 1)y.(2.4)

We consider the ansatz

y = Ã+ e−2γτ F̃ (z, τ),(2.5)

where Ã is a positive constant and F̃ is a function to be determined; in par-
ticular, F̃ (0, τ) = 0. Before we determine F̃ , let us provide some heuristics
for this ansatz. Suppose that we want the Type-IIb curvature blow-up rate
(2t+ 1)(γ−1)/2, where γ > 0, at the tip of the hypersurface moving by MCF;
then we expect the geometry near the tip to be modelled by a translating
soliton. So as t ↗ ∞, if we rescale the (x,u)-coordinates by the Type-IIb
blow-up rate near the tip, then we expect the hypersurface near the tip to
be generated by the profile

x(2t+ 1)(γ−1)/2 = Ã · (2t+ 1)α +B
(
u(2t+ 1)(γ−1)/2, t

)
,(2.6)
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where A is some constant, B(·, t)|u=0 = 0 for all t, and α is a parameter
that we determine now. The profile in (2.6) is equivalent to

x = Ã · (2t+ 1)α−
γ−1
2 + (2t+ 1)−(γ−1)/2B

(
u(2t+ 1)(γ−1)/2, t

)
.(2.7)

The tip, where u = 0 and the curvature is prescribed to be blowing up at
the Type-IIb rate (2t+1)(γ−1)/2, is moving at a speed on the same order and

hence covers a distance on the order of (2t+1)(γ+1)/2. Therefore, comparing

(2t+ 1)(γ+1)/2 with the coefficient of Ã in (2.7), we have α = γ. As a result,
(2.7) becomes

x = Ã · (2t+ 1)
γ+1
2 + (2t+ 1)−(γ−1)/2B

(
u(2t+ 1)(γ−1)/2, t

)
,

which, rewritten in the (y, τ)-coordinates, is just the ansatz in (2.5).
Substituting (2.5) into equation (2.4) yields

F̃zz

1 + F̃ 2
z

+ (n− 1)
F̃z
z

= (γ + 1)Ã+ e−2γτ
[
(γ − 1)(zF̃z − F̃ ) + ∂τ |z F̃

]
.

(2.8)

Continuing the formal argument, we assume that for τ very large, the term
in (2.8) with the coefficient e−2γτ is negligible. Equation (2.8) then reduces
to the ODE

F̃zz

1 + F̃ 2
z

+ (n− 1)
F̃z
z

= (γ + 1)Ã.(2.9)

To solve (2.9) for F̃ , we define P̃ (w) to be the unique solution to the
initial value problem

P̃ww

1 + (P̃w)2
+ (n− 1)

P̃w
w

= 1, P̃ (0) = P̃w(0) = 0.(2.10)

We then readily verify that if F̃ is given by

F̃ (z, τ) =
1

(γ + 1)Ã
P̃
(

(γ + 1)Ãz
)

+ C(τ),(2.11)

where C(τ) is an arbitrary function of time, then F̃ satisfies (2.9).
The initial value problem (2.10) has been solved in [3, pp.24–25] for gen-

eral dimensions. It has a unique convex solution defined on R with the
following asymptotics:

P̃ (w) =

{
w2/2n+ o

(
w2
)
, w ↘ 0;

w2/(2n− 2)− logw +O
(
w−2

)
, w ↗∞.

(2.12)
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Rescaling back to the (x, u)-coordinates, then in a neighbourhood of the
tip, where u = 0, we have

x = Ã(2t+ 1)(γ+1)/2 + C
(
log
√

2t+ 1
)

(2t+ 1)(γ−1)/2+

+
(γ + 1)Ã

2n
u2(2t+ 1)(γ−1)/2 + o

(
u2(2t+ 1)(γ−1)/2

)
.

For this formal solution, the curvature at the tip is

|htip| ∼ Htip ∼
d2x

du2

∣∣∣∣
u=0

= (γ + 1)Ã(2t+ 1)(γ−1)/2.(2.13)

It follows then that

t|htip|2 ∼ t(2t+ 1)γ−1 ∼ tγ .
Therefore, the formal solution is Type-IIb if γ > 0. This argument gives
us reason to believe that, once we have constructed the actual solution to
MCF presuming that it is controlled by the formal solution, it will have the
desired Type-IIb behaviour.

Because the speed of a hypersurface moving by MCF is given by its mean
curvature H, it follows from (2.13) that over the time period [t0,∞), the
tip of the hypersurface, formally (i.e., as predicted by the formal solution)
moves along the x-axis to the right from its initial position x0 by the amount∫∞
t0
Htip = +∞. So in terms of the x-coordinate, the hypersurface evolving

by MCF disappears off to spatial infinity as t↗∞. However in terms of the
y-coordinate, provided that C(τ) = O(τ), the tip remains a finite distance
from the origin for all time τ since

y0(τ) = Ã+ e−2γτC(τ) ≈ Ã.
From this point on, we assume γ to be a fixed positive constant. Our

construction works for any choice of γ > 0.
The formal solutions constructed separately in the interior and the exte-

rior regions each involves a free parameter. Matching the formal solutions
on the overlap of the two regions, we can establish an algebraic relation-
ship between these free parameters. Setting z equal to a constant R, and
assuming that τ is very large, then

y ≈ Ã.(2.14)

In the exterior region, again setting z = R (and therefore φ = Re−γτ ) and
again presuming very large τ , we have from (2.2) that

y ≈ C1 (n− 1)(γ+1)/2 .(2.15)

Matching (2.14) with (2.15), we obtain

Ã = C1 (n− 1)(γ+1)/2 .(2.16)

In summary, in the interior region where z = φeγτ = O(1), we blow up the

formal solution u(t, x) to MCF at the prescribed Type-IIb rate (2t+1)(γ−1)/2

and rescale the coordinates in accord with how fast the surface moves under
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mean curvature flow by setting y = x(2t+ 1)−(γ+1)/2. Then in this interior
region, the formal solution is given by

yform, int = Ã+ e−2γτC(τ) + e−2γτ F̃ (z),

where F̃ and C(τ) (to be specified in Lemma 3.1) are related to P̃ as specified

in (2.11), and where P̃ is the solution to the initial value problem (2.10).
In the exterior region, where Re−γτ 6 φ < ∞ for some R > 0, the formal
solution takes the form

yform, ext =
Ã

(n− 1)(γ+1)/2

(
φ2 + n− 1

)(γ+1)/2
.

