Dual reflection monoids

James East

British Mathematics Colloquium

April 2010

University of Sydney
School of Mathematics and Statistics
Theorem (Cayley’s Theorem for groups)

Let G be a group. Then G embeds in some symmetric group S_X.
Theorem (Cayley’s Theorem for groups)

Let G be a group. Then G embeds in some symmetric group S_X.

- Allows us to think of groups as sets of permutations.
Theorem (Cayley’s Theorem for groups)

Let G be a group. Then G embeds in some symmetric group S_X.

- Allows us to think of groups as sets of permutations.
- Proved with $X = G$. Identify $g \in G$ with $\varphi_g \in S_G$ defined by

$$\varphi_g : G \to G : x \mapsto xg.$$
Theorem (Cayley’s Theorem for groups)

Let \(G \) be a group. Then \(G \) embeds in some symmetric group \(S_X \).

- Allows us to think of groups as sets of permutations.
- Proved with \(X = G \). Identify \(g \in G \) with \(\varphi_g \in S_G \) defined by

\[
\varphi_g : G \to G : x \mapsto xg.
\]
Symmetric inverse semigroups

James East

Dual reflection monoids
Symmetric inverse semigroups

groups

inverse semigroups
Theorem (Wagner-Preston)

Let S be an inverse semigroup. Then S embeds in some symmetric inverse semigroup \mathcal{I}_X.
Theorem (Wagner-Preston)

Let S be an inverse semigroup. Then S embeds in some symmetric inverse semigroup \mathcal{I}_X.

$\mathcal{I}_X = \{ \text{bijections } A \to B \mid A, B \text{ subsets of } X \}$.
Theorem (Wagner-Preston)

Let S be an inverse semigroup. Then S embeds in some symmetric inverse semigroup \mathcal{I}_X.

- $\mathcal{I}_X = \{ \text{bijections } A \to B \mid A, B \text{ subsets of } X \}$.
- Allows us to think of inverse semigroups as sets of partial permutations.
Theorem (Wagner-Preston)

Let S be an inverse semigroup. Then S embeds in some symmetric inverse semigroup \mathcal{I}_X.

- $\mathcal{I}_X = \{ \text{bijections } A \to B \mid A, B \text{ subsets of } X \}$.
- Allows us to think of inverse semigroups as sets of partial permutations. Well, kind of . . .
Theorem (Wagner-Preston)

Let S be an inverse semigroup. Then S embeds in some symmetric inverse semigroup \mathcal{I}_X.

- $\mathcal{I}_X = \{ \text{bijections } A \to B \mid A, B \text{ subsets of } X \}$.
- Allows us to think of inverse semigroups as sets of partial permutations. Well, kind of . . .
- Proved with $X = S$.

James East
Dual reflection monoids
Coset monoids

groups

inverse semigroups
Theorem (McAlister)

Let S be an inverse semigroup. Then S embeds in some coset monoid $C(G)$.
Theorem (McAlister)

Let S be an inverse semigroup. Then S embeds in some coset monoid $\mathcal{C}(G)$.

$$\mathcal{C}(G) = \{ Hg \mid H \leq G, \ g \in G \}.$$
Theorem (McAlister)

Let S be an inverse semigroup. Then S embeds in some coset monoid $\mathcal{C}(G)$.

- $\mathcal{C}(G) = \{ Hg \mid H \leq G, \ g \in G \}$.
- $Hg \star K\ell = \langle H \cup gKg^{-1} \rangle g\ell = (H \vee Kg^{-1})g\ell$.
Coset monoids

Theorem (McAlister)

Let S be an inverse semigroup. Then S embeds in some coset monoid $C(G)$.

- $C(G) = \{ Hg \mid H \leq G, \, g \in G \}$.
- $Hg \ast K \ell = \langle H \cup gKg^{-1} \rangle g \ell = (H \vee Kg^{-1})g \ell$.
- Proved by showing \mathcal{I}_X embeds in $C(S_X \cup \{\infty\})$.

James East
Dual reflection monoids
Dual symmetric inverse semigroups

groups

inverse semigroups
Theorem (FitzGerald-Leech)

Let S be an inverse semigroup. Then S embeds in some dual symmetric inverse semigroup \mathcal{I}_X^*.
Theorem (FitzGerald-Leech)

Let S be an inverse semigroup. Then S embeds in some dual symmetric inverse semigroup \mathcal{I}_X^*.

\[\mathcal{I}_X^* = \{ \text{bijections } A \rightarrow B \mid A, B \text{ quotients of } X \}. \]
Theorem (FitzGerald-Leech)

Let S be an inverse semigroup. Then S embeds in some dual symmetric inverse semigroup \mathcal{I}_X^*.

