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Abstract

In this paper we establish a strong connection between buildings and Hecke algebras by studying
two algebras of averaging operators on buildings. To each locally finite regular building we associate
a natural algebra of chamber set averaging operators, and when the building is affine we also
define an algebrat of vertex set averaging operators. We show that for appropriately parametrised
Hecke algebrag¢ and#, the algebraB is isomorphic to# and the algebrat is isomorphic to the
centre of#. On the one hand these results give a thorough understanding of the algefnass.

On the other hand they give a nice geometric and combinatorial understanding of Hecke algebras,
and in particular of the Macdonald spherical functions and the centre of affine Hecke algebras. Our

results also produce interesting examples of association schemes and polynomial hypergroups. In
later work we use the results here to study random walks on affine buildings.
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Introduction

Let G =PGL(n + 1, F) whereF is a local field, and leK = PGL(n + 1, ©), where
O is the valuation ring ofF’. The space of bk -invariant compactly supported functions
on G forms a commutative convolution algebra (see [18, Corollary 3.3.7], for example).
Associated taG there is a buildingX (of type A,,), and the above algebra is isomorphic to
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an algebra4 of averaging operators defined on the space of all functipfie — C. In [7]

it was shown that these averaging operators may be defined in a natural way using only the
geometric and combinatorial propertiesdf hence removing the group entirely from

the discussion. For example, in the case 1, X is a homogeneous tree aptl is the
algebra generated by the operator, where for each vertex,A1 f)(x) is given by the
average value of over the neighbours of.

In [7], using this geometric approach, Cartwright showed thas a commutative al-
gebra, and that the algebra homomorphigmst — C can be expressed in terms of the
classical Hall-Littlewood polynomials of [19, 1lI, §2]. It was not assumed iatas con-
structed from a grougy (although there always is such a group when 3). Although not
entirely realised in [7], as a consequence of our work here we see that the commutativity of
the algebras and the description of the algebra homomorphigms — C follow from
the fact thatA is isomorphic to the centre of an appropriately parametrised affine Hecke
algebra.

One objective of this paper is to put the above observations into a more general setting.
To do so we will demonstrate a close connection between buildings and Hecke algebras
through the ‘combinatorial’ study of two algebras of averaging operators associated to
buildings. Apart from establishing these important connections, our results also have ap-
plications to the theory of random walks on buildings, and provides interesting examples of
association schemes and polynomial hypergroups. We will elaborate on the random walk
applications in a later paper, where we generalise the results in [9]. Let us briefly describe
the results we give here.

0.1. Regularity and parameter systems

To begin with we consider buildings as certalmmber system3hus abuilding X is
a setC of chamberswith an associated Coxeter systé#, S) and aW -distance function
8§:C xC— W.Foreach € Candw € W, defineC,(c) ={d € C | 8(c,d) = w}. Anim-
portant assumption we make throughout is tats regular, by which we mean that for
eachs € S, |Cs(c)] = |Cs(d)] for all ¢, d € C. In a regular building we write, = |C;(c)],
and we call the sefy,};cs the parameter systerof the building. In Proposition 2.1 we
show that regularity implies the stronger result tfigt(c)| = |C,, (d)]| for all ¢, d € C and
w € W, and as such we defing, = |Cy, (c)|. In Theorem 2.4 we show that aHick build-
ings with no rank 2 residues of typ&; are regular, generalising [30, Proposition 3.4.2].
This shows that regularity is a very weak hypothesis.

0.2. The algebraB

Let X be any (locally finite) regular building. For eaghe W we define an operata,,,
acting on the space of functions.C — C, by

(Bwf)(c)zi Z f(d) forallcec. (0.1)

Y deCy (o)
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We call these operatochamber set averaging operatoend writeB for the linear span

of {By}wew overC. Our main result here is Theorem 3.10, where we show£hitiso-
morphic to a suitably parametrised Hecke algebra (the parametrisation depending on the
parameter system of the building). This result is a generalisation of results in [11, Chap-
ter 6] where an analogous algebra is studied under the assumption that there is & group
(of label preserving simplicial complex automorphisms) actitigngly transitivelyon the
building. We note that it is simple to see that all buildings admitting such a group are reg-
ular. However not all regular buildings admit such a group (see [28] forAtheC» and

G buildings). Since we only assume regularity, our results are more general. We require
this additional generality to prove the more difficult results concerning the algélot
vertex set operatorim their full generality. We note that some of our results in Section 3
are proved in [34] using the quite different languagassociation schemes

0.3. The algebra4

The latter part of this paper is mainly devoted to the study of an algglofvertex set
averaging operatorsissociated to locally finite regulaffine buildings, and the connec-
tions with affine Hecke algebrasVe consider the study o4 to be the main contribution
of this paper. It is a considerably more complicated object than the algehrat us give
a (simplified) description of this algebra.

We now consider a building¢ as a certairsimplicial compleX5, Chapter V], and we
write V for the vertex sef X. In Definition 4.17 we define a subs&p C V of good
vertices, which, for the sake of this simplified description, can be thought of apéuial
verticesof X.

To each (locally finite regular) affine building we associate a root syRefret P be
the coweightlattice of R and write P* for a set of dominant coweights. For eacke Vp
andx € P* we define (Definition 5.5) setg; (x) in such a way thatV; (x)},cp+ forms
a partition of Vp. In Theorem 5.15 we show that regularity implies that the cardinalities
|[Vi(x)|, A € P, are independent of the particulare Vp, and as such we writd/;, =
|Vi(x)|. For eachyr € P™ we define an averaging operatay,, acting on the space of
functionsf: Vp — C, by

(Auf)(x)=Ni > f) forallxeVp. (0.2)

A
yEVi(x)

These operators specialise to the operators studied in [7] Whisran A, building.
We write » for the linear span ofA, }, ¢ p+ overC. Our first main result concerning
is Theorem 5.24, where we show thatis a commutative algebra. We stress that we only
assume regularity, and do not require the existence of groups or BN-pairs associated with
the building. This puts our results in a very general setting.
To get a feel for the above definitions in a special caseXldte a homogeneous tree
with degreeg + 1, which is a special case of an building. LetR = {«, —a}, wherea =
e1 — e2, be the usual root system of tyga in the vector spac& = {x € R2| (x, e1+ e2)
= 0}. Taking {«} as a base ofR we have Pt = {%a}keN where N = {0,1,...}.
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Here Vp =V, the set of all vertices, and, writing, (x) in place ofV, (x) wheni = %(x
with k& > 0, we see thaVy (x) is the set of vertices of distanédrom x. Thus we compute
Ny =1if k=0 and(g + 1)¢*~1 if k > 1. The algebra4 in this case is a well-known
object (see [10], for example). It is generated Ay, where(A1f)(x) = q—}rl Z},Nx f
and the sum is over the neighboursxof

Our results on the algebra give interesting examples @fssociation schemdsee
Remarks 4.19 and 5.25) which generalises the well-known construction of association
schemes fronnfinite distance regular graphs

Remark 0.1. To increase the readability of this paper we have restricted our attention to
irreducible affine buildings. Everything we do here goes through perfectly well for re-
ducible affine buildings too, and the details will be given elsewhere. Put briefly, %hen

a reducible building, it has a natural description g®bsimplicial complexand by asso-
ciating a reducible root system 6 we can define the algebs as in the irreducible case.

It turns out thatX decomposes (essentially uniquely) into the Cartesian product of certain
irreducible component{sxj}’jﬁzl, each of which is an irreducible building. The results of
this paper can be used on each irreducible compakegnthus obtaining a]‘amil;{/az!nj-}’]‘.:l

of algebras. It turns out that = A1 x --- x Ay, Wherex is direct product

0.4. Connections with affine Hecke algebras

The main result of this paper is Theorem 6.16, where we considerably strengthen the
commutativity result of Theorem 5.24 by showing thtis isomorphic to the centre of
an appropriately parametrisaffine Hecke algebré&he parametrisation depending on the
parameters of the building). Let us briefly describe this important isomorphisn Lt
anaffine Hecke algebraand writeZ (#) for the centre of#. It is well known thatZ (#)
equalsC[P1"0, the algebra of¥p-invariant elements of the group algebra{hereP is
considered as a multiplicative group in exponential notaties x*). Fori € P let Py (x)
denote théMacdonald spherical functiorhis is a special element 6f P10 which arises
naturally in connection with th8atake isomorphisnThe isomorphism in Theorem 6.16
is thenA, — P;.

This isomorphism serves two purposes. Firstly it gives us an essentially complete un-
derstanding the algebsdé. For example, in Theorem 6.17 we use rather simple facts about
the Macdonald spherical functions to show thais generated byA,, };c;, where{i,;}i¢y,
is a set of fundamental coweights ®Bf On the other hand, sincé is a purely combinato-
rial object, the above isomorphism gives a nice combinatorial descriptidit&h when a
suitable building exists. In particular tiséructure constants, ., that appear in

N,

V, N V=
N;\Nu| 5.(0) N Vi (y)

’

P)L(X)P/L(x)z Z CA,u;vPv(x) are ¢,y =
veP+t

for someu* € Pt (depending only op in a simple way). This shows that (when a suitable
building exists); ., > 0.

In Theorem 7.2 we extend this result by showing thatdhg.,’s are (up to positive
normalisation factors) polynomials in the variablgs — 1};cs with nonnegative integer
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coefficients (even when no building exists). This generalises the main theorem in [24],
where the corresponding result for thg case (where the, ,..,’s are certairHall polyno-

mials) is proved. Thus we see how to construct a polynomial hypergroup from the structure
constants; ., as in [3] (see also [17]).

Since the submission of this paper we have learnt that Theorem 7.2 has been proved
independently by Schwer in [31], where a formula &gy, is given.

In later papers we will use our results here to give a description of the algebra homomor-
phismsh : A — C in terms of the Macdonald spherical functions of [18, Chapter 4]. We
will also provide an integral formula for these algebra homomorphisms (ovéotiedary
of X), and use these results to study local limit theorems, central limit theorems and rate
of escape theorems faadial random walks on affine buildings.