We emphasise that the discussion in Section 2 applies to the formal so-
lutions in the interior region and the exterior region. We show in Section
5 that the actual MCF solutions we construct also have the asymptotics
predicted by the formal solution.

2.2. The formal solutions revisited in the form λ(z, τ) or λ(φ, τ). To
prove the main result (Theorem 1.1) of this paper, it is useful to also work
with the quantity λ := −1/y, which is a bounded function because of the
super-linear growth of the embedded hypersurface corresponding to large
values of y. The interval of φ remains noncompact; in fact φ ∈ R.

Under MCF, the evolution equation for λ is readily obtained by substi-
tuting the definition of λ into (1.8):

∂τ |φ λ =
λφφ − 2λ2

φ/λ

1 + e2γτλ2
φ/λ

4
+

(
n− 1

φ
+ φ

)
λφ + (γ + 1)λ.(2.17)

The class of MCF solutions we consider here correspond to solutions of
equation (2.17) (which are even2 in φ, i.e., λ(−φ, τ) = λ(φ, τ)) subject to the
following effective boundary conditions: the super-linear growth of y implies
that lim|φ|↗∞ λ(φ, τ) = 0. By the rotational symmetry, λφ(0, τ) = 0.

As in the previous analysis in terms of y, it is useful here to use the dilated
spatial variable z = φeγτ . The evolution equation for λ(z, τ) then takes the
form

∂τ |z λ =
e2γτ (λzz − 2λ2

z/λ)

1 + e4γτλ2
z/λ

4
+ e2γτ (n− 1)

λz
z

+ (1− γ)zλz + (γ + 1)λ.

(2.18)

We now construct the formal solutions in terms of λ(z, τ) or λ(φ, τ), using
arguments very similar to those used above in terms of y.

In the interior region, where z = O(1), we use the ansatz

λ = −A+ e−2γτF (z),

2We think of the rotationally symmetric hypersurfaces as obtained by rotating the
profile curve, in the rescaled coordinates, y = y(φ, τ) instead of φ = φ(y, τ). We extend
y(φ, τ) to an even function in φ and still label the extended function as y.
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where A is a positive constant and F is a function which we now determine.
Substituting this ansatz into equation (2.18), we find that F must satisfy

e−2γτ (−2γF + ∂τ |z F ) =
Fzz − 2e−2γτF 2

z /(−A+ e−2γτF )

1 + F 2
z /(−A+ e−2γτF )4

(2.19)

+ (n− 1)
Fz
z
− (γ + 1)A

+ e−2γτ [(1− γ)zFz + (γ + 1)F ] .

Assuming, in our formal argument, that the terms with coefficient e−2γτ

in equation (2.19) can be ignored for large τ , then (2.19) reduces to the
following ODE for F :

Fzz
1 + F 2

z /A
4

+ (n− 1)
Fz
z

= (γ + 1)A.(2.20)

To find solutions to (2.20), we rescale F according to

(2.21) F (z) =
A3

γ + 1
P (z(γ + 1)/A) ,

and determine that P (w), where w := z(γ + 1)/A, is the solution to the
ODE initial value problem (2.10). The asymptotic expansions of P (w) are
the same as in (2.12). Consequently, the asymptotic expansions of F (z) are
as follows:

F (z) =


(γ+1)A

2n z2 + o
(
z2
)
, z ↘ 0;

(γ+1)A
2(n−1) z

2 − A3

(γ+1) log ((γ + 1)z/A) +O
(
z−2
)
, z ↗∞.

(2.22)

In the exterior region, examining the evolution of λ(φ, τ) as governed by
the PDE (2.17), we assume, as part of the formal argument, that the term
λφφ − 2λ2

φ/λ

1 + e2γτλ2
φ/λ

4
is negligible for τ large. Then any solution of the ODE

(
n− 1

φ
+ φ

)
λ̄φ + (γ + 1)λ̄ = 0(2.23)

is an approximate solution to equation (2.18). We can solve for λ̄(φ) explic-
itly,

λ̄(φ) = C
(
φ2 + n− 1

)−(γ+1)/2
(2.24)

for an arbitrary constant C.

3. Supersolutions and subsolutions

In this section, we construct subsolutions and supersolutions for the rescaled
MCF PDE in the interior and the exterior regions separately.
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3.1. Interior region. In the interior region, we work with λ(z, τ) and the
corresponding MCF equation (2.18). We say that λ is a subsolution (super-
solution) of equaiton (2.18) if Tz[λ] 6 0 (> 0), where

Tz[λ] := ∂τ |z λ−
e2γτ (λzz − 2λ2

z/λ)

1 + e4γτλ2
z/λ

4
− e2γτ (n− 1)

λz
z

+ (γ − 1)zλz − (γ + 1)λ.

(3.1)

We have the following existence result of subsolution and supersolution
of equation (2.18) in the interior region.

Lemma 3.1. For an integer n > 2, a real number γ > 0, and any pair of
positive real numbers A±, we define the functions F± to be the solutions to
equation (2.20) with the constants A = A± respectively.

For any fixed constants R1 > 0, B± and E±, there exist functions Q± :
R → R, constants D±, and a sufficiently large τ1 < ∞ such that the func-
tions

λ±int(z, τ) := −A± + e−2γτF±(z) + e−2γτ
(
B±τ + E±

)
+ τe−4γτD±Q±(z)

(3.2)

are a supersolution (+) and a subsolution (−), respectively, of Tz[λ] = 0 on
the interval 0 6 |z| 6 R1 for all τ > τ1.

The functions Q± depend on A± and F±(z) respectively. The constants
D± depend on n, γ, A± and B± respectively, and on R1.

Proof. We detail the proof for 0 6 z 6 R1; the proof for −R1 6 z 6 0 is
identical.