- $\mathcal{I}_X^* = \{ \text{bijections } A \rightarrow B \mid A, B \text{ quotients of } X \}$.
- Allows us to think of inverse semigroups as sets of block bijections.
Theorem (FitzGerald-Leech)

Let S be an inverse semigroup. Then S embeds in some dual symmetric inverse semigroup I_X^*.

- $I_X^* = \{ \text{bijections } A \to B \mid A, B \text{ quotients of } X \}$.
- Allows us to think of inverse semigroups as sets of block bijections.
- Proved with $X = S$.

James East
Dual reflection monoids
Block bijections
Elements of \mathcal{I}_X^* are called block bijections on X.
Elements of I_X^* are called block bijections on X. For example

\[\alpha = \in I_8^* \]
Elements of \mathcal{I}_X^* are called \textit{block bijections} on X. For example

$$\alpha = \begin{tikzpicture}[scale=0.5]
\begin{scope}[rotate=45]
\node (1) at (0,0) {1}; \node (2) at (1,0) {2}; \node (3) at (2,0) {3}; \node (4) at (2.5,0.5) {4}; \node (5) at (3,0) {5}; \node (6) at (3.5,0.5) {6}; \node (7) at (4,0) {7}; \node (8) at (4.5,0.5) {8};
\end{scope}
\begin{scope}[rotate=-45]
\node (9) at (0,0) {1}; \node (10) at (1,0) {2}; \node (11) at (2,0) {3}; \node (12) at (2.5,0.5) {4}; \node (13) at (3,0) {5}; \node (14) at (3.5,0.5) {6}; \node (15) at (4,0) {7}; \node (16) at (4.5,0.5) {8};
\end{scope}
\node (a) at (0,1) {$\alpha = \in \mathcal{I}_8^*$};
dom(\alpha) = \{ \{1, 2\}, \{3\}, \{4, 6, 7\}, \{5, 8\} \}
Elements of I^*_X are called **block bijections** on X. For example

$$
\alpha = \in I^*_8
$$

$$\text{dom}(\alpha) = \{ \{1, 2\}, \{3\}, \{4, 6, 7\}, \{5, 8\} \}$$

$$\text{im}(\alpha) = \{ \{1\}, \{2, 4\}, \{3\}, \{5, 6, 7, 8\} \}$$
Elements of I^*_X are called block bijections on X. For example

$$\alpha = \in I^*_8$$

$$\text{dom}(\alpha) = \{ \{1, 2\} , \{3\} , \{4, 6, 7\} , \{5, 8\} \}$$

$$\text{im}(\alpha) = \{ \{1\} , \{2, 4\} , \{3\} , \{5, 6, 7, 8\} \}$$
Elements of \mathcal{I}_X^* are called block bijections on X. For example

\[
\alpha = \in \mathcal{I}_8^*
\]

\[
\text{dom}(\alpha) = \{ \{1, 2\}, \{3\}, \{4, 6, 7\}, \{5, 8\} \}
\]

\[
\text{im}(\alpha) = \{ \{1\}, \{2, 4\}, \{3\}, \{5, 6, 7, 8\} \}
\]
Elements of \mathcal{I}_X^* are called block bijections on X. For example

\[
\alpha = \begin{array}{c}
\{1, 2\}, \{3\}, \{4, 6, 7\}, \{5, 8\}
\end{array}
\in \mathcal{I}_8^*
\]

\[
\text{dom}(\alpha) = \{ \{1, 2\}, \{3\}, \{4, 6, 7\}, \{5, 8\} \}
\]

\[
\text{im}(\alpha) = \{ \{1\}, \{2, 4\}, \{3\}, \{5, 6, 7, 8\} \}
\]
Elements of \mathcal{I}_X^* are called block bijections on X. For example

$$\alpha = \begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \in \mathcal{I}_8^*
$$

$$\text{dom}(\alpha) = \{ \{1, 2\} , \{3\} , \{4, 6, 7\} , \{5, 8\} \}$$

$$\text{im}(\alpha) = \{ \{1\} , \{2, 4\} , \{3\} , \{5, 6, 7, 8\} \}$$
To multiply block bijections:
To multiply block bijections:

\[\alpha = \]

\[\beta = \]
To multiply block bijections:

\[\alpha = \begin{array}{c}
\text{Diagram 1}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Diagram 2}
\end{array} \]

\[\beta = \begin{array}{c}
\text{Diagram 3}
\end{array} \quad \rightarrow \quad \begin{array}{c}
\text{Diagram 4}
\end{array} \]