1. Coxeter groups, chamber systems and buildings

Let I be an index set, which we assume throughout is finite, and foe I letm; ; be
an integer owo such thatn; ; =m;; > 2 foralli # j, andm;; = 1 for alli e I. We call
M = (m; ;)i jer aCoxeter matrix The Coxeter groupf type M is the group

W = ({si}ier | (sisj)™ = 1foralli, j € 1), (1.1)

where the relatiorgs;s;)™/ = 1 is omitted ifm; ; = co. Let S = {s; | i € I}. For subsets
J c I we write W, for the subgroup of¥ generated bys; };c;. Givenw € W, we define
thelength¢(w) of w to be smallest € N such thatw =s;, ---s;,, With i, ..., i, € I.

It will be useful on occasion to work witlti*, the free monoid ord. Thus elements of

I* arewords f =i1---i, whereiy, ... i, € I, and we writesy =s;, ---5;, € W. Recall
[29, Chapter 2, §1] that aslementary homotopyg an alteration from a word of the form
fip(, j) f2 to a word of the formfip(j, i) f2, wherep(i, j) = ---ijij (m; ; terms). We

say that the wordg and ' arehomotopidf f can be transformed intg’ by a sequence
of elementary homotopies, in which case we wifite- /. Aword f is said to beeduced
if it is not homotopic to a word of the fornfiiif> foranyi € I. Thus f =i1---i, € I* is
reduced if and only ifr = s;, - - - 5;, is @ reduced expression W (that is,£(s¢) = n).

The Coxeter graptof W is the graphD = D(W) with vertex set/, such that vertices
i, j €I are joined by an edge if and onlyiit; ; > 3. If m; ; > 4 then the edgéi, j} is
labelled bym; ;.

By anautomorphism o> we mean a permutation of the vertex setfbthat preserves
adjacency and edge labels, that is, a permutatiof / such thatn, ) . ;) = m;,; for all
i, j € 1. We write Aut(D) for the group of all automorphisms @f.

An automorphisms of D induces a group automorphism 8f, which we will also
denote by, via the (well-defined) action

0 (W) = So(iy) " So (i) (1.2

whenever;, ---s;, is an expression fow. Note that! (o (w)) = £(w) forall w € W.
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Recall [29, p. 1] that a s&t is achamber system over a skif eachi € I determines
a partition ofC, two elements in the same block of this partition being calledjacent
The elements of are calledchambersand we writec ~; d to mean that the chambers
¢ andd arei-adjacent. By ayallery of typei1---i, € I'* in C we mean a finite sequence
co, - .., cp Of chambers such that_1 ~;, cx andcg—1 # cx for L <k <n.If J C I, we say
thatd € C is J-connectedo c € C if d can be joined te by a galleryc =co, ..., c, =d of
type j1-- - j, with eachj; € J. We call such a gallery d-gallery, and forc € C we write
Ry (c) for the set of all chambers that can be joined toy a J-gallery. We callR; (c) the
J-residue ofe. If C andD are chamber systems over a common indeX sefe call a map
¥ :C — D anisomorphism of chamber systeifig/ is a bijection such that ~; d if and
only if ¥(c) ~; ¥(d).

To a Coxeter grouf¥ over the index set we associate a chamber systémV), called
the Coxeter complenf W, by taking the elements € W as chambers, and for eachk /
definei-adjacency by declaring ~; w andw ~; ws;.

For the present purpose it is most convenient to condidigdingsas certain chamber
systems. Thus we give the definition of buildings from [29].

Definition 1.1. [29]. Let M be the Coxeter matrix of a Coxeter gropover /. ThenX
is abuilding of typeM if

(i) X is a chamber system ovérsuch that for each € X andi € I, there is a chamber
d # cin X such that ~; ¢, and

(i) there exists a¥-distance functiord: X x X — W such that if f is a reduced word
thend(c, d) = sy if and only if c andd can be joined by a gallery of typg.

We will always use the symbdk to denote a building. It is convenient to wrife=
C(X) for the chamber set dk;, even though according to the above definitioris itself
a set of chambers. We sometimes say that a building of typeW if W is the Coxeter
group of typeM. A building X is said to behick if for eachc € C andi € I there exist at
least two distinct chambets+# ¢ such thae ~; c. Therankof a building of typeM is the
cardinality of the index set. We sometimes call a buildingreducible if the associated
Coxeter group is irreducible (that is, has connected Coxeter graph).

2. Regularity and parameter systems

In this section we writeX for a building of typeM, with associated Coxeter grol
over index sefl. We will assume tha¥ is locally finite, by which we mean/| < oo and
{beC|a~;b} <ooforalli el anda C.

For eachu e C andw € W, let

Cuw(a)={beC|é(a,b)=w}. (2.1)

Observe that for each fixade C, the family{C,, (a)},cw forms a partition of’.
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We say thatX is regular if for eachs € S, |Cy(a)| is independent ofi € C. If X is
a regular building we defing; = |C,(a)| for eachs € S (this is independent of € C
by definition), and we caljg};cs the parameter system of the buildinigocal finiteness
implies thatg, < oo for all s € S. We often writeg; in place ofg,, fori e 1.

The two main results of this section are Proposition 2.1(ii), where we give a method for
finding relationships that must hold between the parameters of buildings, and Theorem 2.4,
where we generalise [30, Proposition 3.4.2] and show that all thick buildings with no rank 2
residues of typel; are regular.

Proposition 2.1. Let X be a locally finite regular building.

() ICw(@|=qiyqi, - qi, Whenevew =s;, ---s;, is a reduced expression, and
(i) ¢; =q; whenevern; ; < oo is odd.

Proof. We first prove (i). The result is true wheifw) = 1 by regularity. We claim that
whenever =s; € S and{(ws) = £(w) + 1,

Cuos)= | Csb) (2.2)
beCy (a)

where the union is disjoint, from which the result follows by induction.

First suppose that € C,,;(a) wheref(ws) = ¢(w) + 1. Then there exists a minimal
gallerya = cq, ..., cy = c of type fi (wherew = s with f e I'* reduced) fronu to c,
and in particularc € Cs(cr—1) whereciy—1 € Cy,(a). On the other hand, i € C;(b) for
someb € Cy,(a) thenc € Cy(a) sincel(ws) = £(w) + 1, and so we have equality in (2.2).
To see that the union is disjoint, suppose that’' € C,,(a) and thatC;(b) N Cs (D) # .
Then if b’ # b we haveb’ € C;(b), and thus’ € C,,;(a), a contradiction.

To prove (i), suppose:; ; < oo is odd. Sinces;sjs; ---s; = sjs;s;---s; (m; ; factors
on each side), by (i) we havgq;q; ---q; = qjqiq; - - - q; (m; ; factors on each side), and
the result follows. O

Corollary 2.2. Let X be a locally finite regular building of typ®. If 5; = ws;w™ L for
somew € W theng; =gq;.

Proof. By [4, IV, §1, No. 3, Proposition 3]s; = ws;w™! for somew € W if and only if
there exists a sequensg, ..., s;, such thatiy =i, i, = j, andm;,;,, is finite and odd
for each 1< k < p. The result now follows from Proposition 2.1(ii).0

Proposition 2.1(i) justifies the notatier, = ¢;, - - - ¢i, whenevers;, ---s;, is a reduced
expression fow; it is independent of the particular reduced expression chosen. Clearly we
haveg,,-1 = ¢, forallw e W.

Example 2.3. Using Proposition 2.1(ii) it is now a simple exercise to describe the relations

between the parameters of any given (locally finite) regular building. For example, in a
4

building of typee o (with the nodes labelled,@ and 2 from left to right) we
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must havey; = g» sincem1 2 = 3 is odd. Note that we cannot relafgto g1 sincemo 1 =4
is even.

The following theorem seems to be well known (see [30, Proposition 3.4.2] for the case
|W| < 00), but we have been unable to find a direct proof in the literature. For the sake of
completeness we will provide a proof here.

Theorem 2.4. Let X be a thick building such that; ; < oo for each pairi, j € I. Then
X is regular.

Before giving the proof of Theorem 2.4 we make some preliminary observations. First
we note that the assumption thaf ; < oo in Theorem 2.4 is essential, far, buildings
are not in general regular, as they are just trees with no end vertices. Secondly we note that
Theorem 2.4 shows that most ‘interesting’ buildings are regular, for examining the Coxeter
graphs of the affine Coxeter groups, for example, we seeithat= co only occurs inAy
buildings. Thus regularity is not a very restrictive hypothesis.

Recall that form > 2 or m = oo a generalisedn-gonis a connected bipartite graph

with diameterm and girth 2z. By [29, Proposition 3.2], a building of typeLo is a
generalisedn-gon, and vice versa (where the edge set ofrthgon is taken to be the
chamber set of the building, and vice versa).

In a generalised:-gon we define th@alencyof a vertexv to be the number of edges
that contairv, and we call the generalised-gonthickif every vertex has valency at least 3.
By [29, Proposition 3.3], in a thick generalisedgon withm < oo, vertices in the same
partition have the same valency. In the statement of [29, Proposition 3.3], the assumption
m < oo is inadvertently omitted. The result is in fact falseiif= oo, for a thick generalised
oo-gon is simply a tree in which each vertex has valency at least 3.

Proof of Theorem 2.4. For eachu € C and each € I, letg; (a) = |Cy; (a)|. By thickness,
we haveg; (a) > 1. We will show thaly; (a) = ¢; (b) foralla, b € C and for alli € I.

Fix a € C. By [29, Theorem 3.5] we know that fdr j € I, the residueRry; j)(a) is a
thick building of typeM|; ;; which is in turn a thick generalised; ;-gon by [29, Proposi-
tion 3.2]. Thus, sincer; ; < oo by assumption, [29, Proposition 3.3] implies that

qi (b) = gi(a) forall b e R{,-,j}(a). (2.3)

Now, with a fixed as before, leb € C be any other chamber. Suppose firstly that; a
forsomek € 1. If k =i, theng; (b) = ¢, (a) Since~; is an equivalence relation. So suppose
thatk #£i. Then

qi(b) +1=[{c€C|c~; b}
= |{c € Rixy(b) | ¢ ~i b}|
=|{c € Rixy®) |c~ia}| by(2.3)
= |{c € Ry iy(a) | c~; a}‘ sinceR{,-,k}(b) = Ry ky(a)
=|{ceCle~ia}|=qi(@+1,
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and sog; (b) = g;(a). Induction now shows thaf; (@) is independent of the particular
and so the building is regular.0o

Remark 2.5. The description of parameter systems given in this section by nho means
comes close talassifyingthe parameter systems of buildings. For example, it is an open
question as to whether thick, buildings exist with parameters that are not prime powers.