Let us define the function Q+ := Q+(z) : [0, R1] → R to be the unique
smooth solution of the ODE initial value problem[

Qz
1 + F 2

z /(A
+)2

]
z

− (n− 1)
Qz
z

= 1, Q(0) = Q′(0) = 0.(3.3)

The function Q−(z) is defined by replacing A+ with A− in equation (3.3).
We note that the definition of Q+ is analogous to that in Lemma 3.1 of

[14] (or [15]). Moreover, we note that only the terms with zλz and λ in
the operator T in the present paper have different coefficients from their
counterparts in [14] (or [15]). Since the estimates in the proof of Lemma
3.1 of [14] (or [15]) only used the fact that both smooth functions F (z) and
Q+(z) have uniformly bounded derivatives up to second order on [0, R1] for
all τ > τ1, the same construction for λ+

int goes through here, although for
different constants in the inequalities for D+.

The construction for λ−int is proved similarly. Therefore, the lemma is
proved. �

Remark 3.2. Any positive constants A+ and A− work in Lemma 3.1. In
Lemma 4.1, we choose ordered constants A+ and A− so that λ+

int and λ−int
are ordered.
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3.2. Exterior region. In the exterior region, we work with the quantity
λ(φ, τ) and the corresponding MCF equation (2.17). We say that λ is a
subsolution (supersolution) of equaiton (2.17) if Fφ[λ] 6 0 (> 0), where

Fφ[λ] := ∂τ |φ λ−
λφφ − 2λ2

φ/λ

1 + e2γτλ2
φ/λ

4
−
(
n− 1

φ
+ φ

)
λφ − (γ + 1)λ.(3.4)

We have the following existence result of subsolution and supersolution
of equation (2.17) in the exterior region.

Lemma 3.3. For an integer n > 2 and a real number γ > 0, we define3

λ̄ = λ̄(φ) := (φ2 + n− 1)−(γ+1)/2.(3.5)

For any positive constants c±, there exists an even function ψ : R →
R such that for any fixed R2 > 0, there exist a pair of constants b± and
sufficiently large τ2 <∞, for which

λ±ext = λ±(φ, τ) := −c±λ̄(φ) + b±e−2γτψ(φ)(3.6)

are a supersolution (+) and a subsolution (−), respectively, of Fφ[λ] = 0
over the region R2e

−γτ 6 |φ| < ∞ for all τ > τ2. The constants b± depend
on n, γ, R2, and c±, respectively.

Proof. The functions involved are all even in φ, so we need only consider
φ > 0.

Going through the proof of Lemma 3.2 of [14] (or [15]) shows that the
definition of the function ψ does not depend on the second order term in
the operator Fφ. Here, we define ψ to be any solution of the ODE

−(1 + 3γ)ψ −
(
n− 1

φ
+ φ

)
ψ′ = Λ,(3.7)

where

Λ := −(−λ̄′′)− 2(−λ̄′)2/(−λ̄)

(−λ̄′)2/(−λ̄)4

= −γφ
2 + n− 1

(γ + 1)φ2
λ̄3

< 0

for all φ ∈ R. The general solution ψ to this ODE is

ψ(φ) = λ̄3

{
1− γ

2(1 + γ)
+ C1(φ2 + n− 1) +

(φ2 + n− 1)

2(n− 1)(γ + 1)

(
log(φ2)− log(φ2 + n− 1)

)}
,

(3.8)

where C1 is an arbitrary constant.

3This definition is consistent with (2.24); therefore λ̄ satisfies equation (2.23).
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Applying the operator Fφ defined in (3.4) to the function λ+
ext from (3.6),

we obtain (omitting the superscript “+” and the subscript “ext” to simplify
the notation)

e2γτFφ
[
λ+
ext

]
= II + b

[
−(1 + 3γ)ψ −

(
n− 1

φ
+ φ

)
ψ′
]
,

where ψ solves the ODE (3.7) and

II = −
λφφ − 2λ2

φ/λ

e−2γτ + λ2
φ/λ

4

= c3Λ
[
1 +O

(
e−2γτ bψ/(cλ̄), e−2γτ bψ′/(cλ̄′), e−2γτ bψ′′/(cλ̄′′)

)]
.

So then

e2γτFφ
[
λ+
ext

]
= Λ

{
c3
[
1 +O

(
e−2γτ bψ/(cλ̄), e−2γτ bψ′/(cλ̄′), e−2γτ bψ′′/(cλ̄′′)

)]
+ b
}
.

Let ck and dk, where k = 0, 1, 2, denote constants that depend on the
now-fixed constants n and γ. From (3.5) and (3.6) we have as φ ↗ ∞ the
following asymptotics

ψ/λ̄ = (φ2 + n− 1)−γ [c0 + o(1)] ,

ψ′/λ̄′ = (φ2 + n− 1)−γ [c1 + o(1)] ,

ψ′′/λ̄′′ = (φ2 + n− 1)−γ [c2 + o(1)] ,

and as φ↘ 0, the following asymptotics

ψ/λ̄ = d0 log(φ2) +O(1),

ψ′/λ̄′ = φ−2
[
d1 +O

(
φ2 log(φ2)

)]
,

ψ′′/λ̄′′ = φ−2
[
d2 +O

(
φ2 log(φ2)

)]
.

The above asymptotics imply the following estimates. If δ 6 φ < ∞ for
some fixed δ > 0 (e.g., δ = 1/2), then we have∣∣O (e−2γτ bψ/(cλ̄), e−2γτ bψ′/(cλ̄′), e−2γτ bψ′′/(cλ̄′′)

)∣∣ 6 bM1e
−2γτ

for some constant M1. Consequently, we choose τ2 sufficiently large so that
M1e

−2γτ < 1/(2c3) for all τ > τ2 (recall that c is fixed), so then

e2γτFφ
[
λ+
ext

]
> Λ

{
b+ c3

(
1 + bM1e

−2γτ
)}

> 0

for δ 6 φ <∞ if b satisfies b < −2c3/3.
If R2e

−2γτ 6 φ 6 δ, then we have∣∣O (e−2γτ bψ/(cλ̄), e−2γτ bψ′/(cλ̄′), e−2γτ bψ′′/(cλ̄′′)
)∣∣ 6 bM2R