1. stack \(\alpha \) and \(\beta \),
To multiply block bijections:

1. stack α and β,
2. erase the middle row of dots,
To multiply block bijections:

1. stack α and β,
2. erase the middle row of dots,
3. calculate the connected components.

$$\alpha = \begin{array}{c}
\begin{array}{c}
\vdots \\
\vdots \\
\vdots
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\vdots \\
\vdots \\
\vdots
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\vdots \\
\vdots \\
\vdots
\end{array}
\end{array} = \alpha \beta$$
Block bijections
Units in \mathcal{I}_X^* are permutations:
Units in \mathcal{I}_X^* are permutations:

$$\mathcal{G}(\mathcal{I}_X^*) = S_X.$$
Units in \mathcal{I}_X^* are permutations:

$$G(\mathcal{I}_X^*) = S_X.$$

Idempotents in \mathcal{I}_X^* are equivalences:
Units in I^*_X are permutations:

$$\mathcal{G}(I^*_X) = S_X.$$

Idempotents in I^*_X are equivalences:

$$\mathcal{E}(I^*_X) \cong (\mathcal{EQ}_X, \vee).$$
Units in \mathcal{I}_X^* are permutations:

$$G(\mathcal{I}_X^*) = S_X.$$

Idempotents in \mathcal{I}_X^* are equivalences:

$$\mathbb{E}(\mathcal{I}_X^*) \cong (\mathcal{E}q_X, \vee).$$

$$\varepsilon = \begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array} \in \mathbb{E}(\mathcal{I}_8)^*$$
- **Units** in \mathcal{I}_X^* are permutations:
 \[G(\mathcal{I}_X^*) = S_X. \]

- **Idempotents** in \mathcal{I}_X^* are equivalences:
 \[E(\mathcal{I}_X^*) \cong (\mathcal{E}q_X, \lor). \]

Here $\varepsilon \lor \eta = \langle \varepsilon \cup \eta \rangle$ for $\varepsilon, \eta \in \mathcal{E}q_X$.

\[\varepsilon = \begin{array}{c}
\text{\includegraphics{diagram.png}}
\end{array} \in E(\mathcal{I}_8)^* \]
The factorizable part of I_X^*
The factorizable part of \mathcal{I}_X^* is
The factorizable part of \mathcal{I}_X^* is

$$\mathcal{F}(\mathcal{I}_X^*) = \mathfrak{S}_X^* = \{ \text{uniform block bijections on } X \}.$$
The factorizable part of \mathcal{I}_X^* is

$$F(\mathcal{I}_X^*) = \mathfrak{S}_X^* = \{ \text{uniform block bijections on } X \}.$$

- Uniform \equiv blocks in the domain are mapped to blocks of equal cardinality in the image.
The factorizable part of \mathcal{I}_X^* is

$$
\mathcal{F}(\mathcal{I}_X^*) = \mathfrak{S}_X^* = \{ \text{uniform block bijections on } X \}.
$$

- Uniform \equiv blocks in the domain are mapped to blocks of equal cardinality in the image
- \equiv restriction of a permutation to an equivalence.
The factorizable part of \mathcal{I}_X^* is

$$\mathbb{F}(\mathcal{I}_X^*) = \mathcal{S}_X^* = \{ \text{uniform block bijections on } X \}.$$

- Uniform \equiv blocks in the domain are mapped to blocks of equal cardinality in the image
- \equiv restriction of a permutation to an equivalence.

- Write $\pi|_\varepsilon$ for the restriction of a permutation $\pi \in S_X$ to an equivalence $\varepsilon \in \mathcal{E}q_X$.

James East | Dual reflection monoids
Uniform block bijections
Uniform block bijections

=

Dual reflection monoids
Uniform block bijections

\[
\text{Diagram showing uniform block bijections.}
\]
Uniform block bijections
Uniform block bijections

James East
Dual reflection monoids
Uniform block bijections

Dual reflection monoids
Uniform block bijections

\begin{align*}
\begin{array}{c}
\begin{tikzpicture}
\coordinate (A) at (0,0);
\coordinate (B) at (1,0);
\coordinate (C) at (2,0);
\coordinate (D) at (0,-1);
\coordinate (E) at (1,-1);
\coordinate (F) at (2,-1);
\coordinate (G) at (0,-2);
\coordinate (H) at (1,-2);
\coordinate (I) at (2,-2);
\draw (A) -- (B) -- (C);
\draw (D) -- (E) -- (F);
\draw (G) -- (H) -- (I);
\end{tikzpicture}
\end{array}
&= \\
\begin{array}{c}
\begin{tikzpicture}
\coordinate (A) at (0,0);
\coordinate (B) at (1,0);
\coordinate (C) at (2,0);
\coordinate (D) at (0,-1);
\coordinate (E) at (1,-1);
\coordinate (F) at (2,-1);
\coordinate (G) at (0,-2);
\coordinate (H) at (1,-2);
\coordinate (I) at (2,-2);
\draw (A) -- (B) -- (C);
\draw (D) -- (E) -- (F);
\draw (G) -- (H) -- (I);
\end{tikzpicture}
\end{array}
\end{align*}
Uniform block bijections