By the free construction of certain buildings given in [28] this is equivalent to the cor-
responding question concerning the parameters of projective planes (generalised 3-gons).
See [2, Section 6.2] for a discussion of the known parameter systems of generalised 4-gons.

We conclude this section by recording a definition of later reference.

Definition 2.6. Let {g;}scs be a set of indeterminates such that= g, whenevers’ =
wsw~! for somew € W. Then [4, IV, §1, No. 5, Proposition 5] implies that fare W,

the monomialg,, = sy s, is independent of the particular reduced decomposition
w=ys; s, of w. If U is afinite subset oW, thePoincaré polynomial (¢) of U is

U@)= Y qu-

welU

Usually the sefq;}scs Will be the parameters of a building (see Corollary 2.2).

3. Chamber set operatorsand chamber regularity

The results of this section generalise the results in [11, Chapter 6], where it is assumed
that there is a grou (of type preserving simplicial complex automorphisms) acting
strongly transitivelyon X (see [11, 85.2]). As noted in the introduction, all buildings ad-
mitting such a group action are necessarily regular, whereas the converse is not true. Our
proofs work for all locally finite regular buildings, which, by Theorem 2.4, includes all
thick buildings with no rank 2 residues of typa . It should be noted that our results also
apply to thin buildings (wherg; = 1 for all i € I'), as well as to regular buildings that are
neither thick nor thin (that is, buildings that haye= 1 for some but not all € 7). We
note that some of the results of this section are proved in [34] in the contaxsotiation
schemes

Let X be a locally finite regular building. We say that is chamber regulaif for all
wy andws in W,

|Cuy (@) N Cuy(B)| = |Cuy (¢) N Cup(d)|  Whenever §(a, b) =8(c,d),

where the set§,,(a) are as in (2.1). In this section we will prove that regularity implies
chamber regularity (Proposition 3.9), and we introduce an alg@&bod chamber set av-
eraging operators (Definition 3.7) and show that this algebra is isomorphic to a suitably
parametrised Hecke algebra (Theorem 3.10). Recall that for a regular building we define
qs = |Cs(a)|, and we writeg;, = g;.
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Definition 3.1. For eachw € W, define an operata,,, acting on the space of all functions
f:C— Casin(0.1).

Observe thab € Cy,(a) if and only ifa € C,,-1(D). If C' € C, write 1/ :C — {0, 1} for
the characteristic function aff. Thus forw1, wo € W we have

1
(BuyBup )@ =— 3" (Bu,f)(b)

w1 becwl (a)

oY f©

qwlqw? beCuy (@) c€Coy (b)

>3 ey @Bty m () f©)

leqwz beC ceC

: Z(Zlcwl(ll) (b)lc 1(()(b)>f(6')

iz 2o\ e

Y lCu@ne, 1] £ (3.1)
qwlqwz ceC

We wish to explicitly compute the above whan =s € S (and SOwg1 = wp). Thus
we have the following lemmas.

Lemma3.2. Letw € W ands € S, and fixa € C. Then

b € Cys(a) if (ws)=2(w)+ 1,
Co@NC; D) #£0 = { beCyla)UCys(a) if L(ws) = E(w) —
Proof. Lets =s; wherei € I. Suppose first that(ws) = £(w) + 1 and that € C, (@) N
Cs(b). Let f be a reduced word ifi* so thatsy = w, and so there exists a gallery fram
to c of type f. Sinceb € C,(c), there is a gallery of typgi froma to b, which is a reduced
word by hypothesis. It follows thdt e C,s(a).

Suppose now that(ws) = £(w) — 1, and that € C,(a) N C;(b). Sincews is not re-
duced, there exists a reduced wgtdsuch thatf’i is a reduced word fow. This shows that
there exist a minimal gallery = aq, . .., a,, = ¢ such thata,,_1 € C;(c). Sinceb € C;(c)
too, it follows that eitheb = a,,_1 or b € C;(a,,—1). In the former case we haves C,s(a)
and in the latter we haviee C,(a). O

We now perform counts that will be used to demonstrate chamber regularity.

Lemma3.3.Letw € W ands € S. Fixa, b eC. Then

1 if £(ws) =£(w)+ 1andb € Cyy(a),
|Cuw(a) NCy(b)| = : qs if £(ws) = £(w) — 1andb € Cys(a),
gs — 1 if &(ws) =L(w) —1andb € Cy(a).
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Proof. Suppose first that(ws) = £(w) + 1 and that € Cy,;(a). Thus there is a minimal
gallerya =ao, ..., a,, = b such thaw,,_1 € C;(b). There argy; chambers: in C;(b). One
of these chambers ig,_1, which lies inCy,(a), and the remaining; — 1 lie in Cy;(a),
S0a,—1 is the only element of , (@) N Cs(b). Thus|Cy, (a) N Cs(b)| = 1 as claimed in this
case.

Suppose now thatl(ws) = £(w) — 1 and that € Cyy5(a). Write s = s;, and letw = s
wheref € I'* is reduced. Sincé(ws) = £(w) — 1, there exists a reduced wofd such that
f'i is areduced word fow, and thus there exists a minimal gallery of tyfefrom a to b.
Thus each € C;(b) can be joined ta by a gallery of typef’i ~ f, and hence € Cy (a),
verifying the count in this case.

Finally, suppose that(ws) = ¢(w) — 1 andb € C,(a). Then, as in the proof of
Lemma 3.2, there exists a minimal gallery= ay, ..., a,, = b such thatb € C;(a,;,—1).
Exactly one of they; chambers € C;(b) equalsa,,—1, and thus lies irC,(a). For the
remainingg, — 1 chambers we have € C;(a,,—1), and thusc € C,,(a), completing the
proof. O

Theorem 3.4. Letw € W ands € S. Then

By whené(ws) = £(w) + 1,

ByBs; =
w Bs q%Bws-l-(l—q%)Bw whené(ws) = £(w) — 1.

Proof. Let us look at the cas&ws) = £(w) — 1. The casé(ws) = £(w) + 1 is similar.
By (3.1) and Lemma 3.3 we have
1
BuwBy = 1B, + <1— —)Bw.
w qs

All that remains is to show that,/q.,, = 1/g,. If f is a reduced word with; = w and
s = s;, the hypothesis that(ws) = £(w) — 1 implies that there exists a reduced wgfd
such thatf’i is a reduced word fow. The result now follows. O

Corollary 3.5. By, By, = Byu, Whenever (wiwz) = £(w1) + £(w2).

Corollary 3.6. Letws, w2 € W. There exist numbers,, ,,..; € Q" such that

Bwlez = Z bwl,wz;wng?’ and Z bwl,wz;wa =1.

wizeW wzeW

Moreover,[{wz € W | by, w,:ws 7 0} is finite for all w, wp € W.

Proof. An induction on¢(wz) shows existence of the numbeérs, ,.,..; € Q" such that
By, By, = Zwa by, wo: w3 Bws, @and shows that only finitely many of thg, ..,..;'S are
nonzero for fixedw; andw,. Evaluating both sides at the constant functignd — {1}

shows thad _,,. buy wyws =1. O
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Definition 3.7. Let B be the linear span of the sgB,, | w € W} over C. Corollary 3.6
shows thatB is an associative algebra.

Proposition 3.8. {B,, | w € W} is a vector space basis @B, and 8 is generated by
{By|s €S}

Proof. Suppose we have a relatigny_, bx B, = 0, and fixa, b € C with §(a,b) = w;
with 1 < j < n. Then writings, = 1j5) we have

n n
0= bk(Budp)@ =Y braydcj =bjdy,
k=1 k=1
and sob; = 0. From Corollary 3.5 we see thgB, | s € S} generatesB. O

We refer to the numbers,,; ,,..,, from Corollary 3.6 as thetructure constantef the
algebraB (with respect to the natural bagiB,, | w € W}).

Proposition 3.9. Let X be a regular building of typéV, and letws, w2, w3 € W. For any
pair a, b € C with b € Cy,;(a) we have

quwi19w;

w3

|Cus (@) N cwgl(b)| =

bwl;w2;w3’

and soX is chamber regular.

Proof. Using (3.1) we computéB,,, B,,,d8p)(a) = q;llq;21|cwl(a) n sz—l(b) |, whereas by
Corollary 3.6 we havéB., Bu,8)(@) = ¢y buy wyws O

Those readers familiar with Hecke algebras will notice immediately from Theorem 3.4
the connection betweeB and Hecke algebras. For our purposes we défimeke algebras
as follows (see [14, Chapter 7]). For each S, let a; andb, be complex numbers such
thatay = a; andby = by whenevers’ = wsw~! for somew € W. The @enerig Hecke
algebra # (ay, by) is the algebra ove€ with presentation given by basis elemefdts,
w € W, and relations

Tws whent(ws) = £(w) + 1,

asTys +bsTy Whenl(ws) =£0(w) — 1. (32)

mn:{

Theorem 3.10. Suppose a building¢ of type W exists with parameter§y;,};cs. Then
BE=H( 11—,

Proof. We note first that by Corollary 2.2, the numbegs= ¢ andb; = 1 — ¢! satisfy
the conditioru,s = a, andby = by whenever’ = wsw 1 for somew € W.
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Since{T,, | w € W} is a vector space basis ¢¢(¢;%, 1 — ¢;%) and{B,, | w € W}
is a vector space basis & (see Proposition 3.8) there exists a unique vector space iso-
morphism® : #(¢;1, 1 — ¢;1) — 8 such tha (T,,) = B,, for all w € W. By (3.2) and
Theorem 3.4 we have (T, Ty) = & (T,,) D (Ty) for all w € W ands € S, and so® is an
algebra homomorphism. It follows thét is an algebra isomorphism.o

Recall that we writeD for the Coxeter graph div.
Definition 3.11. Let X be a locally finite regular building. Define

Auty (D) = {o € Aut(D) | go;y = g; foralli e I}.

Lemma 3.12. For all wy, wo € W ando € Aut, (D) we have

|Co 1) (@) N Co (i) (B")| = [Cury (@) N Cup (b)

wheneveun, b, a’, b’ € C are chambers witld (a’, b') = o (§(a, b)).
Proof. We first show that, in the notation of Corollary 3.6,

by, wawz = bo(wr),0 (wp);o (ws) (3.3)

for all wy, wp, wz e W.