−2
2

for some constant M2, and so

e2γτFφ
[
λ+
ext

]
> Λ

{
b+ c3

(
1 + bM2R

−2
2

)}
> 0

for any b satisfying b < −c3/(1 + c3M2R
−2
2 ).
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Therefore, there exists

b+ 6 min

{
−2 (c+)

3

3
,

− (c+)
3

1 + (c+)3M2R
−2
2

}
such that λ+

ext defined in (3.6) is a supersolution of Fφ[λ] = 0 on the interval
R2e

−2γτ 6 φ <∞ for all τ > τ2.
By a similar argument, there exists

b− > max

{
−2(c−)3,

− (c−)
3

1− (c−)3M2R
−2
2

}
such that λ−ext defined in (3.6) is a subsolution of Fφ[λ] = 0 on the interval
R2e

−2γτ 6 φ <∞ for all τ > τ2.
Therefore, the lemma is proved. �

Remark 3.4. From the proof of Lemma 3.3, we always have b+ < 0, and we
can pick b− > 0.

4. Upper and lower barriers

A lower (upper) barrier is a subsolution (supersolution) that lies below
(above) a formal solution in an appropriate space-time region. According
to Lemmata 3.1 and 3.3, if we choose R2 < R1, then there is an overlap of
the interior and exterior regions where both λ±int and λ±ext are defined. In

order to show that the regional supersolutions λ+
ext and λ+

int together with

the regional subsolutions λ−ext and λ−int collectively provide upper and lower
barriers according to the standard sup and inf constructions for the rescaled
PDE of MCF, we need to show the following:

(i) in each region, λ−int 6 λ
+
int and λ−ext 6 λ

+
ext;

(ii) λ+
int and λ+

ext patch together; i.e., inf{λ+
int, λ

+
ext} takes the values of

λ+
int and then λ+

ext when moving from the interior to the exterior

region; similarly for λ−int and λ−ext;
(iii) the patched supersolutions and subsolutions have the required com-

parison relation throughout, i.e., λ−ext 6 λ+
int and λ−int 6 λ+

ext wher-
ever they are defined, in addition to the inequalities included in (i).

Item (i) follows from the following two lemmata, which are proved by the
same line of logic used to prove Lemmata 4.1 and 4.2 in [14] or [15].

Lemma 4.1. For A− > A+, there exists τ3 > τ1 such that

λ±int(z, τ) = −A± + e−τF±(z) +
(
B±τ + E±

)
e−τ + τe−2τD±Q±(z)

satisfy λ−int < λ+
int for |z| 6 R1 and for τ > τ3.

Lemma 4.2. For c− > c+, there exists τ4 > τ1 such that

λ±ext(φ, τ) = λ̄±(φ) + b±e−τψ(φ)
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(as in Lemma 3.3) satisfy λ−ext < λ+
ext for R2e

−τ/2 6 |φ| < ∞ and τ > τ4.
So it follows from Lemma 4.2 that

Remark 4.3. In the proof of Lemma 3.3, we showed that

ψ(φ)

λ̄(φ)
= (φ2 + n− 1)−γ [c0 + o(1)] ,

where λ̄(φ) = (φ2 + n− 1)−(γ+1)/2 and c0 = c0(n, γ) is a constant. So then
for λ±ext satisfying Lemma 4.2, we have

lim
|φ|→∞

(
λ−ext(φ, τ)− λ+

ext(φ, τ)
)
6 0

uniformly for all τ > τ4.

To justify (ii), i.e., the patching of supersolutions (or subsolutions) by
taking infimum (or supremum), we recall that Lemma 3.1 holds for any
R1 > 0 and Lemma 3.3 holds for any R2 > 0. Below, we choose 1� R2 < R1

and patch together λ+
int and λ+

ext, and λ−int and λ−ext in the region defined by
{R2 < z < R1}. To this end, we need the following lemma.

Lemma 4.4. For a fixed integer n > 2 and a fixed real number γ > 0, set

β̃ :=
(n− 1)−3(γ+1)/2

γ + 1
> 0.(4.1)

Let λ+
int and λ−int be as discussed in Lemmata 3.1 and 4.1, and λ+

ext and λ−ext
as discussed in Lemmata 3.3 and 4.2. There are properly chosen constants
A± > 0, B±, b+ < 0, b− > 0 and c± > 0 satisfying

A± = c±(n− 1)−(γ+1)/2 > 0,(4.2)

B± = −γb±β̃,(4.3)

such that for some sufficiently large R1 and R2 for Lemmata 3.1 and 3.3,
we have for τ > τ5 with some sufficiently large τ5, the functions

λ+
int − λ

+
ext, λ−ext − λ

−
int

both strictly increase from negative to positive in the z-interval (R2, R1).

Proof. We prove the Lemma for φ ∈ [0,∞); the proof for φ ∈ (−∞, 0] follows
as a consequence of the evenness of the function φ.

In the interior region, using the asymptotic expansion of F (z) in (2.22),
we have that as z ↗∞,

λ+
int = −A+ +B+τe−2γτ+

e−2γτ

[
(γ + 1)A+

2(n− 1)
z2 − (A+)3

(γ + 1)
log
(
(γ + 1)z/A+

)
+ E+ +O

(
z−2
)]

+D+τe−4γτQ+(z).
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In the exterior region, using the asymptotic expansion that readily follows
from the explicit expression for ψ(φ) in (3.8), we have that as φ↘ 0,

λ+
ext = −c+λ̄

(
ze−γτ

)
+ b+e−2γτψ

(
ze−γτ

)
= − c+

(n− 1)(γ+1)/2
+

c+(γ + 1)

2(n− 1)(γ+3)/2
z2e−2γτ +O

(
z4e−4γτ

)
− γb+τe−2γτ

[
β̃ +O

(
z2e−2γτ

)]
+ b+e−2γτ

[
β̃ log |z|+ d+O

(
z2e−2γτ (1 + log |z|+ τ)

)]
,

where β̃ is defined in (4.1) and d = (n − 1)−3(γ+1)/2
(

1−γ
2+2γ + C1(n− 1)

)
is

an arbitrary constant. It then follows that

λ+
int − λ

+
ext =

(
−A+ + c+(n− 1)−(γ+1)/2

)
+
(
B+ + γb+β̃

)
τe−2γτ

+ e−2γτ

[
(γ + 1)A+

2(n− 1)
z2 − c+(γ + 1)

2(n− 1)(γ+3)/2
z2

]
+ e−2γτ

[
− (A+)3

(γ + 1)
log |z| − b+β̃ log |z|+ E+ − b+d+O(z−2)

]
+O

(
e−4γτ

(
τQ+(z) + z2(1 + log |z|+ τ)

))
.

