Roughly speaking, integration is the opposite of differentiation.
Roughly speaking, integration is the opposite of differentiation.

- differential calculus concerns slopes of graphs,
Roughly speaking, integration is the opposite of differentiation.

- differential calculus concerns slopes of graphs,
- integral calculus concerns areas under graphs.
Roughly speaking, *integration* is the opposite of *differentiation*.

- **differential calculus** concerns slopes of graphs,
- **integral calculus** concerns areas under graphs.

They are linked by the **Fundamental Theorem of Calculus**.
Roughly speaking, *integration* is the opposite of *differentiation*.

- **Differential calculus** concerns slopes of graphs,
- **Integral calculus** concerns areas under graphs.

They are linked by the **Fundamental Theorem of Calculus**:

$$\int_{a}^{b} f(x)\,dx = F(b) - F(a)$$
Roughly speaking, integration is the opposite of differentiation.

- differential calculus concerns slopes of graphs,
- integral calculus concerns areas under graphs.

They are linked by the Fundamental Theorem of Calculus:

\[\int_{a}^{b} f(x) \, dx = F(b) - F(a) \]

where \(F(x) \) is an anti-derivative of \(f(x) \).
Roughly speaking, integration is the opposite of differentiation.

- differential calculus concerns slopes of graphs,
- integral calculus concerns areas under graphs.

They are linked by the Fundamental Theorem of Calculus:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

where $F(x)$ is an anti-derivative of $f(x)$. More about this later…
Consider the functions

\[F(x) = x^3 \quad \text{and} \quad f(x) = 3x^2. \]
Consider the functions

\[F(x) = x^3 \quad \text{and} \quad f(x) = 3x^2. \]

We know that \(F'(x) = f(x). \)
Anti-derivatives

Consider the functions

\[F(x) = x^3 \quad \text{and} \quad f(x) = 3x^2. \]

We know that \(F'(x) = f(x) \). We say:

- \(f(x) \) is the derivative of \(F(x) \),
Consider the functions

\[F(x) = x^3 \quad \text{and} \quad f(x) = 3x^2. \]

We know that \(F'(x) = f(x) \). We say:

- \(f(x) \) is the derivative of \(F(x) \),
- \(F(x) \) is an anti-derivative of \(f(x) \).
Consider the functions

\[F(x) = x^3 \quad \text{and} \quad f(x) = 3x^2. \]

We know that \(F'(x) = f(x) \). We say:

- \(f(x) \) is the derivative of \(F(x) \),
- \(F(x) \) is an anti-derivative of \(f(x) \).

Note that:

- \(\frac{d}{dx} (x^3 + 5) = 3x^2 \) also,
Consider the functions

$$F(x) = x^3 \quad \text{and} \quad f(x) = 3x^2.$$

We know that $F'(x) = f(x)$. We say:

- $f(x)$ is the derivative of $F(x)$,
- $F(x)$ is an anti-derivative of $f(x)$.

Note that:

- $\frac{d}{dx} (x^3 + 5) = 3x^2$ also,
- so $x^3 + 5$ is another anti-derivative of $f(x)$.

In general, if \(f(x) \) is any function and \(F(x) \) any anti-derivative of \(f(x) \),
In general, if $f(x)$ is any function and $F(x)$ any anti-derivative of $f(x)$, then every anti-derivative of $f(x)$ is of the form $F(x) + C$,
In general, if $f(x)$ is any function and $F(x)$ any anti-derivative of $f(x)$, then every anti-derivative of $f(x)$ is of the form $F(x) + C$, where C is some constant.
In general, if \(f(x) \) is any function and \(F(x) \) any anti-derivative of \(f(x) \), then every anti-derivative of \(f(x) \) is of the form \(F(x) + C \), where \(C \) is some constant.

We write this as:

\[
\int f(x) \, dx = F(x) + C.
\]
Anti-derivatives

In general, if \(f(x) \) is any function and \(F(x) \) any anti-derivative of \(f(x) \), then every anti-derivative of \(f(x) \) is of the form \(F(x) + C \), where \(C \) is some constant.

We write this as:

\[
\int f(x) \, dx = F(x) + C.
\]

- \(\int f(x) \, dx \) is read as “the indefinite integral of \(f(x) \) with respect to \(x \)”.
In general, if \(f(x) \) is any function and \(F(x) \) any anti-derivative of \(f(x) \), then every anti-derivative of \(f(x) \) is of the form \(F(x) + C \), where \(C \) is some constant.

We write this as:

\[
\int f(x) \, dx = F(x) + C.
\]

- \(\int f(x) \, dx \) is read as “the indefinite integral of \(f(x) \) with respect to \(x \)”.
- The RHS is the most general anti-derivative of \(f(x) \).
Anti-derivatives

In general, if \(f(x) \) is any function and \(F(x) \) any anti-derivative of \(f(x) \), then every anti-derivative of \(f(x) \) is of the form \(F(x) + C \), where \(C \) is some constant.

We write this as:

\[
\int f(x) \, dx = F(x) + C.
\]

\(\int f(x) \, dx \) is read as “the indefinite integral of \(f(x) \) with respect to \(x \)”.

The RHS is the most general anti-derivative of \(f(x) \).

The process of finding \(F(x) \), given \(f(x) \), is called anti-differentiation, or (indefinite) integration.
Differentiation rules — such as $\frac{d}{dx}(x^n) = nx^{n-1}$ — give rise to rules for integration.
General formulae for anti-derivatives

Differentiation rules — such as \(\frac{d}{dx} (x^n) = nx^{n-1} \) — give rise to rules for integration.