Theorem 3.4, the definition of AytD) and the fact that (o (w)) = £(w) for all w €
W show that this is true whef(wz) = 1, beginning an induction. Suppose (3.3) holds
whenever(wz) < n, and suppose = s;, - --s;,_,si, has lengthn. Write w’ = s, ---s;,_;
ands =s;,. Observe that (w) = o (w')o (s) SO thatB, (w) = By (w') Bo(s) by Theorem 3.4,
and so

Ba (w1) B(r(w) = (BU(wl) Bo (w’))Ba (s)

= > botwy.ow)iows Bows Bss)

w3zeW
=y (bwl,w';ws > ba(wg),o(s>;o(w4)30(w4)>
wzeW waeW

= Z ( Z bwl,w’;w3bw3,s;w4)B(,(w4),

waeW “wzeW

Thus

bo‘(wl)’o'(w);o'(wél) = Z bwl,w/;wgbwg,s;lm for all wg e W. (34)
w3zeW

The same calculation without tlees shows that this is alsb,,, ..,. This completes the
induction step, and so (3.3) holds for alf, w2 andwz in W.
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Thus for any chambers, b, d’, b’ with §(a, b) = ws, andé(d’, b’) = o (w3) we have
(using Proposition 3.9)

quw14,,-1

|Cuwi (@) N Cy(b)| = -

w1, W, ;W3
quws 2

4o (w1)4 (wz_l)

o (w1),0 (wy D)o (w3)

9o (w3)
= |Ca(wl) (a/) N Cﬂ(wz) (b/) | . (]

4. Preliminary material

This section is preparation for our study of the vertex set averaging operators associated
to locally finite regular affine buildings.

4.1. Chamber systems and simplicial complexes

Recall that asimplicial complexwith vertex setV is a collectionX of finite subsets
of V (calledsimplice$ such that for every € V, the singletor{v} is a simplex, and every
subset of a simplex is a simplex (called dace ofx). If x is a simplex which is not a
proper subset of any other simplex, then we gadlmaximal simplexor chamberof X .

A labelled simplicial complewith vertex setV is a simplicial complex equipped with
a setl of types and atype mapr : V — I such that the restriction|c : C — I of t to any
chamberC is a bijection.

An isomorphismof simplicial complexes is a bijection of the vertex sets that maps
simplices, and only simplices, to simplices. If both simplicial complexes are labelled by
the same set, then an isomorphism which preserves types is saityfeelgreserving

There is a well-known method of producing labelled simplicial complexes from cham-
ber systems, and vice versa (see [6, §1.4] for details). This allows us to consider build-
ings and Coxeter complexes as certain labelled simplicial complexes (with canonical la-
bellings). The following is an alternative (and of course equivalent) definition of buildings
from a simplicial complex approach.

Definition 4.1. [5]. Let W be a Coxeter group of typ# . A building of typeM is a non-
empty simplicial complexX which contains a family of subcomplexes calkgghrtments
such that

(i) each apartment is isomorphic to the (simplicial) Coxeter complex of
(ii) given any two chambers dk there is an apartment containing both, and
(iii) given any two apartmentsgl and.A’ that contain a common chamber, there exists an
isomorphismy : A — A’ fixing AN A’ pointwise.

We remark that Definition 4.1(iii) can be replaced with the following [5, p. 76].
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(iii)” 1f A and A’ are apartments both containing simplicesand o, then there is an
isomorphismy : A — A’ fixing p ando pointwise.

It is easy to see thak is in fact a labellable simplicial complex, and all the isomor-
phisms in the above definition may be taken to be label preserving.

4.2. Root systems

For the purpose of fixing notation we will give a brief discussion of root systems. A thor-
ough reference to this well-known material is [4]. LEete anr-dimensional vector space
overR with inner product-, -), and fora € E \ {0} definea =20/ {w, o).

Let R be anirreducible, but not necessarilyeduced root systenin E (see [4, VI, 81,
Nos. 1, 2]).

The elements oR are calledoots and therank of R is n, the dimension of. A root
system that is not reduced is said to finreduced See [4, VI, 84, Nos. 5-14] for the
classification of irreducible root systems.

Let B ={w; | i € Ip} be abaseof R, wherelp ={1,2,...,n}. ThusB is a subset of
R such (i) a vector space basis Bf and (ii) each root inR can be written as a linear
combination of elements & with integer coefficients which are either all nonnegative or
all nonpositive. We say that € R is positive(respectivelynegative if the expression foe
from (ii) has only nonnegative (respectively nonpositive) coefficientsRfefrespectively
R™) be the set of all positive (respectively negative) roots. TRUs= —R™ andR =
R™ U R~, where the union is disjoint.

Define theheight(with respecttaB) of « = ;. ; kia; € Rby ht(a) =3, ., ki. By [4,

VI, 81, No. 8, Proposition 25] there exists a unique r@at R whose height is maximal,
and defining numberg; by

&= mia; (4.1)

ielpy

we havem; > 1 for all i € Iy. To complete the notation we defing = 1.

Thedual (or inversg of R is RY = {@¥ | « € R}. By [4, VI, 81, No. 1, Proposition 2]
RY is anirreducible root system which is reduced if and onlg is.

We define a dual basis.;};cs, Of E by (1;, «j) =§; ;. Recall that theoroot lattice O
of R is theZ-span ofR, and thecoweight latticeP of R is theZ-span of{4;};¢,. Elements
of P are calleccoweightqof R), and it is clear thap) C P. Note that in the literatur@®
andP are also called theot andweightlattices ofRY. We call a coweight =3, Io @ik
dominantif a; > 0 for alli € Iy, and we writeP ™ for the set of all dominant coweights.

For eachn > 1 there is exactly one irreducible nonreduced root system (up to isomor-
phism) of rankz, denoted byBC,, [4, VI, 84, No. 14]. We may tak& = R”" with the usual
inner product, and let; =e; —e;i1for 1< j <n anda, =e,. ThenB = {a;}’}_;, and

RY ={ex,2er,ei +ej,ei —ej | 1<k <n, 1<i<j<n}

Notice thatRY = R, and one easily sees th@t= P.
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4.3. Hyperplane arrangements and reflection groups

Let R be an irreducible root system, and for each R andk € Z let Hy.x = {x € E |
(x,a) =k}. Let’H denote the family of these (affineyperplanesd,.,, « € R, k € Z. We
write H,, in place ofH,.o, and denote b§o the family of these hyperplands,, o € R.

Given H,., € H, the associatedrthogonal reflections the maps,., : E — E given by
Sark(¥) =x — ((x, ) — k)a¥ for all x € E. We writes,, in place ofsy.0, ands; in place
of s,,. The Weyl group ofR, denotedWy(R), or simply Wo, is the subgroup of GLE)
generated by the reflectiong, o € R, and theaffine Weyl group oR, denotedW (R), or
simply W, is the subgroup of AffE) generated by the reflectiong, « € R, k € Z. Here
Aff (E) is the set of maps — Tx + v, T € GL(E), v € E. Writing ¢, for the translation
x — x + v, we considerE as a subgroup of Afff) by identifying v andz,. We have
Aff (E) = GL(E) x E, andW = Wy x Q. Note thatWp(RY) = Wp(R) [4, VI, &1, No. 1].

Let so = s4.1, definel = Io U {0}, and letSo = {s; | i € Ip} andS = {s; | i € I}. The
group Wy (respectivelyW) is a Coxeter group ovely (respectivelyl) generated byso
(respectivelys).

We write X = X' (R) for the vector spac& equipped with the sectors, chambers and
vertices as defined below. The open connected components bf ., H are called the
chamber®f X (this terminology is motivated by building theory, and differs from that used
in [4] where there arehambersandalcove$, and we writeC(X') for the set of chambers
of X. SinceR is irreducible, eactC € C(X) is an open (geometric) simplex [4, V, 83,
No. 9, Proposition 8]. Call the extreme points of the S&t€" € C(X), verticesof ¥, and
write V(X)) for the set of all vertices of'.

In choice of B gives a naturaflundamental chamber

Co={x€E|(x,a;) >0foralli € Ip and(x, &) < 1}, (4.2)

where we use the notation of (4.1).
Thefundamental sectoof X is

So={x € E|(x,;) > 0foralli € Io}, (4.3)

and thesectorsof X' are the sets. + wSg, wherei € P andw € Wyp. The sectorS =
A+ wSp is said to havdase vertex (we will see in Section 4.5 thatis indeed a vertex
of X0).

The groupWy acts simply transitively on the set of sectors based at 0,Sni$ a
fundamental domain for the action @y on E. Similarly, W acts simply transitively on
C(X), andCy if a fundamental domain for the action @f on E [4, VI, §1-3].

The following fact follows easily from [4, VI, 82, No. 2, Proposition 4(ii)].

Lemma 4.2. Wy acts simply transitively on the set6fe C(X) withOe C.
4.4. A geometric realisation of the Coxeter complex

The setC(X) from Section 4.3 forms a chamber system okeéf we declarewCq ~;
wCo andwCq ~; ws; Co for eachw € W and each € I. The mapw — wCy is an iso-
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morphism of the Coxeter comple&( W) of Section 1 onto this chamber system, and®s0
may be regarded asgometric realisatiorof C(W).

The vertices ofCq are {0} U {x;/m; | i € Io} (see [4, VI, §2, No. 2]), and we declare
7(0) =0 andt(;/m;) =i for i € Iy. This extends to a unique labelling V(%) — I
(see [6, Lemma 1.5]), and the actionWfon X is type preserving.

4.5. Special and good vertices bf

Following [4, V, 83, No. 10], a poinb € E is said to bespecialif for every H € H
there exists a hyperplané’ € H parallel toH such thatv € H’. Note that in our set-up
0 € E is special. Each special point is a vertex®f[4, V, 83, No. 10], and thus we will
call the special pointspecial verticesNote that in general not all vertices are special (for
example, in the”, andG» complexes). WhetR is reducedP is the set of special vertices
of X [4, VI, 82, No. 2, Proposition 3]. WheR is nonreduced theR is a proper subset of
the special vertices af (see Example 4.5).

To deal with the reduced and nonreduced cases simultaneously, we defigeothe
vertices of ¥ to be the elements aP. On the first reading the reader is encouraged to
think of P as the set of all special vertices, for this is true unlRgs of type BC,,. Note
that, according to our definitions, every sectodfs based at a good vertex &f.

We write Ip for the set ofgood typesThat is,/p = {t(A) |[A € P} C I.