By (4.2) and (4.3), the first two lines in the above expression are zero and
we get

e2γτ (λ+
int − λ

+
ext) =

(
− (A+)3

(γ + 1)
− b+β̃

)
log |z|+O

(
z−2
)

+ E+ − b+d

+O
(
e−2γτ

(
τQ+(z) + z2(1 + log |z|+ τ)

))
,

with its derivative with respect to z given by

e2γτ (λ+
int − λ

+
ext)z =

(
− (A+)3

(γ + 1)
− b+β̃

)
z−1 +O

(
z−3
)

+O
(
e−2γτ

(
τ(Q+)′ + z(1 + log |z|)

))
.

So far, we have chosen that A+ > 0 and β̃ > 0. Moreover, we can choose

b+ such that
(
− (A+)3

(γ+1) − b
+β̃
)
> 0. Additionally, we know that Lemma 3.3

holds for λ+
ext with the current choice of b+. Consequently, we have the

following observations regarding λ+
int − λ

+
ext for sufficiently large τ :

(1) The function e2γτ (λ+
int−λ

+
ext) is smooth and strictly increasing with

respect to z on some interval (R, 10R) where R� 1.
(2) Fixing the constant d, then by adjusting the value of E+, which is

a constant independent of τ , we can make sure e2γτ (λ+
int − λ

+
ext) has

only one zero at some z ∈ (R, 10R) while (1) holds.

Letting R2 = R and R1 = 10R, we have that λ+
int − λ

+
ext strictly increases

from negative to positive in the z-interval (R2, R1).
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In the same way, we can deal with λ−int and λ−ext. Clearly, we can choose the
same interval (R2, R1) by adjusting the previously chosen one if necessary.
So the lemma is proved. �

Remark 4.5. The choices of A± and of c± in Lemma 4.4 are compatible with
those of Lemmata 4.1 and 4.2. From the proof of Lemma 4.4, we see that
Lemma 4.4 still holds if we choose R1 even larger.

We can now patch the regional supersolutions and subsolutions, thereby
producing the global supersolution and the global subsolution, which are
consequently upper and lower barriers. More precisely, for |φ| ∈ [0,∞) and
τ > τ5, we define λ+ := λ+(φ, τ) by

λ+ :=


λ+
int, |φ| 6 R2e

−γτ ,

inf
{
λ+
int, λ

+
ext

}
, R2e

−γτ 6 |φ| 6 R1e
−γτ ,

λ+
ext, R1e

−γτ 6 |φ| <∞,

(4.4)

and similarly we define λ− := λ−(φ, τ) by

λ− :=


λ−int, |φ| 6 R2e

−γτ ,

sup
{
λ−int, λ

−
ext

}
, R2e

−γτ 6 |φ| 6 R1e
−γτ ,

λ−ext, R1e
−γτ 6 |φ| <∞,

(4.5)

where the above Lemma 4.4 is crucial in justifying the legitimate transition
from the interior construction to the exterior construction. In the following
proposition, we summarise the properties of the barriers λ±, which are a
straightforward consequence of the above construction, Lemmata 4.1 and
4.2 and Remark 4.3.

Proposition 4.6. For a fixed integer n > 2, let λ+ and λ− be defined as
in (4.4) and (4.5) respectively. There exists a sufficiently large τ0 such that
the following hold true for φ ∈ R and τ > τ0:

(B1) λ+ and λ− are a supersolution (+) and a subsolutions (−) for equa-
tion (2.17) respectively;

(B2) λ− < λ+;
(B3) near φ = 0, λ± = λ±int, and near φ =∞, λ± = λ±ext;
(B4) lim

|φ|↗∞
(λ−(φ, τ)− λ+(φ, τ)) = 0 uniformly in τ ∈ [τ0,∞).

We now prove a comparison principle for any pair of smooth functions
such that one of them is a subsolution of equation Fφ[λ] = 0 (cf. (2.17)) and
the other is a supersolution of the same equation. These functions need not
be λ± constructed above, but of course, the proposition is used to justify
that λ± are indeed barriers. We point out that our λ± are continuous and
piecewise smooth on their domains of definition.

Proposition 4.7. (Comparison principle for Fφ[λ] = 0) For a fixed integer
n > 2, a fixed real number γ > 0, and some τ̄ ∈ (τ0,∞), suppose that ζ+,
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ζ− are any smooth non-positive supersolution (+) and subsolution (−) (not
necessarily those constructed in Proposition 4.6) of the equation Fφ[λ] = 0,
respectively. Assume that

(C1) ζ−(φ, τ0) < ζ+(φ, τ0) for φ ∈ R,

(C2) lim
|φ|↗∞

(ζ−(φ, τ)− ζ+(φ, τ)) 6 0 uniformly in τ ∈ [τ0, τ̄ ],

Then ζ−(φ, τ0) 6 ζ+(φ, τ0) for (φ, τ) ∈ R× [τ0, τ̄ ].

Proof. Assumptions (C1)–(C2) imply that given any choice of ε > 0, there
exists R = R(ε) such that

ζ−(φ, τ)− ζ+(φ, τ) 6 ε, for |φ| = R and any τ ∈ [τ0, τ̄ ].(4.6)

Let us define v := e−µτ (ζ+ − ζ−) + 2ε, where µ is to be determined. Then
assumptions (C1)–(C2) and (4.6) imply that v satisfies the following condi-
tions

(C1’) v(φ, τ0) > 0 for φ ∈ [−R,R],

(C2’) v(φ, τ0) > ε > 0 for |φ| = R and any τ ∈ [τ0, τ̄ ].

