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Abstract. In this paper, we prove a quantitative version of the isoperimetric
inequality involving the second non-trivial eigenvalue of the Laplacian with Neu-
mann boundary condition established by Bucur and Henrot [5].

1. Introduction

Given a bounded open Lipschitz set Ω ⊂ Rn (n ≥ 2), we consider the eigenvalue
problem 

∆u+ µu = 0, in Ω

∂u

∂ν
= 0, on ∂Ω.

On such domains, the Laplacian operator with Neumann boundary conditions has
discrete spectrum

0 = µ0 (Ω) ≤ µ1 (Ω) ≤ µ2 (Ω) ≤ . . .→∞,
where the eigenvalues are counted with their multiplicities.

For each k ≥ 1, the k-th Neumann eigenvalue has the variational characterisation

µk (Ω) = min
S∈Sk

max
u∈S

∫
Ω |∇u|

2 dx∫
Ω |u|

2 dx
,(1.1)

where Sk is the family of all k-dimensional subspaces in {u ∈ H1(Ω) :
∫

Ω udx = 0}.
If Ω is connected, then µ1 (Ω) > 0.

The classical Szegö-Weinberger inequality for µ1(Ω) asserts that for any bounded
open Lipschitz set Ω ⊂ Rn (n ≥ 2), there holds

|Ω|
2
n µ1(Ω) ≤ |B|

2
n µ1(B),(1.2)

and if equality occurs, then Ω = B a.e., where B is (any) ball. In 1954, Szegö [9]
proved this inequality for simply connected smooth domains in R2 by conformal
method. Using a topological degree argument to find the test functions for µ1(Ω),
Weinberger [10] removed the topological constraint and the dimension restriction in
1956.

Concerning the second non-trivial Neumann eigenvalue, Girouard, Nadirashvili
and Polterovich [7] proved that in R2, the union of two disjoint, equal disks pro-
duces a larger µ2(Ω) than any smooth simply connected planar domain of the same
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measure, and this value is asymptotically attained by two disks with vanishing inter-
section. Building on Weinberger’s strategy, Bucur and Henrot [5] devised a degree
argument which enabled them to build test functions for the second non-trivial Neu-
mann eigenvalue µ2(Ω). This is no trivial task because the test functions must be
orthogonal to both the constant functions and the unknown first Neumann eigen-
functions on Ω. Consequently, Bucur and Henrot [5] made the breakthrough on
the isoperimetric inequality for µ2(Ω) by showing that for an arbitrary domain Ω of
prescribed measure in Rn (n ≥ 2), there holds

|Ω|
2
nµ2(Ω) ≤ (2|B|)

2
n µ1(B),(1.3)

and if equality occurs, then Ω coincides a.e. with the union of two disjoint, equal
balls. In this paper, we refer to (1.3) as the Bucur-Henrot inequality.

Concerning the stability of isoperimetric inequalities involving the Neumann eigen-
values, Nadirashvili [8] proved one of the first quantitative improvements of the
Szegö-Weinberger inequality for simply-connected sets in the plane. Later, Brasco
and Pratelli [4] established the sharp quantitative Szegö-Weinberger inequality for
arbitrary open Lipschitz sets in Rn:

|B|
2
nµ1(B)− |Ω|

2
n µ1(Ω) ≥ cnA(Ω)2,(1.4)

where cn is a constant depending only on the dimension n. The exponent 2 of A(Ω)
in (1.4) is optimal. Here, A(Ω) is the Fraenkel asymmetry of a set defined by

A(Ω) := inf

{
|Ω ∆B|
|Ω|

: |B| = |Ω|
}
,

where Ω ∆B denotes the symmetric difference between Ω and B. A related quantity
is the Fraenkel 2-asymmetry which measures the distance of Ω from the disjoint
union of two equal balls and is defined as

A2(Ω) := inf

{
|Ω ∆ (B1 ∪B2)|

|Ω|
: |B1 ∩B2| = 0 and |B1| = |B2| =

|Ω|
2

}
.(1.5)

We note that there is a universal constant c > 0 such that A2(Ω) ≤ c.
Inspired by the Bucur-Henrot inequality (1.3) and the sharp quantitative Szegö-

Weinberger inequality (1.4) due to Brasco and Pratelli, we prove in this paper the
following quantitative Bucur-Henrot inequality.