Lemma4.3. Let the numbers:; be as in(4.1). Thenlp ={i € I | m; = 1}.

Proof. The vertices ofCq are {0} U {A;/m; | i € Ip}. The good vertices ofy are those
in P, and thus have type 0 offor somei withm; =1. O

4.6. Examples

Example4.4. (R = C>). TakeE =R?, a1 = e1 — e2 andaz = 2¢2. ThenB = {1, a2} and
Rt = {a1, a2, a1 + az, 201 + az}.

The dotted lines in Fig. 1 are the hyperplaf&s,,.x | w € Wo, k € Z}, and the dashed
lines are the hyperplan€$7y,q,.x | w € Wo, k € Z}. In this examplei; = e; and Ao =
(e1+e2), andt(0) = 0, t(3e1) = 1 andt(3(e1 + €2)) = 2. We haveP = {(x,y) €
(%Z)2 | x + y € Z}, which coincides with the set of all special vertices (as expected, since
R is reduced here). Thug = {0, 2}.

Example4.5. (R = BCy). TakeE = R?, a1 = e1 — ep anda = e2. ThenB = {a1, ap} and
R ={a1, a2, a1+ a2, a1 + 202, 20, 201 + 203},
The dotted and solid lines in Fig. 2 represent the hyperplanes in thegis | w €
Wo, k € Z} and{Hyyq,:x | w € Wo, k € Z} respectively. The union of the dashed and solid
lines represent the hyperplanes #, 2u.):x | w € Wo, k € Z}.
In contrast to the previous example, here we hayve- e1 andis = e + ¢2. The set
of special vertices and the vertex types are as in Example 4.4, butther&? (and so
Ip = {0}).
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Fig. 1.

Fig. 2.

4.7. The extended affine Weyl group

Wo X P.

P/Q [4, VI, 82, No. 3]. We note that

The extended affine Weyl group & denotedW (R) or simply W, is W

~

In generalW is larger thanW. In fact, W/W
while W(C,) = W(BC,), W(C,) is not isomorphic ta¥ (BC,,).

In particular, notice that for eache P, the translation, : E — E, f;,(x) =x + A, iS

in W.
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The groupW permutes the chambers &f, but in general does not act simply transi-
tively. Recall [21, §2.2] that fow € W, thelengthof w is defined by

t(w) =|{H € H | H separate€y andw1Co}|.

Whenw € W, this definition agrees with the definition 6fw) given previously for Cox-
eter groups.

The subgroups = {g € W | £(g) = 0} will play an important role; it is the stabiliser of
Coin W. We haveW = W x G [4, VI, §2, No. 3], and furthermore; = P/Q, and so
G is a finite abelian group. Latg andwg, denote the longest elements Wh and Wy,
respectively, where fak € P,

Wor, = {w € Wo | wr =2}, (4.4)
Recall the definition of the numbens (with mg = 1) from (4.1). Then
G={gi|m =1 (4.5)

wherego =1 andg; =1, woy, wo for i € Ip \ {0} (see [4, VI, §2, No. 3] in the reduced
case and note th&t = {1} in the nonreduced case SinGEX P/ Q).

4.8. Automorphisms of and D

An automorphisnof X is a bijectionyr of E that maps chambers, and only chambers,
to chambers with the property th@t~; D if and only if ¥ (C) ~;/ ¥ (D) for somei’ € I
(depending orC, D andi). Let Aut(X) denote the automorphism group &f. Clearly
Wo, W andW can be considered as subgroups of (&Lit, and we haveVo < W < W <
Aut(X). Note that in some casé¥ is a proper subgroup of A(GE). For example, ifR is
of type A, then the mapii1 + azkz — a1rs + a1 is in Aut(X) but is not inW.

Write D for the Coxeter graph o (see Section 1). Recall the definition of the type
mapz: V(X) — I from Section 4.4.

Proposition 4.6. Let ¢y € Aut(X). Then there exists € Aut(D) such that(z o ¥)(v) =
(cot)(v)forallve V(X).If C~; D, theny(C) ~5q) ¥ (D).

Proof. The result follows from [5, pp. 64—65].0

For eachg; € G (see (4.5)), let; € Aut(D) be the automorphism induced as in Propo-
sition 4.6. We call the automorphisms € Aut(D) type rotating(for in the A, case they
are the permutatioris— k +i modn + 1), and we write Aut(D) for the group of all type
rotating automorphisms db. Thus

Auty (D) ={o; | i € Ip}. (4.6)

Note that sincgg = 1, og = id.
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Let Dg be the Coxeter graph dfp. We have [4, VI, 84, No. 3]
Aut(D) = Aut(Dg) x Auty (D). 4.7)

The groupW has a presentation with generatsrsi € I, andg;, j € Ip, and relations
(see [25, (1.20)])

(sisp)™ =1 foralli,jel, and

gjsig; =50, forallierlandjelp. (4.8)
Proposition 4.7. Leti € Ip ando € Auty (D).

(i) 0:(0)=i.
(i) If o(i)=1i,thenoc =op=id.
(i) Auty (D) acts simply transitively on the good types/f

Proof. (i) follows from the formulag; = 1,, wox, wo (i € Ip) given in Section 4.7. By (i)
we have(o; t o0 00;)(0) =0, and sa5; 0 o 0 0; = 09 = id. Thus (ii) holds, and (iii) is
now clear. O

Proposition 4.8. Lety € Aut(X).

(i) The image undey of a gallery inX is again a gallery inX.
(i) A galleryinX is minimal if and only if its image undef is minimal.
(i) There exists a unique € Aut(D) so thaty maps galleries of typg to galleries
of typeo (f). If ¥ = w € W theno € Auty(D). If w = w'g;, wherew’ € W, then
o =0j.
(iv) If ¥+ € W mapsi € P to u € P, then the induced automorphism frdiii) is o =
Om © al_l, wherel = t(A) andm = t(u).

Proof. (i) and (ii) are obvious.

(i) The first statement follows easily from Proposition 4.6, and the remaining state-
ments follow from the definition of Ayt D).

(iv) Sinceo (I) = m, we have(o o 07)(0) = 0,,(0), and soco = o, o ol‘l by Proposi-
tion4.7. O

Proposition 4.9. x — —x is an automorphism aF.

Proof. The mapx — —x mapsH to itself and is continuous, and so maps chambers to
chambers. IIC ~; D andC # D then there is only oné/ € ‘H separatingC and D, and
then —H is the only hyperplane if{ separating—-C and —D, and so—C ~;; —D for
somei’el. O

Definition 4.10. Let o, € Aut(D) be the automorphism @b induced by the automorphism
x — —x of X (see Proposition 4.9). Furthermore, foe P let A* = wo(—A), wherewg
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is the longest element dfp. Finally, forl € Ip letI* = t(A*), wherei € P is any vertex
with t(A) =1.

We need to check that the definitioniéfis unambiguous. If (L) = 7(w), theni = wu
for somew € W. SinceW = W x Q we havew = w'r,, for somew’ € Wp andy € Q, and
SO—A=—w'(y +un) =w'r_,(—pn) =w"(—p) for somew” € W. Thust(—1) = t(—pn),
and sor (A*) = t(u®).

Note that in generat, is not an element of Ag{( D). In the BC,, caseg, is the identity,
for the mapx — —x fixes the good type 0O, implying that, = id by direct consideration
of the Coxeter graph.

Proposition 4.11. If A € P, thenA* € PT.

Proof. Observe thatvg(—Sp) = Sp since—Sp is a sector that lies on the opposite side of
every wall toSp. Thuswo(—A) € P*. O

4.9. Special group elements and technical results

Fori e I, let W; = Wp\y; (this extends our notation fdp). Given i e P, define
t; to be the unique element &% such thatr, =, ¢ for someg € G, and, using [4, VI,
81, Exercise 3], letw, be the unigue minimum length representative of the double coset
Wot; Wi, wherel = z(1). Fix a reduced word, € I* such thats ;, = w;.

Proposition 4.12. LetA € P™ andi € Ip. Suppose that(y) =1, and writej = o; (/). Then
gj =gigiandn, =1 g.

Proof. We see thag; = g; g since the image of O under both functions is the same. Tem-
porarily writer;, = 1] g, and seg;, = ti‘lt,\. Observe thag; (0) = v for somek € Ip (here

vy is the typek vertex of Cp). But (tfltk)(O) = tfl(k) = vy, sincer, is type preserving.
Thusvy =v;, s0k=1,andsog, =g;. O

Recall thatr € Aut(D) induces an automorphism (which we also denote pgf W as
in (1.2). From (4.8) we have the following.

Lemma4.13. LetA € P and! = t(A). Theng,WOg[1 = W; = 0;(Wp), and soW; is the
stabiliser of the typé vertexv; of Cp.

Proposition 4.14. Let» € PT. Then

(i) wy = twaAwogfl = 1, 01 (wo. wo), Wherel = 7 (1), andwg, andwo are the longest
elements oV, and Wy respectively.
(i) » e w,Co, andw, Co is the unique chamber nearaSg with this property.
(i) w; Co C Sop.
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Proof. (i) By Proposition 4.12 and Lemma 4.13 we haVié, Wo = Wor;, gt Wo =
Wot; Wig1, and so the double cosé¥or, Wo has unique minimal length representative
m; = w;g;. By [21, (2.4.5)] (see also [25, (2.16)]) we hawg = 1, wg) wo, proving the
first equality in (i). Then

-1 -1 I -1 1
Wy =myg ~ =hwowog; — =5 grwonwog; - = ;01 (Wwoawo).

(i) With m, as above we haven, (0) = (r,wo,wo)(0) = A, SO A € m;Co. Now
wy = mkgl_l, and sinceg,_1 € G fixes Cog we havex € w, Co. To see thatw, is the
unique chamber neare€t that contains. in its closure, notice that by Lemma 4.13 the
stabiliser ofA in W is tiW;t;‘l, which acts simply transitively on the set of chambers
containing in their closure. So ifwCo is a chamber containing in its closure, then
wCo = (1, wyt], 1)t} (Co) = 1, w; Co for somew; € W;. Thusw =, wy € t] W; C Wot| Wy,
and sof(w;,) < £(w). The uniqueness follows from [29, Theorem 2.9].

We now prove (iii). The resultis clear if= 0, so letx € PT \ {0}. If A € S thenSy N

w; Co # @, and sow; Co C Sp sincew, Co is connected and contained #h\ UHGHO H.