We claim that v > 0 on (φ, τ) ∈ [−R,R] × [τ0, τ̄ ], where τ̄ < ∞ and τ0

can be chosen to be positive because we are interested in the asymptotics
near the first singular time T and we can always start the flow at T − 1 + δ
for some fixed δ > 0.

To prove the above claim, we suppose the contrary. Then it follows from
assumptions (C1’)–(C2’) that there must be a first time τ∗ ∈ (τ0, τ̄) and an
interior point φ∗ ∈ [−R,R] such that

v(φ∗, τ∗) = 0.

Moreover, at (φ∗, τ∗), we have

∂τ |φv 6 0, ζ+
φφ > ζ

−
φφ,

ζ+
φ = ζ−φ , ζ+ − ζ− = −2εeµτ∗ .
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Consequently at (φ∗, τ∗), we have

0 > eµτ∗∂τ |φv
= ∂τ |φ(ζ+ − ζ−)− µτ∗(ζ+ − ζ−)

> (ζ+ − ζ−)

 ζ−φφ(ζ+ + ζ−)
(
(ζ+)2 + (ζ−)2

)(
e2γτ (ζ+

φ )2 + (ζ+)4
)(

e2γτ (ζ+
φ )2 + (ζ−)4

)
∣∣∣∣∣∣
(φ∗,τ∗)

+
2(ζ+

φ )2

ζ+ζ−(1 + e2γτ (ζ+
φ )2/(ζ+)4)

∣∣∣∣∣
(φ∗,τ∗)

+ (γ + 1)− µτ∗


= −2εeµτ∗ {(bounded term independent of µ)− µτ∗}
> −2εeµτ∗ {(bounded term independent of µ)− µτ0} .

We recall that ε > 0 is fixed. If we choose µ sufficiently large, then at (φ∗, τ∗)
we have

0 > ∂τ |φv > 0,

which is a contradiction. Hence, the claim is true. In the proof of the claim,
µ may depend on ζ+, ζ− and τ̄ , but not on ε > 0. Therefore, letting ε→ 0,
the proposition follows. �

Remark 4.8. Proposition 4.7 applies to continuous piecewise smooth func-
tions as discussed in [14,15].

5. Proof of the main theorem

In this section, we prove the main result of this paper.

Proof of Theorem 1.1. Let n > 2 and γ > 0. Let τ0 > τ5, where τ5 is given
in Lemma 4.4.

We first patch the formal solutions in the interior and the exterior regions

at τ = τ0 to obtain a continuous piecewise smooth function λ̂(φ) defined for

all φ ∈ R. Given Ã > 0, we let A := 1/Ã and set

c := A(n− 1)(γ+1)/2, C0 := A− c
(
R2

1e
−2γτ0 + n− 1

)−(γ+1)/2
.

Recalling that z = φe−γτ , we define

λ̂0(φ) :=

{
−A+ e−2γτ0F (z)− e−2γτ0F (R1) + C0, 0 6 |z| 6 R1,

−c(φ2 + n− 1)−(γ+1)/2, R1e
−γτ0 6 |φ| <∞,

where R1 is defined in Lemma 4.4.
For any ε > 0 sufficiently small, by taking τ0 large enough, we can con-

struct barriers λ±(φ, τ), as discussed in Section 4 with A+ < A < A−, such
that for all φ ∈ R,

λ−(φ, τ0) < λ̂0(φ) < λ+(φ, τ0), |λ+ − λ−| < ε.
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For each choice of the continuous piecewise smooth function λ̂0, arguing as
in [15, Lemma 5.4], there is an open4 set, in the C0

loc-topology, of smooth
functions, all of which are trapped between λ−(φ, τ0) and λ+(φ, τ0). Col-
lecting all such trapped smooth functions, we obtain a set G of functions
which are trapped between the subsolution λ−(φ, τ0) and the supersolution
λ+(φ, τ0).

The hypersurface Γ0 corresponding to a choice of λ0 ∈ G is a smooth,
entire, strictly convex (rotationally symmetric) hypersurface. Since it is a
locally Lipschitz continuous entire graph over Rn, a smooth MCF starting
from such a hypersurface exists for all time by a classic result of Ecker and
Huisken [11, Theorem 5.1]. Moreover, since λ̂0(φ) = −c(φ2 +n−1)−(γ+1)/2,

then using y = x(2t + 1)−(γ+1)/2 and φ = u(2t + 1)−1/2, we see that as
u↗∞, Γ0 satisfies

x(u, t0) > c̃u(γ+1),

equivalently, there exist positive constants γ, c̃ and N such that for u > N ,

x′(u, t0) > c̃uγ .

Then the longtime solution to MCF starting from Γ0 must be Type-IIb, as
is proved by contradiction by Cheng [6, Theorem 1.2]. We let Γt denote this
hypersurface moving by MCF.

We now prove the precise asymptotic properties of the MCF solution as
stated in Theorem 1.1.

We first establish item (3) of Theorem 1.1. By the comparison principle
(Proposition 4.7), the MCF solution λ(φ, τ) with the initial condition λ0 is
always trapped between the barriers λ±(φ, τ) which, as t ↗ ∞, both have
the same asymptotic behaviour at spatial infinity given by

λ(φ, τ) ∼ (φ2 + n− 1)−(γ+1)/2, as φ↗∞(5.1)

uniformly for all τ > τ0. Hence, item (3) of Theorem 1.1 follows.
Now we proceed to justify the accurate curvature blow-up rate and sin-

gularity model as stated in items (1) and (2) of Theorem 1.1. To study
the behaviour of such a MCF solution near the tip as τ ↗ ∞, we work
with y(z, τ) instead of λ(z, τ). Recall that y(z, τ) evolves by equation (2.4).

Recall that Ã = −1/A. Define p̃(z, τ) by the relation

y(φ, τ) = Ã+ e−τ p̃(z, τ).(5.2)

Then p̃(z, τ) satisfies the PDE, B[p̃] = 0 where

B[p̃] = a−
(

p̃zz
1 + p̃2

z

+
n− 1

z
p̃z

)
+ e−τ (∂τ |z p̃+ zp̃z − p̃) .