Theorem 1.1. For every bounded open Lipschitz set Ω ⊂ Rn, we have

(2 |B|)
2
n µ1 (B)− |Ω|

2
n µ2(Ω) ≥ cnA2(Ω)n+1,(1.6)

where B is any ball in Rn and cn is a positive constant depending only on the
dimension n.

Let us relax the definition of the Fraenkel 2-asymmetry to

E2(Ω) := inf

{
|Ω ∆ (B1 ∪B2)|

|Ω|
: |B1| = |B2| =

|Ω|
2

}
,(1.7)
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and call E2(Ω) the 2-error of the set Ω in this paper. By definition, E2(Ω) ≤ A2(Ω).
As shown by Brasco and Pratelli (cf. [4, Lemma 3.3]), the 2-error controls the
Fraenkel 2-asymmetry:

A2(Ω)n+1 ≤ cnE2(Ω)2.(1.8)

Theorem 1.1 follows from the following theorem via (1.8).

Theorem 1.2. For every bounded open Lipschitz set Ω ⊂ Rn, we have

(2 |B|)
2
n µ1 (B)− |Ω|

2
n µ2(Ω) ≥ cnE2(Ω)2,(1.9)

where B is any ball in Rn and cn is a positive constant depending only on the
dimension n.

As we will see in Section 4, the exponent 2 of E2(Ω) in the quantitative inequality
(1.9) is sharp. In contrast, it is very likely that the exponent n+ 1 of A2(Ω) in the
quantitative inequality (1.6) is not sharp, but we are not able to prove it here. We
expect the sharp exponent of A2(Ω) in (1.6) to depend on the dimension n owing to
the example constructed by Brasco and Pratelli [4, Example 3.4]. We note that the
same phenomenon occurs in the quantitative Hong-Krahn-Szegö inequality for the
second non-trivial eigenvalue of the Laplacian with Dirichlet boundary condition,
cf. [4, Section 3] and [3, Section 7.6.1].

The study of the optimal value of cn in a quantitative isoperimetric inequality is
not at all trivial. To the best of the authors’ knowledge, such a study is the most
fruitful in dimension n = 2 [1, 2, 6]. In this paper, we do not attempt to estimate
the constant cn in either inequality (1.6) or inequality (1.9).

This paper is organised as follows. In Section 2, we fix the notation and collect
some preliminary facts. Section 3 is devoted to the proof of Theorem 1.2. In Section
4, we adapt the construction by Brasco and Pratelli in [4] to establish the sharpness
of the exponent 2 of E2(Ω) in the quantitative inequality (1.9).

2. Notation and preliminaries

Let Br denote a ball of radius r centred at the origin O ∈ Rn and ωn the volume
of B1. Then the first non-trivial Neumann eigenvalue rescales according to

µ1 (B1) = r2µ1 (Br) .(2.1)

We denote by g1 a non-negative, strictly increasing solution of the following ODE
boundary value problem on the interval (0, 1):

g′′1(t) +
n− 1

t
g′1(t) +

(
µ1(B1)− n− 1

t2

)
g1(t) = 0, g1(0) = g′1(1) = 0.(2.2)

Then the eigenfunctions of µ1(B1) are given by

g1(|x|) xi
|x|
, i = 1, . . . , n.
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Given a bounded open Lipschitz set Ω ⊂ Rn, we define

r0 :=

(
|Ω|
2ωn

) 1
n

.(2.3)

Then |Br0 | = |Ω|/2. We now define g : [0,∞)→ R by

g(t) :=

{
g1 (t/r0) , t < r0,

g1(1), t ≥ r0.
(2.4)

Then g is a non-negative, strictly increasing function on [0, r0], and g′(t) = 0 on
[r0,∞). Since

g1

(
|x|
r0

)
xi
|x|
, i = 1, . . . , n

are the eigenfunctions of µ1(Br0), (1.1) implies

µ1 (Br0) =

∫
Br0

h (rO(x)) dx∫
Br0

g2 (rO(x)) dx
,(2.5)

where h : [0,∞)→ R is defined by

h(t) :=
(
g′(t)