Now suppose that € Sg \ So, S0A € H, for somea € B. LetCg, C4, ..., Cp = w; Co
be the gallery of typef; from Co to w; Co. If w,Co € So then this gallery crosses the
wall H,, so letCy be the first chamber on the opposite sideHf to Cp. The sequence
Co,...,Cr—1,54(Cp), ..., s4(w;Co) joins O toA assy(A) = A. SinceCr_1 = s4(Cy), we
can construct a gallery joining 0 foof length strictly less tham, a contradiction. O

Each cosew Wy, w € Wy, has a unique minimal length representative. To see this,
notice that by Lemma 5.4¥y, is the subgroup oWy generated b¥§o;, = {s € So | sA = A},
and apply [4, IV, 81, Exercise 3]. We Wriw(’} for the set of minimal length representatives
of elements oWp/ Wo,. The following proposition records some simple facts.

Proposition 4.15. Let A € P+ and writel = t()). Then

(i) 1, =wyw; for somew; € Wy, and€(t;) = £(wy,) + £(wy).
(i) Eachw € Wp can be written uniquely as = uv with u € W} and v € Wo,, and
moreover/(w) = £(u) + £(v).
(i) Forv e Wo, vwy, = w,\wlal(v)wl_l wherew; € W; is as in(i). Moreover,

Lvwy) = L) + L(wy) = L(wy) + e(wla,(u)wfl).

(iv) Eachw € Wow; W; can be written uniquely a® = uw;w’ for someu < Wg and
w’ € Wy, and moreovet(w) = £(u) + £(wy) + L(w').

Proof. (i) follows from the proof of Proposition 4.14 and [4, VI, 8§81, Exercise 3].

(i) is immediate from the definition oW/, and [4, VI, §1, Exercise 3].

(iii) Observe first thawvr, = 1,v in the extended affine Weyl group, for,v=1 = 1, for
all v e Wo, andt,;,, =1, if v e Wo,. Sincer, =1; g; (see Proposition 4.12) we have

-1 -1 -1
v, =g T =nhvg =1 (gvg 7)) =101(v),
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and so from (i)pw; = wywior(v)w; . By [4, IV, §1, Exercise 3] we havé(vw;) = £(v) +
2(w;); in fact, £(ww,) = £(w) + £(wy) for all w € Wo. Observe now thabs,w ™ = syq
for w € Wo, and it follows thatt (wo; (v)w; ) = £(v).

(iv) By [4, IV, 81, Exercise 3] eaclw € Wow; W; can be written asw = wiw; w2 for
somewi € Wo andwz € W; with £(w) = £(w1) + £(wy) + £(w2). Write w1 = uv where
u € W andv € Wo, as in (ii). Then by (iii)

WLW) W2 = UVW) W2 = UW), (wlal(v)wl_lwz),

and so eachw € Wow; W; can be written asv = uw; w’ for someu € Wé andw’ e W,
with £(w) = £(u) + £(w;) + £(w"). Suppose that we have two such expressions
uiw;wy = upwrwy, Whereuy, up € Wg andwy, w, € W;. Write v; for the typel vertex
of Co. Then(uyw,w)) (vy) = (u1wy)(v;) = uA, and similarly(upwy wy) (v;) = uzA. Thus
uIluz € Woy., and sauy Wo,, = u2Woj., forcinguy = u». This clearly implies thaiv; = w5,
too, completing the proof. O

Recall the definitions of,, A* and!* from Definition 4.10.

Proposition 4.16. LetA € P (soA* € PT too), and writez (L) =1.

() 0?=id ando,(0) =0.

(i) ox(wy) = w;* andoy () =1*.
(i) oy00;00, t=0yforallielp.
(iv) wys = al_l(w;l).

Proof. (i) is clear, since-(—x) =x forall x € E.

(i) Let v be the automorphism aF given by ¢ (x) = wo(—x) for all x € E. Then
the automorphism ob induced byy is o, (see Proposition 4.6). L&, ..., C,, = w; Co
be the gallery of typefy in X starting atCo, and soy (Co), ..., ¥ (C;,,) is a minimal
gallery of typeo,(f3) (see Proposition 4.8). Observe thatCo) = Co andr* € ¥ (Cy,).
The galleryy (Co), ..., ¥ (C,) from Co to A* cannot be replaced by any shorter gallery
joining Co and*, for if so, by applyingy —! we could obtain a gallery fronfg to A of
length< £(w,). Thusy (C,,) = C;+ by Proposition 4.14, and sa.( f3) ~ fi+. Therefore
ox(w;) = wyx, and s, (1) = I*.

(i) Since Auty(D) is normal in AutD) (see (4.7)) we know that, o o; o 0*_1 =0y
for somek € Ip. By (i) and (i) we have(o, o 0; 0 0,71)(0) = i* and the result follows.

(iv) Let Co, ..., Cy, be the gallery from (ii) and writef; = i1---iy. ThenCy, ..., Co
is a gallery of type reyf,) =i, ---i1 joining A to 0. Lety = wg o w&l ot X > X
wherewg; is the longest element d¥y, . By Proposition 4.14(i) we have

¥ (Cm) = (wo 0 wyt 0 1_3 0 w;)(Co) = Co.
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Thus by Proposition 4.89 = ¥ (Cy,), ..., ¥ (Cp) is a gallery of typerfl(rev(fl)) joining
0 tox* (sincer* € ¥ (Cp)). Since no shorter gallery joining 0 td exists (for if so apply
¥~ to obtain a contradiction) it follows that

wir =07 rew ) =07 (551 =0 (i), O
4.10. Affine buildings

A building X is calledaffineif the associated Coxeter grotp is an affine Weyl group.
To study the algebrat of the next section, it is convenient to associate a root sy&em
each irreducible locally finite regular affine building Xf is of type W, we wish to choose
R so that (among other things) (i) the affine Weyl groupRofs isomorphic toW, and
(i) g5y = ¢ forall i € I ando € Auty (D) (note that Aug(D) depends on the choice of
R, see (4.6)).

It turns out (as should be expected) that the choicR isfin most cases straight forward;
for example, ifX is of type F4 then chooseR to be a root system of typgs (and callX
an affine building of typeF,). The regular buildings of typed; andC, (n > 2) are the
only exceptions to this rule, and in these cases the nonreduced root syi&tgnis > 1)
play an important role. Let us briefly describe why.

Using Proposition 2.1(ii) we see that the parameters of a regildr > 2) building
must be as follows:

q0 4 q1 q1 q1 q1 4 4n

*r—o—0 e o o *r—o—

If we chooser to be aC,, root system then the automorphisie Auty (D) interchanges
the left most and right most nodes, and so condition (i) is not satisfied (upjessg,,). If,
however, we take to be aBC, root system, then Ayt D) = {id}, and so both conditions
(i) and (ii) are satisfied.

Thus, in order to facilitate the statements of later results, we rename réeguiar> 2)
buildings, and call thenaffine buildings of typ&C, (or BC, (n > 2) buildings). We re-
serve the nameC, building’ for the special case whep = ¢, in the above parameter
system. For a similar reason we rename regdldbuildings (which arsemi-homogeneous
tree9 and call themaffine buildings of typ&C1 (or BC1 buildings), and reserve the name
* A1 building’ for homogeneous trees. With these conventions we make the following defi-
nitions.

Definition 4.17. Let X be an affine building of typ&® with vertex setV, and letX =
X (R). Let Vgp(X) denote the set of all special vertices Bf(see Section 4.5), and let
Isp={t(X) | A € Vsp(2)}.

(i) Avertexx eV is said to bespecialif 7(x) € Isp. We write Vgp for the set of all special
vertices ofX.

(i) Avertexx €V is said to begoodif t(x) € Ip, wherelp is as in Section 4.5. We write
Vp for the set of all good vertices of.



J. Parkinson / Journal of Algebra 297 (2006) 1-49 25

Clearly Vp C Vgp. In fact if R is reduced, then by the comments made in Section 4.5,
Vp = Vgp. If R is nonreduced (s® is of type BC,, for somen > 1), thenVp is the set of
all type 0 vertices ofX, wheread/sp is the set of all type 0 and typevertices ofX.

Proposition 4.18. A vertexx € V is good if and only if there exists an apartmeftcon-
taining x and a type preserving isomorphigfit A — X such thaty(x) € P.

Proof. Letx € Vp, and choose any apartmentcontainingx. Let v : A — X be a type
preserving isomorphism (from the building axioms). Thgy) is a vertex inX with
typet(x) € Ip, and soy (x) € P. The converse is obvious.O

Remark 4.19. We note thatnfinite distance regular graphare justsC1 buildings in very
thin disguise. To see the connection, given any > 1, construct a1 building (that is,
a semi-homogeneous tree) with parameggrs p andg; = ¢. Construct a new graphj, ,
with vertex setVp and vertices:, y € Vp connected by an edge if and onlyiifx, y) = 2.
Itis simple to see thaf, , is the (graph) free produd{, * - - - * K, (p copies) wherék,
is the complete graph o letters. By the classification [15,24], , is infinite distance
regular, and all infinite distance regular graphs occur in this way.

Recall the definition of Ayt(D) from Definition 3.11.

Theorem 4.20. The diagrams in Appendi& characterise the parameter systems of the
locally finite regular affine buildings. In each cadety (D) U {0} € Aut, (D).

Proof. These parameter systems are found case by case using Proposition 2.1(ii) and the
classification of the irreducible affine Coxeter graphs. Note thag @t U {o..} = {id} if
X is a BC,, building. Thus the final result follows by considering each Coxeter graph.

5. Vertex set operatorsand vertex regularity

Let X be a locally finite regular affine building of typR (see Section 4.10). Recall
(Definition 4.17) that we writé/p for the set of all good vertices of.

For eachy € P we will define an averaging operatdr, acting on the space of all
functions f : Vp — C, and we will introduce an algebta of these operators. The opera-
tors A;, were defined in [32, Il, §1.1.2, Exercise 3] for homogeneous trees, [8,23]for
buildings, and [7] forA,, buildings. Our definition gives the generalisation of the operators
A, and the algebrat to all (irreducible) root systems.

5.1. Initial observations
Recall the definition of type preserving isomorphisms of simplicial complexes.

Definition 5.1. Let . A; and.A2 be apartments ak.
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(i) Anisomorphismy:. A1 — Ay is calledtype-rotatingif it is of the form ¢ = w;l o
w o Y1 whereyr; 1 A1 — X andyz: A2 — X are type preserving isomorphisms, and
weWw.