4The locally open condition applies near where we smooth the corner. The prescribed
geometries near the tip and the spatial infinity are unaffected.



ON THE PRECISE ASYMPTOTICS OF TYPE-IIB MCF SOLUTIONS 21

Recall that φ(y, τ) and y(φ, τ) denote the functions along the flow which
are inverse to each other. Define

y(0)(φ) := c−1
(
φ2 + n− 1

)(γ+1)/2
,

φ(0)(y) :=
√

(cy)2/(γ+1) − (n− 1).

Let λ(0)(φ) := −1/y(0)(φ). By the uniformity in the construction of the
initial hypersurface and the barriers in terms of λ0 and λ± , we have as
τ →∞

λ(φ, τ)→ λ(0)(φ)

locally uniformly for φ ∈ [0,∞) by the comparison principle for the equation
of λ(φ, τ), as in Lemma 7.1 of [3]. In particular, we obtain the uniform
closeness to the barriers on the initial hypersurface by direct construction,
whereas in [3] the estimates use an Exit Lemma (cf. [3, Lemma 3.1]) and
the information of the neck region, which is no longer present in our case.
Therefore,

y(φ, τ)→ y(0)(φ)

locally uniformly for φ ∈ [0,∞).
We then prove the following result corresponding to Lemma 7.2 in [3].

Lemma 5.1 (Type-IIb blow-up). Recall the function P̃ defined in (2.10)
which forms part of a formal solution to MCF. We have the following as-
ymptotic behaviour of p̃:

lim
τ↗∞

(p̃(z, τ)− p̃(0, τ)) =
1

(γ + 1)Ã
P̃
(

(γ + 1)Ãz
)

(5.3)

uniformly on compact z intervals.

Proof of Lemma 5.1. We show that p̃(z, τ) converges uniformly to P̃
(

(γ + 1)Ãz
)

as τ → ∞ for bounded z > 0. By the Fundamental Theorem of Calcu-
lus and P̃ (0) = 0, it suffices to show that p̃z(z, τ) converges uniformly to

P̃ ′
(

(γ + 1)Ãz
)

as τ ↗∞ for bounded z > 0. To this end, let us introduce

a new “time” variable

s :=
e2γτ

2γ
.

In terms of s, the function p̃ defined in (5.2) satisfies the PDE

∂s|z p̃ =
p̃zz

1 + p̃2
z

+
n− 1

z
p̃z − (γ + 1)Ã+

γ − 1

2γ

1

s
(p̃− zp̃z).(5.4)

The quantity q(z, s) := p̃z(z, τ) satisfies B[q] = 0, where

B[q] =
∂q

∂s
+
γ − 1

2γ

1

s
zqz −

∂

∂z

(
qz

1 + q2
+
n− 1

z
q

)
.(5.5)
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We note that equations (5.4) and (5.5) are similar to equations (7.13) and

(7.14) in [3]. Indeed, we see that the coefficient γ−1
2γ here is replaced by m−1

m−2

in [3].
The proof in [3, pp.51–58] applies to our case mutatis mutandis (see a

summary of the argument for the convergence of q in [15, Appendix B])
except for the construction of a supersolution for the equation B[q] = 0.
The construction in [3] (p.53) uses the fact that the constant coefficient is
m−1
m−2 > 0 for m > 3, but in this paper the constant coefficient is γ−1

2γ , where

γ > 0, and it can be negative if γ ∈ (0, 1). Here, we construct a supersolution
on the domain Ση := {(z, s) : 0 6 z 6

√
ηs}, where η > 0 is a constant to

be chosen, as follows. Let Q(z) = P̃ ′(z) and define

q+(z, s) = Q(z) +
1

s
L+(z),

where L+(z) solves the ODE (which is just equation (7.17) in [3])

(L+)′(z)

1 +Q(z)2
+

(
n− 1

z
− 2Q(z)Q′(z)

(1 + (Q(z)2))2

)
L+(z) = (θ+)

z2

2
(5.6)

with L(0) = 0 and θ+ is a constant to be chosen. Then following the rest of
the argument on p.52–53 in [3], we have

B
[
Q(z) + L+(z)/s

]
>

(
−θ+ +

γ − 1

2γ
Q′(z)− Cη

)
,

where C is some constant and there is another constant C1 <∞ such that

sup
z>0

∣∣∣∣γ − 1

2γ
Q′(z)

∣∣∣∣ 6 C1

because P̃ (z) solves the ODE-IVP (2.10). Then we can choose η small so
that −Cη > −1 and so

B
[
Q(z) + L+(z)/s

]
>
(
−θ+ − C1 − 1

)
> 0,

on Ση as long as we choose −θ+ > C1 + 1.
So the lemma is proved. �

Lemma 5.1 implies that a smooth convex MCF solution expressed in
y(z, τ) satisfies the following asymptotics: on a compact z interval (in the
interior region), as τ ↗∞,

y(z, τ) = Ã− e−γτ p̃(0, τ) + e−2γτ 1

(γ + 1)Ã
P̃
(

(γ + 1)Ãz
)

= y(0, τ) + e−2γτ 1

(γ + 1)Ã
P̃
(

(γ + 1)Ãz
)
.

So item (2) of Theorem 1.1 is proved. This expansion is indeed valid for
higher order derivatives in light of higher order estimates involved in the
proof of Lemma 5.1.
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Item (2) implies that at t↗∞, for z ∈ [0, R1], our MCF solution neces-

sarily blows up at the rate predicted by the formal solution e−2γτ P̃((γ+1)Ãz)
(γ+1)Ã

(cf. Section 2). In particular,

κ1|tip = κn|tip = (γ + 1)Ã(2t+ 1)(γ−1)/2.(5.7)

We now prove a lemma which says that the supremum of the curvature
of our Type-IIb solution to MCF is achieved at the tip as t↗∞.

Lemma 5.2. Under MCF, sup
Γt

|h| occurs at the tip of Γt as t↗∞.

Proof of Lemma 5.2. We first record two properties of our solution Γt.

(P1) On each time slice Γt, lim
x→∞

|h(x, t)| = 0.