)2
+
n− 1

t2
g2(t),(2.6)

and rx(y) denotes the Euclidean distance between x, y ∈ Rn. Let us also define

h1(t) :=
(
g′1(t)

)2
+
n− 1

t2
g2

1(t).(2.7)

Then it follows from (2.2) that h′1(t) ≤ 0 for t ∈ [0, 1]. We note that h rescales by

h(t) =
1

r2
0

h1

(
t

r0

)
(2.8)

for t ∈ [0, r0], and (2.7) implies that

h′(t) =
2(n− 1)

t

(
g′(t)− g(t)

t

)2

− 2µ1 (Br0) g(t)g′(t)

≤ 0

for t ∈ [0, r0]. If t > r0, then by definition

h(t) =
n− 1

t2
g1(1),

and hence h′(t) < 0 for t > r0.
Let us now recall some results from [5].
Given two different points A,B ∈ Rn, let HA and HB denote the half-spaces

determined by the mediator hyperplane ΠAB of the segment AB and containing A
and B, respectively. We define the map TAB : Rn → Rn by

TAB(v) := v − 2
(−→
ab · v

)−→
ab,(2.9)
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where
−→
ab =

−−→
AB/

∣∣∣−−→AB∣∣∣, and the map gAB : Rn → Rn by

gAB(x) :=

{
g (rA(x))∇rA(x), x ∈ HA,

TAB (g (rB(x))∇rB(x)) , x ∈ HB.
(2.10)

Let {ei}ni=1 be orthonormal basis vectors of Rn and u1 a first eigenfunction of
the Neumann Laplacian on Ω. A crucial step in [5], known as the centre-of-mass
theorem, states that there exist distinct points A,B ∈ Rn such that∫

Ω
gAB · ei dx =

∫
Ω
gAB · eiu1 dx = 0 for all i = 1, . . . , n,

and that the second non-trivial Neumann eigenvalue satisfies

µ2(Ω) ≤

n∑
i=1

∫
Ω

∣∣∇ (gAB · ei
)∣∣2 dx

n∑
i=1

∫
Ω |gAB · ei|2 dx

.(2.11)

3. Proof of Theorem 1.2

From now on, cn and c̃n denote constants which depend only on n but may change
from line to line.

Let ΩA := Ω ∩HA and ΩB := Ω ∩HB. Since HA t ΠAB tHB = Rn and Ω is a
bounded open Lipschitz set of positive measure, ΩA and ΩB cannot be both empty1.
Recall the definition of r0 in (2.3) and that |Br0 | = |Ω|/2.

Lemma 3.1. For every bounded open Lipschitz set Ω ⊂ Rn, we have

cn |Ω| (µ1 (Br0)− µ2(Ω)) ≥ 2µ1 (Br0)

∫
Br0

g2dx− µ2 (Ω)

n∑
i=1

∫
Ω

∣∣gAB · ei
∣∣2 dx.(3.1)

Proof. We have

2µ1 (Br0)

∫
Br0

g2dx− µ2 (Ω)
n∑

i=1

∫
Ω

∣∣gAB · ei
∣∣2 dx

= 2µ1 (Br0)

∫
Br0

g2dx− µ2 (Ω)

(∫
ΩA

g2 (rA(x)) dx+

∫
ΩB

g2 (rB(x)) dx

)
= (µ1 (Br0)− µ2 (Ω))

(∫
ΩA

g2 (rA(x)) dx+

∫
ΩB

g2 (rB(x)) dx

)
︸ ︷︷ ︸

(I)

+ µ1 (Br0)

(
2

∫
Br0

g2dx−
∫

ΩA

g2 (rA(x)) dx−
∫

ΩB

g2 (rB(x)) dx

)
︸ ︷︷ ︸

(II)

.

1The proof in the rest of this section goes through if either ΩA or ΩB is empty.
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We now estimate the term I. Since g is non-decreasing for r > 0, we have

I =

∫
ΩA

g2 (rA(x)) dx+

∫
ΩB

g2 (rB(x)) dx

≤
∫

ΩA

g2 (r0) dx+

∫
ΩB

g2 (r0) dx

= cn|Ω|.
The last equality follows from that

g(r0) = (r0)1−n
2 Jn

2

(√
µ1 (Br0)

)
= cn,

where Jn
2

is the standard Bessel function.