\[\begin{array}{c}
\begin{array}{c}
\text{Diagram 1}
\end{array}
\end{array}
\]

\[= \]

\[\begin{array}{c}
\begin{array}{c}
\text{Diagram 2}
\end{array}
\end{array}
\]

\[= \]

\[\begin{array}{c}
\begin{array}{c}
\text{Diagram 3}
\end{array}
\end{array}
\]
Uniform block bijections

\[\begin{array}{ccc}
\quad & = & \\
\quad & = & \\
\quad & \in S_6 & \\
\end{array} \]
Multiplication obeys the rule:

$$\pi|_\varepsilon \cdot \sigma|_\eta = (\pi \sigma)|_{\varepsilon \lor (\eta \cdot \pi^{-1})}.$$
Let X be a set, and consider:
Let X be a set, and consider:

- S_X — the symmetric group on X,

A construction
Let X be a set, and consider:

- S_X — the symmetric group on X,
- \mathcal{Eq}_X — the join semilattice of equivalence relations on X:
Let X be a set, and consider:

- S_X — the symmetric group on X,
- \mathcal{Eq}_X — the join semilattice of equivalence relations on X:
 $\varepsilon \vee \eta = \langle \varepsilon \cup \eta \rangle$
Let X be a set, and consider:

- S_X — the symmetric group on X,
- \mathcal{Eq}_X — the join semilattice of equivalence relations on X:
 \[
 \varepsilon \lor \eta = \langle \varepsilon \cup \eta \rangle = \varepsilon \cup (\varepsilon \circ \eta) \cup (\varepsilon \circ \eta \circ \varepsilon) \cup \cdots .
 \]
Let X be a set, and consider:

- S_X — the symmetric group on X,
- \mathcal{Eq}_X — the join semilattice of equivalence relations on X:
 \[\varepsilon \lor \eta = \langle \varepsilon \cup \eta \rangle = \varepsilon \cup (\varepsilon \circ \eta) \cup (\varepsilon \circ \eta \circ \varepsilon) \cup \cdots. \]

There is an action of S_X on \mathcal{Eq}_X:
Let X be a set, and consider:

- S_X — the symmetric group on X,
- \mathcal{Eq}_X — the join semilattice of equivalence relations on X:
 - $\epsilon \vee \eta = \langle \epsilon \cup \eta \rangle = \epsilon \cup (\epsilon \circ \eta) \cup (\epsilon \circ \eta \circ \epsilon) \cup \cdots$.
- There is an action of S_X on \mathcal{Eq}_X:
 $$\epsilon \cdot \pi = \{ (x\pi, y\pi) \mid (x, y) \in \epsilon \}.$$
A construction

James East
Dual reflection monoids
Let $G \subseteq S_X$.
A construction

- Let $G \subseteq S_X$.
- Let $E \subseteq \mathcal{Eq}_X$ be closed under the action of G. (Call such an E a dual G-system.)
Let $G \subseteq S_X$.

Let $E \subseteq \mathbb{E}q_X$ be closed under the action of G. (Call such an E a dual G-system.)

We define:

$$M^*(G, E) = \left\{ \pi|_\varepsilon \mid \pi \in G, \varepsilon \in E \right\}.$$
Let $G \subseteq S_X$.

Let $E \subseteq \mathcal{E}q_X$ be closed under the action of G. (Call such an E a dual G-system.)

We define:

$$M^*(G, E) = \{ \pi|_\varepsilon \mid \pi \in G, \varepsilon \in E \}.$$

Note that $M^*(G, E) \leq \mathcal{S}^*_X$, since

$$\pi|_\varepsilon \cdot \sigma|_\eta = (\pi \sigma)|_{\varepsilon \vee (\eta \cdot \pi^{-1})}.$$
A construction

James East

Dual reflection monoids
Theorem

The semigroup $M = M^*(G, E)$ is a factorizable inverse monoid.
Theorem

The semigroup \(M = M^*(G, E) \) is a factorizable inverse monoid. We have

\[
(\pi|_\varepsilon)^{-1} = \pi^{-1}|_{\varepsilon \cdot \pi},
\]
The semigroup $M = M^*(G, E)$ is a factorizable inverse monoid. We have

- $(\pi |_\epsilon)^{-1} = \pi^{-1}|_{\epsilon \cdot \pi},$
- $G(M) = \{ \pi|_1 \mid \pi \in G \},$
The semigroup $M = M^*(G, E)$ is a factorizable inverse monoid. We have

- $(\pi|_\varepsilon)^{-1} = \pi^{-1}|_{\varepsilon \cdot \pi}$,
- $G(M) = \{ \pi|_1 \mid \pi \in G \}$,
- $E(M) = \{ 1|_\varepsilon \mid \varepsilon \in E \}$.