Formulae

\[
\int k \, dx = kx + C \quad \text{\(k \) constant}
\]

\[
\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{\(n \neq -1 \)}
\]

\[
\int \frac{1}{x} \, dx = \ln x + C
\]

\[
\int \cos x \, dx = \sin x + C
\]

\[
\int \sin x \, dx = -\cos x + C
\]

\[
\int e^x \, dx = e^x + C
\]
General formulae for anti-derivatives

Formulae (continued)

\[
\int \sec^2 x \, dx = \tan x + C \\
\int \frac{1}{x^2 + 1} \, dx = \tan^{-1} x + C \\
\int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x + C \\
\int \frac{1}{\sqrt{1 + x^2}} \, dx = \ln \left(x + \sqrt{x^2 + 1} \right) + C
\]
General formulae for anti-derivatives

To find anti-derivatives of more complicated functions, we may use the following rules.
To find anti-derivatives of more complicated functions, we may use the following rules.

Anti-differentiation rules

\[
\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx,
\]

— the sum/difference law,
To find anti-derivatives of more complicated functions, we may use the following rules.

Anti-differentiation rules

\[
\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx,
\]

— the sum/difference law,

\[
\int k f(x) \, dx = k \int f(x) \, dx,
\]

— the scalar multiple law.
To find anti-derivatives of more complicated functions, we may use the following rules.

Anti-differentiation rules

\[
\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx,
\]

— the sum/difference law,

\[
\int k f(x) \, dx = k \int f(x) \, dx,
\]

— the scalar multiple law.

Note: No simple rules exist for \(\int f(x)g(x) \, dx \) or \(\int \frac{f(x)}{g(x)} \, dx \).
Exercises

Evaluate the following indefinite integrals.

1. $\int (x^2 + \cos x) \, dx$

2. $\int \left(\frac{2}{x^2 + 1} - 3e^x \right) \, dx$

3. $\int (ax^2 + bx + c) \, dx$, where a, b, c are constants
Suppose $F(x)$ is an anti-derivative for $f(x)$.
Integration by substitution

Suppose $F(x)$ is an anti-derivative for $f(x)$. Now consider the function

$$y = F(u) \quad \text{where} \quad u = g(x).$$
Suppose $F(x)$ is an anti-derivative for $f(x)$. Now consider the function

$$y = F(u) \quad \text{where } u = g(x).$$

The chain rule for differentiation says:
Suppose $F(x)$ is an anti-derivative for $f(x)$. Now consider the function

$$y = F(u) \quad \text{where } u = g(x).$$

The chain rule for differentiation says:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$
Suppose $F(x)$ is an anti-derivative for $f(x)$. Now consider the function

$$y = F(u) \quad \text{where} \quad u = g(x).$$

The chain rule for differentiation says:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Rewriting this, we have

$$\frac{d}{dx} (F(u)) = \quad \text{[missing expression]}$$
Suppose $F(x)$ is an anti-derivative for $f(x)$. Now consider the function

$$y = F(u) \quad \text{where } u = g(x).$$

The chain rule for differentiation says:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Rewriting this, we have

$$\frac{d}{dx} (F(u)) = F'(u) \frac{du}{dx}.$$
Suppose $F(x)$ is an anti-derivative for $f(x)$. Now consider the function

$$y = F(u) \quad \text{where } u = g(x).$$

The chain rule for differentiation says:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Rewriting this, we have

$$\frac{d}{dx} (F(u)) = F'(u) \frac{du}{dx} = f(u) \frac{du}{dx}.$$
Suppose $F(x)$ is an anti-derivative for $f(x)$. Now consider the function

$$y = F(u) \quad \text{where} \quad u = g(x).$$

The chain rule for differentiation says:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Rewriting this, we have

$$\frac{d}{dx} (F(u)) = F'(u) \frac{du}{dx} = f(u) \frac{du}{dx}.$$

So

$$\int f(u) \frac{du}{dx} \, dx =$$
Suppose $F(x)$ is an anti-derivative for $f(x)$. Now consider the function

$$y = F(u) \quad \text{where } u = g(x).$$

The chain rule for differentiation says:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Rewriting this, we have

$$\frac{d}{dx} (F(u)) = F'(u) \frac{du}{dx} = f(u) \frac{du}{dx}.$$

So

$$\int f(u) \frac{du}{dx} \, dx = F(u) + C.$$
Integration by substitution

Rewriting this last equation, we have the following.
Rewriting this last equation, we have the following.

\[\int f(u) \frac{du}{dx} \, dx = \int f(u) \, du, \quad \text{where } u \text{ is a function of } x. \]
Rewriting this last equation, we have the following.

Integration by substitution

\[\int f(u) \frac{du}{dx} \, dx = \int f(u) \, du, \]
where \(u \) is a function of \(x \).

Put differently:
Rewriting this last equation, we have the following.

\[\int f(u) \frac{du}{dx} \, dx = \int f(u) \, du, \quad \text{where } u \text{ is a function of } x. \]

Put differently:

\[\int f(g(x)) \, g'(x) \, dx = F(g(x)) + C, \]

where \(F(t) \) is an anti-derivative of \(f(t) \).
Exercise

Evaluate the following indefinite integral:

\[\int e^{x^3} 3x^2 \, dx \]
Exercise

Evaluate the following indefinite integral:

\[\int e^{x^3} 3x^2 \, dx \]

Solution

Let \(u = x^3 \ldots \)
Exercises

Evaluate the following indefinite integrals:

1. \[\int \sin^4 x \cos x \, dx \]

2. \[\int \cos^4 x \sin x \, dx \]

3. \[\int \tan x \, dx \]

4. \[\int \frac{\ln x}{x} \, dx \]

5. \[\int \sqrt{1 + \sqrt{x}} \, dx \]