(i) We have an analogous definition to (i) for isomorphisins4; — X' by omitting y».

Proposition 5.2. Let A, A’ be any apartments and suppose tifat4 — A’ is an isomor-
phism. Then

(i) The image unde¢ of a gallery inA is a gallery inA'.

(i) A galleryinA is minimal if and only if its image undef is minimal in.A'.

(iii) There exists a unigue € Aut(D) so thatyr maps galleries of typ¢ in A to galleries
of typeo (f) in A'. If ¥ is type rotating, themr € Auty (D), and(t o ¥)(x) = (0 o
7)(x) for all verticesx of A.

(iv) If ¥ is type rotating and maps a types Ip vertex inA to a typej € Ip vertex inA’,
then the induced automorphism frdjii) isoc =0 o o[l.

Proof. This follows from Proposition 4.8 and the definition of type rotating isomor-
phisms. O

Lemma5.3. Suppose € Vp is contained in the apartment$ and A’ of X, and suppose
thaty : A — X andy': A — X are type rotating isomorphisms such thatx) =0 =
¥ (x). Lety”: A — A’ be a type preserving isomorphism mappintp x (the existence
of which is guaranteed by Definitigh1). Theng =y o " o ¥ L is in Wo.

Proof. Observe thaty: ¥ — X has¢(0) = 0. Sincey andv’ are type rotating isomor-
phisms we have) = w o y1 andy’ = w’ o Yy for somew,w’ € W andy1: A - X,
Y- A" — X type preserving isomorphisms. Therefore,

p=w ooy oy towt=wog owt, say

Now ¢’ = o " o wil : X — X is a type preserving automorphism, as it is a compo-
sition of type preserving isomorphisms. By [29, Lemma 2.2] we hglve: v for some
veW,andhence = w ovow 1 e W. Sincep(0) = 0 andW = Wy x P we in fact have

¢ € Wp, completing the proof. O

5.2. The set¥,; (x)
The following definition gives the analogue of the partitif@h, (a)},ew used for the
chamber set of¢. Let us first record the following lemma from [5, p. 24] (or [13, §10.3,

Lemma B]). Recall the definition of the fundamental sedgfrom (4.3).

Lemmab5.4. Letw e Woandi € E. If M = wi € SopNwSp thenr’ = 4, andw € ({s; |
sih = A}).



J. Parkinson / Journal of Algebra 297 (2006) 1-49 27

Definition 5.5. Givenx € Vp andi € P, we defineV, (x) to be the set of aly € Vp
such that there exists an apartmghtontainingr andy and a type rotating isomorphism
¥ A— X such thaty(x) =0 andy (y) = A.

Proposition 5.6. Let V, (x) be as in Definitiorb.5.

(i) Givenx,y e Vp, there exists somee P such thaty € V; (x).
@iy If y e Vo(x)NVy(x)thena ="
(i) Lety e V,(x). If A is any apartment containing and y, then there exists a type-
rotating isomorphismy : A — X such thaty (x) =0andy (y) = A.

Proof. Firstwe prove (i). By Definition 4.1 there exists an apartmémontainingy andy
and a type preserving isomorphista: A — X. Let u = ¥1(x) andv = ¥1(y), SOu, v €
P. There exists a € Wy such thatw (v — ) € SoN P [13, p. 55, Exercise 14], and so the
isomorphismy = wor_, oy satisfiesy (x) =0 andy (y) = w(v —p) € P, proving (i).

We now prove (ii). Suppose that there are apartmgnasd.A’ containingx andy, and
type-rotating isomorphismg : A — X andy/': A’ — X such that/(x) = ¥'(x) =0 and
Yv(y)=Are PTandy’'(y) =1" € PT. We claim thats = 1'.

By Definition 4.1(iiiy there exists a type preserving isomorphigii: A — A’ which
fixesx andy. Theng = v/ o ¥” o ¥ ~1: ¥ — ¥ is a type-rotating automorphism a
that fixes 0 and mapsto A’. By Lemma 5.3 we have = w for somew € Wy, and so we
haver’ = wi € So N wSp. Thus by Lemma 5.4 we havé = .

Note first that (iii) is not immediate from the definition & (x). To prove (iii), by the
definition of V; (x) there exists an apartmegt containingx andy, and a type-rotating
isomorphismy’: 4" — X such that)’(x) = 0 andy’(y) = A. Then by Definition 4.1(iii)
there is a type preserving isomorphigmA — A’ fixing x andy. Theny =y’ o0¢: A —
X has the required propertiest

Remark 5.7. Note that the assumption thétis type-rotating in Definition 5.5 is essential
for Proposition 5.6(ii) to hold. To see this we only need to look at an apartment 4fan
building. The mag1A1 + axA2 — aiiz + apxAq is an automorphism which maps to A».
Thus if we omitted the hypothesis thdt is type-rotating in Definition 5.5, part (ii) of
Proposition 5.6 would be false.

Proposition 5.8. If y € V, (x), thenx € Vy«(y) whereA* is as in Definitiond.10Q

Proof. If 4 : A — X is atype rotating isomorphism mappirgo 0 andy to A, thenwg o
t_y oy A— X is atype rotating isomorphism mappingo 0 andx to A* = wo(—2) €
P (see Proposition 4.11).0

Lemmab.9. Letx € Vp andi e PT. If y, y € V,.(x) thent(y) = t(y").

Proof. Let A be an apartment containingandy, and.A’ be an apartment containing

andy’. Lety: A — X andy’: A" — X be type rotating isomorphisms with (x) =
V' (x)=0andy(y) =v¢'(y) =i Thusy =y Loy :4A— A is a type preserving
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automorphism since (x) = x (see Proposition 4.7). Since(y) = y’ we havet(y) =
t(y). O

In light of the above lemma we defingV, (x)) = 7(y) for anyy € V; (x).

Clearly the set¥, (x) are considerably more complicated objects than theGgis).
The following theorem provides an important connection between th&setsandC,, (a)
that will be relied on heavily in subsequent work. Given a chambelC and an index
i € I, we definer; (¢) to be the type vertex ofc. For the following theorem the reader is
reminded of the definition o, € W and f € I'* from Section 4.9.

Theorem 5.10. Letx € Vp and € PT. Suppose (x) =i andt(V,(x)) = j,andleta € C
be any chamber with; (a) = x. Then

beclzimyeviml= | @,

weWioi(wx)Wj
where the union is disjoint.

Proof. Suppose first thay = 7;(b) € Vi(x). Leta = co, c1,...,c, = b be a minimal
gallery froma to b of type f, say. By [29, Theorem 3.8], all thg lie in some apartment,
say. Lety : A — X be a type rotating isomorphism such thatx) = 0 andy (y) = A.
Thenyr (co), ¥(c1), ..., ¥(cy) is a minimal gallery of typeri_l(f) by Proposition 5.2.
Recall the definition of the fundamental chamligy from (4.2). Since 0 is a vertex

of ¥ (co), we can construct a gallery fromi(co) to Co of type e1, say, wheres,, € Wo.
Similarly there is a gallery fromw; Co to ¥ (c,) of typee, wheres,, € Wo‘—l(j). Thus we
have a gallery '

V(co) -2 Co L5 wCo -2 (cn)

of typees f; e2. SinceX is a Coxeter complex, galleries (reduced or not) from one chamber
to another of typeg: and f>, say, satisfy r, = sy, [29, p. 12], S®, -1 ) = Se1 frer- Thus

d(a,b) =sf=o; (Sglfl(f)) = 0i(Sey frep) = e S01(f3) el

wheree) € W; ande’, € W;. Thusb € Cy, (a) for somew € W;o; (w;)W;.

Now suppose thai € Cy, (a) for somew € W;o;(wy)W;. Lety =m;(b). By [29, p. 35,
Exercise 1], there exists a gallery of typéo;(fi)e, from a to b wheree; € W; and
e, € W;. Letc, ciy1, ..., ¢ be the subgallery of type; (fi). Note thatr; (c;) = x and
7 (c;) = y. Observe that; (f3) is reduced since; € Aut(D), and so all of the chambers
cmy k <m <[, lie in an apartmen#4, say. Letys : A — X be a type rotating isomorphism
such thaty (x) = 0. Thusy (cr), ..., ¥ (c;) is a gallery of typef;, in X (Proposition 5.2).
SinceW, acts transitively on the chambefse C(X) with 0 € C (Lemma 4.2) there exists
w € Wp such thatw (¥ (cx)) = Cp. Theny’ =w oy : A — X is a type rotating isomor-
phism that takes the galley, ..., c¢; in A of typeo; (f3) to a galleryCo, ..., ¥'(c;) of
type f;.. But in a Coxeter complex there is only one gallery of each type/%a) must
bew; (Co), and by considering typeg’(y) = A, and soy € V; (x). O
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Forx € V we write stx) for the set of all chambers that haveas a vertex. Recall the
definition of Poincaré polynomials from Definition 2.6.

Lemma5.11. Letx € Vp. Then|st(x)| = Wo(gq). In particular, this value is independent
of the particularx € Vp.

Proof. Suppose (x) =i € Ip and letcg be any chamber that hasas a vertex. Then

sttx) ={ceC|8(co.c) e Wi} = | J Culco)

weW;

where the union is disjoint, and $st(x)| = ZweW,— qw- Theorem 4.20 now shows that

ISt = Y duan =D qw=Wolg). O

weWp weWg

Note that if the hypothesis ‘let € Vp' in Lemma 5.11 is replaced by the hypothesis
‘let x be a special vertex’, then in the nonreduced case it is no longer true in general that
Ist(x)| = Wo(g).

5.3. The cardinalitie$V; (x)|
In this subsection we will find a closed form foV, (x)|. We need to return to the

operatorsB,, introduced in Section 3.
For each e I define an elemert; € 8 by

(5.1)

i =

Wi (q)

weW;
Lemmab5.12. Leti € I. Then1; B, = B, 1; = 1; for all w € W;, and1? = 1;.