We now estimate the term II. Let Br1 and Br2 be balls centred at A and B,
respectively, such that

|ΩA| = |Br1 | , |ΩB| = |Br2 | .
Without loss of generality, we assume r1 ≤ r0 ≤ r2. We note that

|Br1 |+ |Br2 | = |Ω| = 2 |Br0 |
implies

rn1 + rn2 = 2rn0 .(3.2)

Since g(t) is non-decreasing in t, we have∫
ΩA

g2 (rA(x)) dx =

∫
ΩA∩Br1

g2 (rA(x)) dx+

∫
ΩA\Br1

g2 (rA(x)) dx

≥
∫

ΩA∩Br1

g2 (rA(x)) dx+

∫
ΩA\Br1

g2 (r1) dx,

and ∫
Br1

g2(rA(x))dx =

∫
Br1∩ΩA

g2(rA(x))dx+

∫
Br1\ΩA

g2(rA(x))dx

≤
∫
Br1∩ΩA

g2(rA(x))dx+

∫
Br1\ΩA

g2(r1)dx.

Because |ΩA| = |Br1 |, the above two chains of inequalities yield∫
ΩA

g2 (rA(x)) dx ≥
∫
Br1

g2(rA(x))dx

= σn−1

∫ r1

0
g2(t)tn−1dt.

Similarly, there holds∫
ΩB

g2 (rB(x)) dx ≥
∫
Br2

g2(rB(x))dx

= σn−1

∫ r2

0
g2(t)tn−1dt.
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As a result, we get the estimate

II =

(
2

∫
Br0

g2dx−
∫

ΩA

g2 (rA(x)) dx−
∫

ΩB

g2 (rB(x)) dx

)

≤ σn−1

(
2

∫ r0

0
g2(t)tn−1dt−

∫ r1

0
g2(t)tn−1dt−

∫ r2

0
g2(t)tn−1dt

)
= σn−1

(∫ r0

r1

g2(t)tn−1dt−
∫ r2

r0

g2(t)tn−1dt

)
≤ σn−1

(∫ r0

r1

g2 (r0) tn−1dt−
∫ r2

r0

g2 (r0) tn−1dt

)
= ωng

2 (r0) (2rn0 − rn1 − rn2 )

= 0,

where the last equality follows from (3.2).
Therefore, we have

2µ1 (Br0)

∫
Br0

g2(r)dx− µ2 (Ω)
n∑

i=1

∫
Ω

∣∣gAB · ei
∣∣2 dx

= (µ1 (Br0)− µ2(Ω)) · (I) + µ1 (Br0) · (II)

≤ cn |Ω| (µ1 (Br0)− µ2(Ω)) ,

which proves the lemma. �

We now prove Theorem 1.2, whence follows Theorem 1.1 by (1.8).

Proof of Theorem 1.2. By (2.1), inequality (1.6) is equivalent to

(2ωn)
2
n µ1 (B1)− |Ω|

2
n µ2(Ω) ≥ cnE2(Ω)2.(3.3)

By Lemma 3.1, we have

cn |Ω| (µ1 (Br0)− µ2(Ω)) ≥ 2µ1 (Br0)

∫
Br0

g2dx− µ2 (Ω)
n∑

i=1

∫
Ω

∣∣gAB · ei
∣∣2 dx.(3.4)

We prove (3.3) by estimating the right hand side of (3.4).
From (2.5) and (2.11) we deduce that

2µ1 (Br0)

∫
Br0

g2(r(x)) dx− µ2 (Ω)

n∑
i=1

∫
Ω

∣∣gAB · ei
∣∣2 dx

≥ 2

∫
Br0

h(r(x)) dx−
n∑

i=1

∫
Ω

∣∣∇ (gAB · ei
)∣∣2 dx.

Using the expression of gAB in (2.10), we have that

n∑
i=1

∫
Ω

∣∣∇ (gAB · ei
)∣∣2 dx =

∫
ΩA

n∑
i=1

|∇ (g(rA)∇rA · ei)|2 dx
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+

∫
ΩB

n∑
i=1

|∇ (TAB(g(rB)∇rB) · ei)|2 dx.

