Newton’s law of cooling

The temperature of a hot object decreases at a rate proportional to the temperature difference between the object and its surroundings.

- Let \(H = H(t) \) be the temperature of the object at time \(t \).
- Let \(R \) be the (constant) room temperature.

We obtain the DE

\[
- \frac{dH}{dt} = k(H - R), \quad \text{or}
\]

\[
\frac{dH}{dt} = -k(H - R).
\]
Newton’s law of cooling

The solution to the above DE is

\[H = R + Ae^{-kt}, \quad \text{where } A \text{ is some constant.} \]

Here is the slope diagram (for \(k = R = 2 \)):

Curves: \(A = 2, \ A = 4, \ A = -2, \ A = 0. \)
When $A = 0$, we obtain the constant solution

$$y = R.$$

This is the equilibrium solution to the DE.

- It corresponds to the object being at the same temperature as the surrounding air (and never changing).
- If the initial temperature is greater than R, then the function $H = R + Ae^{-kt}$ decreases towards R as t increases.
- If the initial temperature is less than R, then H increases towards R as t increases.

For this reason, $H = R$ is called a stable equilibrium solution.
Equilibrium solutions

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An equilibrium solution of the DE</td>
</tr>
</tbody>
</table>

\[
\frac{dy}{dx} = F(x, y)
\]

is a constant function \(y = C \) which satisfies the DE.

To find the equilibrium solutions, sub \(y = C \) into the DE, and solve the resulting equation:

\[
0 = F(x, C).
\]
Equilibrium solutions

Example

Find all equilibrium solutions to the following DEs:

1. \[\frac{dy}{dt} = 2y, \]

2. \[\frac{dy}{dt} = 2y(20 - y), \]

3. \[\frac{dy}{dt} = 2y(t - y). \]
Here is the slope diagram for the logistic equation $\frac{dy}{dt} = 2y(2 - y)$:

The equilibrium solutions are $y = 0$ and $y = 2$. The solution curves tend towards $y = 2$. This is a stable equilibrium.
The equilibrium solutions are $y = 0$ and $y = 2$. The lower solution curves tend away from $y = 0$. This is an \textit{unstable} equilibrium.
Stability of equilibrium solutions

Definition

Let \(y = C \) be an equilibrium solution to the DE

\[
\frac{dy}{dx} = F(x, y).
\]

We say that \(y = C \) is:

- **stable** if, when we shift the value of \(y \) slightly away from \(C \), \(y \) tends towards \(C \) as \(x \) increases, or
- **unstable** if, when we shift the value of \(y \) slightly away from \(C \), \(y \) tends away from \(C \) as \(x \) increases.
Stability of equilibrium solutions

Slope field for $\frac{dy}{dt} = 2y(2 - y)$:

- $y = 2$ — stable.
- $y = 0$ — unstable.
Stability of equilibrium solutions

Slope field for $\frac{dy}{dt} = 1.5(y - 2)^2(y - 4)$:

- $y = 4$ — stable.
- $y = 2$ — neither stable nor unstable.
Stability of equilibrium solutions

Slope field for \(\frac{dy}{dt} = 2y(t - y) \):

- \(y = 0 \) — unstable! As \(t \) increases, \(y \) will eventually move away from 0.
Stability of equilibrium solutions

To determine the stability of an equilibrium solution \(y = C \), we check the sign of the derivative near \(y = C \):

\[
\begin{array}{c|ccc}
 y & C^- & C & C^+ \\
 \frac{dy}{dt} & + & 0 & - \\
\end{array}
\] \implies \text{stable}

\[
\begin{array}{c|ccc}
 y & C^- & C & C^+ \\
 \frac{dy}{dt} & - & 0 & + \\
\end{array}
\] \implies \text{unstable}

\[
\begin{array}{c|ccc}
 y & C^- & C & C^+ \\
 \frac{dy}{dt} & \text{anything else} \\
\end{array}
\] \implies \text{neither}
Example

Determine the stability of the equilibrium solutions to the following DEs:

1. \[
\frac{dy}{dt} = 2y,
\]

2. \[
\frac{dy}{dt} = 2y(20 - y),
\]

3. \[
\frac{dy}{dt} = 2y(t - y).
\]