James East
Dual reflection monoids
The semigroup $M = M^*(G, E)$ is a factorizable inverse monoid. We have

- $(\pi|_\varepsilon)^{-1} = \pi^{-1}|_{\varepsilon \cdot \pi}$,
- $G(M) = \{ \pi|_1 \mid \pi \in G \}$,
- $E(M) = \{ 1|_\varepsilon \mid \varepsilon \in E \}$,
- $\pi|_\varepsilon = 1|_\varepsilon \cdot \pi|_1$.
Examples

Example

Extreme examples:
Example

Extreme examples:

1. $M^*(G, \{1\}) \cong G$,

James East

Dual reflection monoids
Examples

Example

Extreme examples:

1. $M^*(G, \{1\}) \cong G$,
2. $M^*(G, \{1, 0\}) \cong G^0$,
Example

Extreme examples:

1. $M^*(G, \{1\}) \cong G$,
2. $M^*(G, \{1, 0\}) \cong G^0$,
3. $M^*(\{1\}, E) \cong E$,

James East
Dual reflection monoids
Examples

Example

Extreme examples:

1. $M^*(G, \{1\}) \cong G,$
2. $M^*(G, \{1, 0\}) \cong G^0,$
3. $M^*(\{1\}, E) \cong E,$
4. $M^*(S_X, \mathcal{E}q_X) = \mathcal{F}_X^*.$
Let G be a group.
Let G be a group.

The set $\text{Sub}(G)$ is a semilattice under \lor:

$$H \lor K = \langle H \cup K \rangle.$$
Coset monoids

- Let G be a group.
- The set $\text{Sub}(G)$ is a semilattice under \lor:
 $$H \lor K = \langle H \cup K \rangle.$$
- Think of $G \leq S_G$ via the Cayley rep.
Let G be a group.

The set $\text{Sub}(G)$ is a semilattice under \vee:

$$H \vee K = \langle H \cup K \rangle.$$

Think of $G \leq S_G$ via the Cayley rep.

Let $\mathcal{N} \leq \text{Sub}(G)$ be closed under conjugation.
Let G be a group.

The set $\text{Sub}(G)$ is a semilattice under \lor:

$$H \lor K = \langle H \cup K \rangle.$$

Think of $G \leq S_G$ via the Cayley rep.

Let $\mathcal{N} \leq \text{Sub}(G)$ be closed under conjugation.

For $H \in \mathcal{N}$, define an equivalence

$$\varepsilon_H = \left\{ (x, y) \in G \times G \mid x^{-1}y \in H \right\}.$$
Let G be a group.

The set $\text{Sub}(G)$ is a semilattice under \lor:

$$H \lor K = \langle H \cup K \rangle.$$

Think of $G \leq S_G$ via the Cayley rep.

Let $\mathcal{N} \leq \text{Sub}(G)$ be closed under conjugation.

For $H \in \mathcal{N}$, define an equivalence

$$\varepsilon_H = \{ (x, y) \in G \times G \mid x^{-1}y \in H \}.$$

Put $E_{\mathcal{N}} = \{ \varepsilon_H \mid H \in \mathcal{N} \}$.

James East
Dual reflection monoids
One shows:
Coset monoids

One shows:

- $\varepsilon\{1\} = 1$,
Coset monoids

One shows:

- $\varepsilon_{\{1\}} = 1,$

- $\varepsilon_H \lor \varepsilon_K = \varepsilon_{H \lor K}.$
Coset monoids

One shows:

- \(\varepsilon \{1\} = 1 \),

- \(\varepsilon_H \lor \varepsilon_K = \varepsilon_{H \lor K} \),

- \(\varepsilon_H \cdot g = \varepsilon_{Hg} \).
Coset monoids

One shows:

- $\varepsilon_{\{1\}} = 1$,
- $\varepsilon_H \lor \varepsilon_K = \varepsilon_{H \lor K}$,
- $\varepsilon_H \cdot g = \varepsilon_{Hg}$.