Since
n∑

i=1

|∇ (g(rA)∇rA · ei)|2 =
n∑

i=1

∣∣g′(rA)(∇rA · ei)∇rA + g(rA)∇2rA(ei)
∣∣2

= (g′(rA))2 +
n− 1

r2
A

g2(rA)

= h(rA),

and
n∑

i=1

|∇ (TAB((g(rB)∇rB)) · ei)|2

=
n∑

i=1

∣∣∣∇(g(rB)(∇rB · ei)− 2g(rB)(
−→
ab · ∇rB)(

−→
ab · ei)

)∣∣∣2
=

n∑
i=1

|∇ ((g(rB)∇rB) · ei)|2

= h(rB),

we then have that

2µ1 (Br0)

∫
Br0

g2dx− µ2 (Ω)
n∑

i=1

∫
Ω

∣∣gAB · ei
∣∣2 dx

≥ 2

∫
Br0

h(r(x))dx−
∫

ΩA

h (rA(x)) dx−
∫

ΩB

h (rB(x)) dx

=

∫
Br0 (A)

h(rA(x))dx−
∫

ΩA

h (rA(x)) dx

+

∫
Br0 (B)

h (rB(x)) dx−
∫

ΩB

h (rB(x)) dx

=

∫
Br0 (A)\ΩA

h (rA(x)) dx−
∫

ΩA\Br0 (A)
h (rA(x)) dx

+

∫
Br0 (B)\ΩB

h (rB(x)) dx−
∫

ΩB\Br0 (B)
h (rB(x)) dx

=: III,

where Br0(A) and Br0(B) denote balls or radius r0 centred at A and B, respectively.
To estimate the term III, we define r1 and r2 such that

|Br0(A) ∪ ΩA| = ωnr
n
1 ,(3.5)

|Br0(A) \ ΩA| = ωn (rn0 − rn1 ) ,(3.6)

|ΩA \Br0(A)| = ωn (rn2 − rn0 ) .(3.7)
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Similarly, we define r3 and r4 such that

|Br0(B) ∪ ΩB| = ωnr
n
3 ,(3.8)

|Br0(B) \ ΩB| = ωn (rn0 − rn3 ) ,(3.9)

|ΩB \Br0(B)| = ωn (rn4 − rn0 ) .(3.10)

Then

|ΩA|+ |ΩB| = |Ω| = 2 |Br0 |

implies

rn1 + rn2 + rn3 + rn4 = 4rn0 .(3.11)

Since h(t) is non-increasing in t, we have∫
Br0 (A)\ΩA

h (rA(x)) dx ≥ σn−1

∫ r0

r1

h(t)tn−1dt,

and

∫
ΩA\Br0 (A)

h (rA(x)) dx ≤ σn−1

∫ r2

r0

h(t)tn−1dt,

and likewise, ∫
Br0 (B)\ΩB

h (rB(x)) dx ≥ σn−1

∫ r0

r3

h(t)tn−1dt,

and

∫
ΩB\Br0 (B)

h (rB(x)) dx ≤ σn−1

∫ r4

r0

h(t)tn−1dt.

As a result, we arrive at the estimate

III ≥ σn−1

(∫ r0

r1

h(t)tn−1dt+

∫ r0

r3

h(t)tn−1dt−
∫ r2

r0

h(t)tn−1dt−
∫ r4

r0

h(t)tn−1dt

)
= σn−1

[∫ r0

r1

(h(t)− h(r0)) tn−1dt+

∫ r0

r1

h(r0)tn−1dt

]
+ σn−1

[∫ r0

r3

(h(t)− h(r0)) tn−1dt+

∫ r0

r3

h(r0)tn−1dt

]
− σn−1

[∫ r2

r0

(h(t)− h(r0)) tn−1dt+

∫ r2

r0

h(r0)tn−1dt

]
− σn−1

[∫ r4

r0

(h(t)− h(r0)) tn−1dt+

∫ r4

r0

h(r0)tn−1dt

]
= σn−1

[∫ r0

r1

(h(t)− h(r0)) tn−1dt+

∫ r0

r3

(h(t)− h(r0)) tn−1dt

]
− σn−1

[∫ r2

r0

(h(t)− h(r0)) tn−1dt+

∫ r4

r0

(h(t)− h(r0)) tn−1dt

]
=: IV,
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where in the first equality we have used