Indeed, since the solution Γt is Type-IIb [6, Theorem 1.2], then
for any t̄ < ∞, there exists some constant K = K(t̄) such that
supΓt |h|

2 6 K for all t ∈ [t0, t̄]. Under MCF, |h|2 evolves by(
|h|2
)
t

= ∆t|h|2 − 2|∇h|2 + |h|4

6 ∆t|h|2 + C(n)K|h|2.

So |h|2 is a subsolution to a linear heat equation, much as under Ricci
flow, |Rm |2 is a subsolution of a linear heat equation. Consequently,
using the same proof as given by Hamilton in [13, Theorem 18.2],
we conclude that for all t ∈ [t0, t̄], we have lim

x→∞
|h(x, t)| = 0. Since

t̄ is arbrariry, property (P1) is proved.
(P2) The strictly convex Γ0 satisfies the δ-Andrews’ noncollapsing con-

dition (cf. definition by Sheng and Wang in [17] and by Andrews
in [1]), i.e., there exists δ > 0 such that for every p ∈ Γ0 there are

closed balls B̄int ⊆ K, where ∂K = Γ0, and B̄ext ⊆ Rn+1 \
◦
K, of

radius at least δ/H(p) that are tangent to M at p from the interior
and exterior of M respectively.

Indeed, since Γ0 is obtained from gluing and smoothing a trun-
cated bowl soliton and a rotationally symmetric graph with super-
linear growth, both of which satisfy the δ-Andrews’ noncollapsing
condition, property (P2) follows from the construction of Γ0.

By property (P1) and (5.7), at each time slice, there exists x̃(t) such that
supΓt |h| is achieved at x̃(t); i.e.,

sup
Γt

|h|2 = |h(x̃(t), t)|2 = (n− 1)κ2
1(x̃(t), t) + κ2

n(x̃(t), t),

where κ1 and κn are the principal curvatures of Γt. Precisely, for the rota-
tionally symmetric hypersurface whose profile function is u(x), the principal
curvatures are

κ1 = · · · = κn−1 =
1

u(1 + u2
x)1/2

, κn = − uxx

(1 + u2
x)3/2

,
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where the first n − 1 indices correspond to the rotation and n corresponds
to the graph direction. We define

R̃(t) :=
κn(x̃(t), t)

κ1(x̃(t), t)
,

which is invariant under scaling.
We have the following two cases.
Case 1. There exists a universal constant M and some t1 > t0 such that

R̃(t) 6M for all t > t1.
In this case, we prove directly that supΓt |h| occurs at the tip as t↗∞.

Indeed, by the convergence (5.3), as t ↗ ∞ and for z ∈ [0, R1] our MCF
solution necessarily blows up at the rate predicted by the formal solu-

tion e−2γτ P̃((γ+1)Ãz)
(γ+1)Ã

(cf. Section 2), for which R 6 1 [4, Lemma 3.5].

In particular, κ1 = κn = (γ + 1)Ã(2t + 1)(γ−1)/2 at the tip of Γt. If

z = u(2t+ 1)(γ−1)/2 > R1, then

κ1 = u−1(1 + u2
x)−1/2 6 R−1

1 (2t+ 1)(γ−1)/2,

and from R̃(t) 6M for all t > t1 it follows that

κn(x̃(t), t) 6 R̃(t)κ1(x̃(t), t)

6MR−1
1 (2t+ 1)(γ−1)/2

< (γ + 1)Ã(2t+ 1)(γ−1)/2 = κn|tip = κ1|tip

as long as we initially have chosen R1 � 1 such that

max{R−1
1 ,MR−1

1 } < (γ + 1)Ã.

So as t ↗ ∞, the highest curvature of this MCF solution Γt occurs at the
tip and blows up at the Type-IIb rate (2t+ 1)(γ−1)/2.

Case 2. Suppose that Case 1 does not hold. Then there exists tj ↗ ∞
such that

R̃j := R̃(tj)↗∞ as j ↗∞.

Moreover, suppose by way of contradiction that supΓt |h| does not occur at
the tip of Γt as t↗∞. Since

κ2
n(x̃(tj), tj) + (n− 1)

κ2
n(x̃(tj), tj)

R̃2
j

= sup
Γtj

|h|2

> |h|tip(tj)|2 > c̃(2tj + 1)(γ−1).

for some positive constant c̃, we have found a sequence of space-time points
along which κn of Γt must blow up at a Type-IIb rate. We now perform
Type-IIb blow-up using κn by letting Lj := κn(x̃(tj), tj) and considering
the following rescaled MCFs (up to a translation in time, we can assume
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t0 = 0):

Γjt := Lj

(
Γtj+L−2

j t − ϕ(pj , tj)
)
,

where pj is defined by ϕ(pj , tj) = (x̃(tj), u(x̃(tj)), 0, . . . , 0) ∈ Rn+1. We note
that, at the origin of the space-time Rn+1 × R, the principal curvatures of

Γjt satisfy κjn = 1 and κj1 = · · · = κjn−1 = κjn/R̃j . Then up to a subsequence,

Γjt converges to Γ∞t = Rn−k × Σk in C∞loc-topology as j ↗ ∞ in such a
way such at the origin in space-time κ∞n achieves the maximum value 1
whereas κ∞1 = · · · = κ∞n−1 = 0, and Σk is a k-dimensional strictly convex

translating soliton [6, Theorem 1.4]. As a result, Γ∞t = Rn−1 × Σ1, where
Σ1 is the one-dimensional translating soliton to MCF known as the Grim
Reaper, which is not δ-Andrews’ noncollapsed. However, by property (P2),

each Γt is δ-noncollapsed [6, Theorem 4.1] and so are Γjt as well as the limit
Γ∞t , contradicting the fact that Rn−1 × {Grim Reaper} is not δ-Andrews’
noncollapsed.

Therefore, we have proved Lemma 5.2. �

By Lemmata 5.1 and 5.2, we have that as t ↗ ∞, the highest curvature
of this MCF solution occurs at the tip and blows up at the Type-IIb rate
(2t+ 1)(γ−1)/2, which proves item (1) of Theorem 1.1.

Therefore, Theorem 1.1 is proved. �
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