So E_N is a dual G-system,
Coset monoids

One shows:

- $\varepsilon\{1\} = 1$,
- $\varepsilon_H \vee \varepsilon_K = \varepsilon_{H \vee K}$,
- $\varepsilon_H \cdot g = \varepsilon_{Hg}$.

So E_N is a dual G-system, and we can form

$$M^*(G, E_N) = \{ g|_{\varepsilon_H} \mid g \in G, H \in \mathcal{N} \}.$$
Coset monoids

One shows:

- $\varepsilon_{\{1\}} = 1$,

- $\varepsilon_H \lor \varepsilon_K = \varepsilon_{H \lor K}$,

- $\varepsilon_H \cdot g = \varepsilon_{Hg}$.

So E_N is a dual G-system, and we can form

$$M^*(G, E_N) = \{ g|_{\varepsilon_H} \mid g \in G, \ H \in \mathcal{N} \}.$$

One checks that the map $g|_{\varepsilon_H} \mapsto Hg$
Coset monoids

One shows:

- $\varepsilon\{1\} = 1$,
- $\varepsilon H \lor \varepsilon K = \varepsilon_{H \lor K}$,
- $\varepsilon_H \cdot g = \varepsilon_{Hg}$.

So E_N is a dual G-system, and we can form

$$M^*(G, E_N) = \{ g|_{\varepsilon_H} \mid g \in G, \ H \in \mathcal{N} \}.$$

One checks that the map $g|_{\varepsilon_H} \mapsto Hg$ determines an embedding

$$M^*(G, E_N) \rightarrow \mathcal{C}(G).$$
One shows:

- $\varepsilon\{1\} = 1$,
- $\varepsilon_H \lor \varepsilon_K = \varepsilon_{H \lor K}$,
- $\varepsilon_H \cdot g = \varepsilon_{Hg}$.

So E_N is a dual G-system, and we can form

$$M^*(G, E_N) = \left\{ g|_{\varepsilon_H} \mid g \in G, H \in N \right\}.$$

One checks that the map $g|_{\varepsilon_H} \mapsto Hg$ determines an embedding

$$M^*(G, E_N) \hookrightarrow \mathcal{C}(G).$$

This characterizes **cofull** submonoids of $\mathcal{C}(G)$!
Coxeter groups have presentations of the form:

\[W = \langle S \mid (st)^{m_{st}} = 1 \ (\forall s, t \in S) \rangle, \]
Coxeter groups have presentations of the form:

\[W = \langle S \mid (st)^{m_{st}} = 1 \ (\forall s, t \in S) \rangle, \]

where \(m_{ss} = 1 \) and \(m_{st} = m_{ts} \in \{2, 3, \ldots, \infty\} \) for all \(s \neq t \).
Coxeter groups have presentations of the form:

\[W = \langle S \mid (st)^{m_{st}} = 1 \ (\forall s, t \in S) \rangle, \]

where \(m_{ss} = 1 \) and \(m_{st} = m_{ts} \in \{2, 3, \ldots, \infty\} \) for all \(s \neq t \).

They can be realised as reflection groups,
Coxeter groups have presentations of the form:

$$W = \langle S \mid (st)^{m_{st}} = 1 \quad (\forall s, t \in S) \rangle,$$

where $m_{ss} = 1$ and $m_{st} = m_{ts} \in \{2, 3, \ldots, \infty\}$ for all $s \neq t$.

They can be realised as reflection groups, i.e. groups of isometries of a vector space generated by reflections.
Coxeter groups
Example

\[W = S_n = \left\langle s_1, \ldots, s_{n-1} \mid s_i^2 = 1 \text{ for all } i \right. \]
\[\left. (s_is_j)^2 = 1 \text{ if } |i - j| > 1 \right. \]
\[(s_is_j)^3 = 1 \text{ if } |i - j| = 1 \right\rangle. \]
Example

\[W = S_n = \left\langle s_1, \ldots, s_{n-1} \right| s_i^2 = 1 \quad \text{for all } i \\
(\text{permutation}) (s_is_j)^2 = 1 \quad \text{if } |i - j| > 1 \\
(\text{permutation}) (s_is_j)^3 = 1 \quad \text{if } |i - j| = 1 \right\rangle. \]

Here \(s_i \) corresponds to the simple transposition \((i, i + 1)\).
Example

\[W = S_n = \left\langle s_1, \ldots, s_{n-1} \mid s_i^2 = 1 \text{ for all } i, \quad (s_is_j)^2 = 1 \text{ if } |i - j| > 1, \quad (s_is_j)^3 = 1 \text{ if } |i - j| = 1 \right\rangle. \]