−
∫ r0

r1

tn−1dt−
∫ r0

r3

tn−1dt+

∫ r2

r0

tn−1dt+

∫ r4

r0

tn−1dt =
rn1 + rn2 + rn3 + rn4 − 4rn0

n
= 0

because of (3.11).
We continue the proof by estimating the term

IV = σn−1

[∫ r0

r1

(h(t)− h(r0)) tn−1dt+

∫ r0

r3

(h(t)− h(r0)) tn−1dt

]
− σn−1

[∫ r2

r0

(h(t)− h(r0)) tn−1dt+

∫ r4

r0

(h(t)− h(r0)) tn−1dt

]
.

Recall that

h(t) =
(
g′(t)

)2
+
n− 1

t2
g2(t),

h(r0) =
n− 1

r2
0

g2(r0),

g(t) = g(r0) and g′(t) = 0 for t ≥ r0.

Then we have

−
∫ r2

r0

(h(t)− h(r0)) tn−1dt = −
∫ r2

r0

((
g′(t)

)2
+
n− 1

t2
g2(t)− n− 1

r2
0

g2(r0)

)
tn−1dt

= g2(r0)

∫ r2

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt

since g′(t) = 0 for t ≥ r0; similarly, there holds

−
∫ r4

r0

(h(t)− h(r0)) tn−1dt = g2(r0)

∫ r4

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt.

So then

III ≥ IV

(3.12)

= σn−1

[∫ r0

r1

(h(t)− h(r0)) tn−1dt+

∫ r0

r3

(h(t)− h(r0)) tn−1dt

]
+ σn−1g

2(r0)

[∫ r2

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt+

∫ r4

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt

]
.

We note that all the integrands in IV are non-negative.
The proof now proceeds in two cases.
Case 1. Let us suppose that |r0 − ri| > r0/2 for some i ∈ {1, 2, 3, 4}.
Suppose that |r0−r1| > r0/2, i.e., r1 < r0/2. Then using (2.6) and that h′1(t) ≤ 0

on [0, 1], we see that (3.12) implies that

III ≥ IV ≥
∫ r0

r1

(h(t)− h(r0)) tn−1dt
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= rn0

∫ 1

r1/r0

(h(r0t)− h(r0)) tn−1dt

= rn0

∫ 1

r1/r0

1

r2
0

(h1(t)− h1(1)) tn−1dt

≥ rn−2
0

∫ 1

1/2
(h1(t)− h1(1)) tn−1dt

=
c̃n
r2

0

|Ω|.

Similarly, suppose that |r0 − r3| > r0/2, i.e., r3 < r0/2, then we have

III ≥ c̃n
r2

0

|Ω|.

Suppose that |r0 − r2| > r0/2, i.e., r2 > 3r0/2. Then from (3.12) we get

III ≥ IV (n− 1)σn−1g
2(r0)

∫ r2

r0

(
1

r2
0

− 1

t2

)
tn−1dt

≥ (n− 1)σn−1(g1(1))2

∫ 3
2
r0

r0

(
1

r2
0

− 1

t2

)
tn−1dt

= cnr
n−2
0

∫ 3/2

1

(
1− 1

u2

)
un−1du

=
c̃n
r2

0

|Ω|.

Similarly, suppose that |r0 − r4| > r0/2, i.e., r4 > 3r0/2, then we have

III ≥ c̃n
r2

0

|Ω|.

Combining the previous estimates with (3.4) yields

cn |Ω| (µ1 (Br0)− µ2 (Ω)) ≥ III ≥ c̃n
r2

0

|Ω| ;

that is,

µ1 (Br0)− µ2 (Ω) ≥ cn
r2

0

,

where r0 = (|Ω|/(2ωn))1/n. Thus, by (2.1) we have

(2ωn)
2
n µ1(B1)− |Ω|

2
n ≥ cn ≥ cnE2(Ω)2,

proving the stability inequality (3.3) in Case 1.
Case 2. Let us suppose that |r0 − ri| ≤ r0/2 for i = 1, 2, 3, 4.
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The goal is to estimate

IV = σn−1

[∫ r0

r1

(h(t)− h(r0)) tn−1dt+

∫ r0

r3

(h(t)− h(r0)) tn−1dt

](3.13)

+ σn−1g
2(r0)

[∫ r2

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt+

∫ r4

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt

]
.