- Here \(s_i \) corresponds to the simple transposition \((i, i + 1)\).
- \(S_n \) acts on an \(n \)-dimensional vector space \(V \) by permuting the elements of a basis \(\{x_1, \ldots, x_n\} \).
Coxeter groups

Example

\[W = S_n = \left\langle s_1, \ldots, s_{n-1} \mid s_i^2 = 1 \text{ for all } i, \quad (s_is_j)^2 = 1 \text{ if } |i - j| > 1, \quad (s_is_j)^3 = 1 \text{ if } |i - j| = 1 \right\rangle. \]

- Here \(s_i \) corresponds to the simple transposition \((i, i + 1)\).
- \(S_n \) acts on an \(n \)-dimensional vector space \(V \) by permuting the elements of a basis \(\{x_1, \ldots, x_n\} \).
- \(s_i \) acts via reflection in the hyperplane \(x_i - x_{i+1} = 0 \).
Let W be a Coxeter group acting on a vector space V.
Let W be a Coxeter group acting on a vector space V. So $W \leq S_V$.
Let W be a Coxeter group acting on a vector space V. So $W \leq S_V$.

If $s \in S$ and $w \in W$, then $w^{-1}sw$ is a reflection.
Let W be a Coxeter group acting on a vector space V. So $W \leq S_V$.

If $s \in S$ and $w \in W$, then $w^{-1}sw$ is a reflection.

It turns out that

$$T = \{ w^{-1}sw \mid s \in S, \ w \in W \}$$

is the set of all reflections in W.
Let W be a Coxeter group acting on a vector space V. So $W \leq S_V$.

If $s \in S$ and $w \in W$, then $w^{-1}sw$ is a reflection.

It turns out that

$$T = \{ w^{-1}sw \mid s \in S, \; w \in W \}$$

is the set of all reflections in W.

We have the alternate presentation

$$W = \left\langle T \left| \begin{array}{l} t^2 = 1 \text{ for all } t \\ ts = st^s \text{ for all } s, t \end{array} \right. \right\rangle.$$
Dual reflection monoids

For \(t \in T \), define an equivalence \(\varepsilon_t \in \mathcal{Eq}_V \) by

\[
\varepsilon_t = \{ (x, y) \in V \times V \mid x = y \text{ or } y = xt \}.
\]
For $t \in T$, define an equivalence $\varepsilon_t \in \mathcal{Eq}_V$ by

$$\varepsilon_t = \{ (x, y) \in V \times V \mid x = y \text{ or } y = xt \}.$$
More generally, if $U \subseteq T$, define:
More generally, if $U \subseteq T$, define:

$$W_U = \langle U \rangle \subseteq W,$$
More generally, if $U \subseteq T$, define:

- $W_U = \langle U \rangle \subseteq W$,
- $\varepsilon_U = \{ (x, y) \in V \times V \mid y = xw \ (\exists w \in W_U) \} \in \mathcal{Eq}_V$.
More generally, if $U \subseteq T$, define:

- $W_U = \langle U \rangle \subseteq W$,
- $\varepsilon_U = \{ (x, y) \in V \times V \mid y = xw \ (\exists w \in W_U) \} \in \mathcal{Eq}_V$.

Put $E_W = \{ \varepsilon_U \mid U \subseteq T \}$.
More generally, if $U \subseteq T$, define:

- $W_U = \langle U \rangle \subseteq W$,
- $\varepsilon_U = \{ (x, y) \in V \times V \mid y = xw \ (\exists w \in W_U) \} \in \text{Eq}_V$.

Put $E_W = \{ \varepsilon_U \mid U \subseteq T \}$. We have:

- $1 = \varepsilon_\emptyset$,
More generally, if $U \subseteq T$, define:

- $W_U = \langle U \rangle \subseteq W$,
- $\varepsilon_U = \{ (x, y) \in V \times V \mid y = xw \ (\exists w \in W_U) \} \in \mathcal{E}q_V$.

Put $E_W = \{ \varepsilon_U \mid U \subseteq T \}$. We have:

- $1 = \varepsilon_{\emptyset}$,
- $\varepsilon_{U_1} \lor \varepsilon_{U_2} = \varepsilon_{U_1 \cup U_2}$,
More generally, if $U \subseteq T$, define:

- $W_U = \langle U \rangle \subseteq W$,
- $\varepsilon_U = \{ (x, y) \in V \times V \mid y = xw \ (\exists w \in W_U) \} \in \mathcal{Eq}_V$.