By the Mean Value Theorem, we have∫ r0

r1

(h(t)− h(r0)) tn−1dt = rn0

∫ 1

r1/r0

(h(tr0)− h(r0)) tn−1dt

= rn0

∫ 1

r1/r0

(
h′(ξ)(t− 1)r0

)
tn−1dt

for some ξ ∈ (r1, r0). Recall that h(t) defined by (2.6) rescales according to (2.8).
So h(t) and h′(t) rescale according to

h(t) =
1

r2
h1

(
t

r

)
, h′(t) =

1

r3
h′1

(
t

r

)
,

respectively, and hence there exists θ = ξ/r0 ∈ (1/2, 1) such that

h′(ξ) =
1

r3
0

h′1(θ)

= − 1

r3
0

[
−2(n− 1)

θ

(
g′1(θ)− g1(θ)

θ

)2

+ 2µ1 (B1) g1(θ)g′1(θ)

]
≤ −cn

r3
0

for some constant cn. It then follows that∫ r0

r1

(h(t)− h(r0)) tn−1dt ≥ rn0
∫ 1

r1/r0

cn
r3

0

(1− t)r0t
n−1dt.

Since r1/r0 ≥ 1/2 and cn(1− t) ≥ 0, it then follows that∫ r0

r1

(h(t)− h(r0)) tn−1dt ≥ cn
2n−1

rn−2
0

∫ 1

r1/r0

(1− t)dt

=
cn
r4

0

rn0 (r0 − r1)2 ;

that is, ∫ r0

r1

(h(t)− h(r0)) tn−1dt ≥ cn
r4

0

rn0 (r0 − r1)2 .(3.14)

Similarly, we have ∫ r0

r3

(h(t)− h(r0)) tn−1dt ≥ cn
r4

0

rn0 (r0 − r3)2(3.15)
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To estimate the remaining integrals in (3.13), we let u(t) := (n − 1)/t2. Then
again the Mean Value Theorem implies that for some ξ ∈ (1, r2/r0), there holds

g2(r0)

∫ r2

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt = g2(r0)

∫ r2

r0

(u(r0)− u(t)) tn−1dt

= g2(r0)rn0

∫ r2/r0

1
(u(r0)− u(r0t)) t

n−1dt

= g2(r0)rn0

∫ r2/r0

1
u′(ξ)(1− t)r0t

n−1dt

≥ −cn
r2

0

rn0

∫ r2/r0

1
(1− t)dt

=
cn
r4

0

rn0 (r0 − r2)2

for some constant cn; that is,

g2(r0)

∫ r2

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt ≥ cn

r4
0

rn0 (r0 − r2)2 .(3.16)

Likewise, we have

g2(r0)

∫ r4

r0

(
n− 1

r2
0

− n− 1

t2

)
tn−1dt ≥ cn

r4
0

rn0 (r0 − r4)2 .(3.17)

Estimates (3.14)–(3.17) imply that

c̃n |Ω| (µ1 (Br0)− µ2(Ω)) ≥ 2µ1 (Br0)

∫
Br0

g2(r)dx− µ2 (Ω)
n∑

i=1

∫
Ω

∣∣gAB · ei
∣∣2 dx

≥ III ≥ IV

≥ cn
r4

0

[
4∑

i=1

(r0 − ri)2

]
rn0 .

By (2.3), |Ω| = 2ωnr
n
0 , so then

µ1 (Br0)− µ2(Ω) ≥ cn
r4

0

4∑
i=1

(r0 − ri)2 .(3.18)

To estimate the right hand side of (3.18), we use (3.6) to get

|Br0(A) \ ΩA| = ωn (r0 − r1)n

≤ cnrn−1
0 (r0 − r1) ,

where the inequality follows from the assumption |r0 − r1| ≤ r0/2 in Case 2. So we
have proved the following inequality

|Br0(A) \ ΩA|
|Ω|

≤ cn
r0 − r1

r0
.(3.19)
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Similar estimates hold for the remaining terms on the right hand side of (3.18):

|ΩA \Br0(A)|
|Ω|

≤ cn
r2 − r0

r0
,(3.20)

|Br0(B) \ ΩB|
|Ω|

≤ cn
r0 − r3

r0
,(3.21)

|ΩB \Br0(B)|
|Ω|

≤ cn
r4 − r0

r0
.(3.22)

Thus, from (3.18)–(3.22) we deduce

µ1 (Br0)− µ2(Ω) ≥ cn
r2

0

(
|Br0(A) ∆ ΩA|+ |Br0(B) ∆ ΩB|

|Ω|

)2

≥ cn

|Ω|
2
n

E2(Ω)2,

where µ1 (Br0) = µ1(B1)/r2
0 and r0 = (|Ω|/(2ωn))1/n. Therefore, we have

(2ωn)
2
n µ1(B1)− |Ω|

2
n µ2(Ω) ≥ cnE2(Ω)2,

proving the stability inequality (3.3) in Case 2.
The proof of Theorem 1.2 is now complete. �

4. Sharpness of the exponent of E2(Ω) in (1.9)

In [4], Brasco and Pratelli proved the sharp quantitative Szegö-Weinberger in-
equality

|B|
2
n µ1(B)− |Ω|

2
n µ2(Ω) ≥ cnA(Ω)2.

The authors established, through non-trivial work, the sharpness of the exponent 2
of A(Ω) by exhibiting sets2 Bε ⊂ Rn for ε > 0 small such that

|Bε| = |B| ,(4.1)

A(Bε) ≈
|Bε ∆B|
|B|

= O(ε),(4.2)

µ1(B)− µ1(Bε) = O(ε2).(4.3)

We now adapt the Brasco-Pratelli construction in [4] to show that the exponent
2 of E2(Ω) in the quantitative inequality (1.9) is sharp. Let B1, B2 be two disjoint
balls of unit radius in Rn such that the distance between B1 and B2 is large (e.g.,
≥ 20). We take Bε in the Brasco-Pratelli construction and define

Ωε = B1
ε ∪B2

ε ,

where B1
ε = B2

ε = Bε. Since B1 and B2 are far away from each other, we have
B1

ε ∩B2
ε = ∅.

2In [4, Section 6], |B| − |Bε| = O
(
ε2
)
. Rescaling Bε so that (4.1) holds introduces error O

(
ε2
)

to (4.2) and (4.3).
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Lemma 4.1. There holds the following equality

µ1

(
B1

ε

)
= µ2 (Ωε) .(4.4)

Proof. We first note that

µ0 (Ωε) = 0 with eigenfunction uε0 = χB1
ε
,

µ1 (Ωε) = 0 with eigenfunction uε0 = χB2
ε
,

where χΩ is the characteristic function on Ω.
On the one hand, let uε2 be an eigenfunction for µ2 (Ωε), then

0 =

∫
Ωε

uε2(x)uε0(x)dx =

∫
B1

ε

uε2(x).

So uε2 is a test function for µ1

(
D1

ε

)
, and hence

µ1

(
B1

ε

)
≤

∫
B1

ε
|∇uε2(x)|2∫

B1
ε
|uε2(x)|2

= µ2 (Ωε) .

On the other hand, let vε1 be an eigenfunction of µ1

(
B1

ε

)
and define

vε2(x) = vε1(x)χB1
ε
.

Then we have ∫
Ωε

vε2(x)uε0(x)dx =

∫
B1

ε

vε1(x)dx = 0,∫
Ωε

vε2(x)uε1(x)dx =

∫
B1

ε

vε1(x)χB2
ε
(x)dx = 0.

So vε2 is a testing function for µ2 (Ωε), and thus

µ2 (Ωε) ≤
∫

Ωε
|∇vε2(x)|2∫

Ωε
(vε2(x))2 =

∫
B1

ε
|∇vε1(x)|2∫

B1
ε

(vε1(x))2 = µ1

(
B1

ε

)
.

Therefore, the lemma is proved. �

By construction, we have

E2(Ωε) ≈
|Ωε ∆ Ω|
|Ω|

= O(ε).

By (4.3) and Lemma 4.1, we have

µ1(B)− µ2 (Ωε) = µ1(B)− µ1(Bε) = O(ε2).

Therefore, the exponent 2 of E2(Ω) in inequality (1.9) is sharp.
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