Put $E_W = \{ \varepsilon_U \mid U \subseteq T \}$. We have:

- $1 = \varepsilon_\emptyset$,
- $\varepsilon_{U_1} \lor \varepsilon_{U_2} = \varepsilon_{U_1 \cup U_2}$,
- $\varepsilon_U \cdot W = \varepsilon_{w^{-1}Uw}$.
So E_W is a dual W-system, and we may form

$$M_W = M^*(W, E_W) = \{ w|_{\varepsilon U} \mid w \in W, \ U \subseteq T \} \leq F^*_N,$$
So E_W is a dual W-system, and we may form

$$M_W = M^*(W, E_W) = \{ w \mid_{\varepsilon U} \mid w \in W, \ U \subseteq T \} \leq S^*_V,$$

the dual reflection monoid of type W.
So E_W is a dual W-system, and we may form

$$\mathcal{M}_W = M^*(W, E_W) = \{ w_{|\varepsilon_U} \mid w \in W, \ U \subseteq T \} \leq \mathcal{F}_V^*,$$

the dual reflection monoid of type W.

Theorem

Results include:

- an embedding $\mathcal{M}_W \rightarrow C(W) : w_{|\varepsilon_U} \mapsto W_U w,$
So E_W is a dual W-system, and we may form

$$\mathcal{M}_W = M^*(W, E_W) = \{ w|_{ε_U} \mid w \in W, U \subseteq T \} \leq \mathcal{F}_V^*,$$

the dual reflection monoid of type W.

Theorem

Results include:

- an embedding $\mathcal{M}_W \to C(W) : w|_{ε_U} \mapsto W_U w$,
- presentations, and cardinalities, for E_W and \mathcal{M}_W.
So E_W is a dual W-system, and we may form

$$M_W = M^*(W, E_W) = \{ w|_{\varepsilon_U} \mid w \in W, \ U \subseteq T \} \leq \mathfrak{F}_V^*,$$

the dual reflection monoid of type W.

Theorem

Results include:

- an embedding $M_W \rightarrow C(W) : w|_{\varepsilon_U} \mapsto W_U w$,
- presentations, and cardinalities, for E_W and M_W,
- realisations of M_W as submonoids of \mathfrak{F}_X^* for “nicer” sets X:
So E_W is a dual W-system, and we may form

$$\mathcal{M}_W = M^*(W, E_W) = \{ w \varepsilon_U \mid w \in W, \ U \subseteq T \} \leq F^*,$$

the dual reflection monoid of type W.

Theorem

Results include:

- an embedding $\mathcal{M}_W \rightarrow C(W) : w \varepsilon_U \mapsto W_U w,$
- presentations, and cardinalities, for E_W and \mathcal{M}_W,
- realisations of \mathcal{M}_W as submonoids of F_X^* for “nicer” sets X:
 - $X = C$, the Coxeter complex of W,

So E_W is a dual W-system, and we may form

$$\mathcal{M}_W = M^*(W, E_W) = \{ w_{\varepsilon U} \mid w \in W, \ U \subseteq T \} \leq \mathfrak{S}^*_W,$$

the dual reflection monoid of type W.

Theorem

Results include:

- an embedding $\mathcal{M}_W \rightarrow C(W) : w_{\varepsilon U} \mapsto W_U w$,
- presentations, and cardinalities, for E_W and \mathcal{M}_W,
- realisations of \mathcal{M}_W as submonoids of \mathfrak{S}^*_X for “nicer” sets X:
 - $X = \mathcal{C}$, the Coxeter complex of W,
 - $X = \{1, \ldots, n\}$ for type A,
So E_W is a dual W-system, and we may form

$$M_W = M^*(W, E_W) = \{ w|_{\varepsilon_U} \mid w \in W, \ U \subseteq T \} \leq \mathfrak{S}_V^*,$$

the dual reflection monoid of type W.

Theorem

Results include:

- an embedding $M_W \rightarrow C(W) : w|_{\varepsilon_U} \mapsto W_U w$,
- presentations, and cardinalities, for E_W and M_W,
- realisations of M_W as submonoids of \mathfrak{S}_X^* for “nicer” sets X:
 - $X = C$, the Coxeter complex of W,
 - $X = \{1, \ldots, n\}$ for type A,
 - $X = \{\pm 1, \ldots, \pm n\}$ for types B, C, D — “signed block bijections”, etc.
Still to do:
Dual reflection monoids

Still to do:

- simplify presentations — investigate finite presentability?
Still to do:

- simplify presentations — investigate finite presentability?
- investigate representation theory, cellularity, etc.,
Still to do:

- simplify presentations — investigate finite presentability?
- investigate representation theory, cellularity, etc.,
- find connections to other monoids — Renner monoids etc?