Proof. Suppose is a generator oW; and setWijE ={w e W; | £{(ws) =£(w) £ 1}. Then

Wi(g)1; Bs = Z quBuws + Z Qw( ws+<1_i)3w)

weW’ w'eW;, s
1
= Bw + Z qw Bys+(1——)By
wew~ 2 wew- B 1
q
= Z < - Bws + quw>
weW;” s

=Y GuBu+ Y. quBu=Wi@)L.

weW;t weW,”
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A similar calculation works fomB;1; too. It follows thatl; B,, = B,,1;, = 1, forall w e W;
andsol?=1;. O

Recall the definition o#¥g, from (4.4).

Theorem 5.13. Let A € P+ and writel = t(). Then

Wé(@)
Z quwBy = WO( )QwA]lOBw;\]]-l-
weWow, W, orlg

Proof. Recall from Corollary 3.5 thaB,,, By, = Buy,w, Whenevert(wiwz) = £(w1) +
£(wy). Then by Proposition 4.15(ii), Proposition 4.15(iii), Lemma 5.12 and Proposi-
tion 4.15(iv) (in that order)

1
]]-OBwA]]-l: WO(‘]) Z Z QMCIUBuBUBw;L]]-l

ueWé veWoy

1
= Wo(q) Z Z q“qUB”B’“lelﬂl(v)wfljll

uewg veWor

Z Z qudv Bu wa 1

uEWé‘ veWo

1
Wo(q)

Wox(q) 1 Z

= a4 quw By,
Wo(q)Wi(q) ™ e

weWow; W;

and the result follows, since

Wi@) =D qu=Y dow)=Wolq)

wew; weWp

by Proposition 4.20. O

Lemma5.14. Leti € P*,x € Vp,andy € V; (x). Writet(x) =i, t(y) = j andt (L) =1.
Thenai_l(j) =/, and soo; =0; 0 0;.

Proof. Sincey € V, (x), there exists an apartmedtcontaininge andy and a type rotating
isomorphismy : A — X such thaty(x) = 0 andy (y) = A. Sinceyr(x) = 0, theo from
Proposition 5.2(jii) mapsto 0 and so i, *. Thusi. = ¥/ (y) has types (j) = o, 1(j) and
sol = o;71(j). Thusa;(0) = (0; 0 07)(0), and s = g; 007. O

Theorem 5.15. Letx € Vp andi € P witht(A) =1 € Ip. Then
_ Wo(g)

1
Vi) = —— w = w, = | Vi ()]
Vi@l =32 we%ZwAW]q oty don = [V @]
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Proof. Supposer(x) =i e lIp andt(y)=j e lp forally e V,(x). LetCy(x) ={ceC|
7j(c) € Vi(x)} and construct a mag :Cy(x) — Vi(x) by ¢ — 7;(c) for all ¢ € C), (x).
Clearlyy is surjective.

Observe that for each € V; (x) the set{c € C,.(x) | ¥ (c) = y} has|st(y)| distinct ele-
ments, and so by Lemma 5.11 we see thaf’, (x) — V. (x) is aWp(g)-to-one surjection.
Let co € C be any chamber that hasas a vertex. Then by the above and Theorem 5.10 we
have

|G, 1 1
’V)L(x)| = = Z |Cw(CO)| =T Z qu-
WO(q) WO(Q) weW,-o,»(w;M)Wj WO(q) wEW,'O'l'(lU)L)Wj

Sincecrfl(j) =1 (Lemma 5.14) we hav#;o; (wy)W; = o; (Wow, W;), and so by Theo-
rem 4.20

1 1
V; = o (w) = w-
Viwl=yig 2 daw=gs D 4

weWow; W; weWow; W;

Let 1-:C — {1} be the constant function. Th&é®,,1-)(c) = 1 for all c € C, and so we
compute(1;1¢)(c) = 1 for all ¢ € C. Thus by Theorem 5.13

Z _ Wg(‘])
™= Worig) ™™

weWow,; W;

Now, by Proposition 4.16 and Theorem 4.20 we have

1 1
Vo« = — w = w= V; .
Vewl=wa 2 w=yos 2 aw=[hol o

weox(Wowy W) weWow; W;

Definition 5.16. For A € P we defineN, = |V, (x)|, which is independent of € Vp by
Theorem 5.15.

By the above we hav/, = N;x.
5.4. The operatorgl, and the algebra4
We now define theertex set averaging operatoos X.

Definition 5.17. For eachh € P, define an operatat;, acting on the space of all func-
tions f: Vp — C asin (0.2).

Lemma 5.18. The operatorsA, are linearly independent.
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Proof. Suppose we have a relation, . ,+ a, A, =0, and fixx, y € Vp with y € V. (x).
Then writings, for the function taking the value 1 atand O elsewhere,

0= > ax(418)(x)= Y ayN; '8 u=auN, ",
rePT rEPT

andsaz, =0. O

Following the same technique used in (3.1) for the chamber set averaging operators, we
have

1
(AAL(x) = NN, Z ’V)L(x) N Vﬂ*(y)}f(y) forall x € Vp. (5.2)

" yeve
Our immediate goal now is to understand the cardinalji&gx) N V.« (y)I.
Definition 5.19. We say thatx is vertex regulaif, for all A, u,v € PT,
Vi) NV ()] = [Va(x) N V= (y)|  whenevery € V, (x) andy’ € V, (x"),
andstrongly vertex regulaif for all A, i, v e P*
Vi) NV (0)] = [ Var () N V,(0")|  whenevely € V, (x) andy’ € Vi« (x').
Strong vertex regularity implies vertex regularity. To see this, suppose we are given

x,y,x',y € Vp with y € V,,(x) andy’ € V,,(x"), and choose any pai’, y”’ € Vp with
y" € Vi« (x”). Then if strong vertex regularity holds, we have

[VA() NV (0)] = [V ) N VO | = [V N Vs ()]

Lemma 5.20. Let y € V,(x) and suppose that € V;(x) N V,+(y). Write t(x) = i,
t(y)=j, @@ =k, t(0) =1, t(w) =m,andzr(v) =n.

0] al._l(k) =1, O’k_l(j) =m and O'i_l(j) =n. ThUSal._1 o0} = o0y, ak_l ooj =0, and

-1 _
0, ~00j=0y.

(i) op =o07004y.
Proof. (i) follows immediately from Lemma 5.14. To prove (ii), we have
O’loo’m=0’i_100’k00’k_100’j=(Tl-_10(7j=(7n. |
Recall the definition of the automorphisim € Aut(D) from Section 4.8.

Theorem 5.21. X is strongly vertex regular.
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Proof. Letx, y € Vp with y € V,(x) and suppose thate V, (x) N V= (y). Lett(x) =1,

7(y) = j and t(z) = k. With the notation used in the proof of Theorem 5.15, define a
mapy :Cy. (x) N Cyux(y) = Vi(x) NV« (y) by the ruley (c) = mx(c). As in the proof of
Theorem 5.15 we see that this i$¥@(¢)-to-one surjection, and thus by Theorem 5.10

1
|VA(X)0V;L*()’)|=W Yo [Cu(@ NCuy(b)].

w1€W;o; (wy) Wi
w2eW;o; (wlt*)wk

wherea andb are any chambers with; (a) = x andx;(b) = y. Notice that this implies

thaté(a, b) € W;o;(w,)W;, by Theorem 5.10.
Writing t(A) =1 andt (v) =n, Lemma 5.20(i) implies that

Wioi(wy) W = oi (Wowwi_l(Wk)) =0i(Wowp W -1,)) = o: (Wow, W),
_ -1 _
Wioj(wyu«) Wi = o; (ng—l(j) (al. o Uj)(wﬂ*)wafl(k)) =0; (W,,on(wﬂ*)Wl)

and similarly W;o; (w,)W; = o;(Wow, W,,). Applying Lemma 3.12 (witho = ;) we
therefore have

[Va(x) N V(3| = Y @) nCu,®)), (5.3)

w1€Wow;, W
w2eWpo, (w, )W)

Wo(q)

whered’, b’ are any chambers with(a’, b') € Wow, W,,.

Vertex regularity follows from (5.3), for the value ¢V, (x) N V,+(y)| is seen to only
depend on, u andv. To see that strong vertex regularity holds, we use Proposition 4.16
to see that

Wows Wi = 0% (W, 10,0 (W) W, 1)) = 0% (Wowy W),

Won (wu*)Wl = U*(Wn* (0;1 o0y o G*)(wu)wl*) = G*(W)1*Un*(wu)Wl*)v

and similarly Wow, W,, = a.(Wow,« W,+). A further application of Lemma 3.12 (with
o = o) implies that

1
V; NV, x* = — C YN Cy, (D],
V() N Vi ()| oD wewzw . |Cun (@) N Coy (0]
l 0 * *
szW,l*Un*)Ewl_jW]*

wherea”,b” are any chambers with(a”, b”") € Wow,«W,=. Thus by comparison with
(5.3) we have

Vi) N Vs ()] = | Var () N V()

’
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where x’, y’ € Vp are any vertices withy’ € V,«(x’); that is, strong vertex regularity
holds. O

Corollary 5.22. There exist numbeis, ,.., € Q* such that for, u € P,

A Ay = Z a)\,u.;vAv and Z Ay v = 1.

vePt+ vePt+

Moreover,|{v € P | a; ., # 0} is finite forall A, u € P.

Proof. Letv € V, (1) and set

N,

Vo (u) N Ve
NANM‘ 5 (1) N Vs ()

a;h,w, = , (5.4)

which is independent of the particular pairv by vertex regularity. The numbers, .,
are clearly nonnegative and rational, and from (5.2) we have

\% NV«
(ArAuf)@) = Z( 3 Mf(y))

N, N
veP+ N yeVy(x) AV

= Z a)h,;/.;v<1\7i Z f(y)>

vep+ Y yev, (x)

= Y @ (A ).

vePt+

When f =1y, :Vp — {1} we see thad _a; .., = 1.

We now show that only finitely many of the, ,.,’s are nonzero for each fixed pair
X, € PT.Fixx € Vp and observe that; ., # 0 if and only if V; (x) N V,;« (y) # ¢ for
eachy € V, (x). Applying (NyA,)(N,A,) to the constant functiony}, : Vp — {1}, we
obtain

D Vi) N Vs (3)| = NaN,
YeVp

and hencé/; (x) N V.« (y) # ¥ for only finitely manyy € Ve. O

Definition 5.23. Let A be the linear span df; | A € P™} overC. The previous corollary
shows that4 is an associative algebra.

We refer to the numbeus, ., in Corollary 5.22 as thetructure constantsf the alge-
bra.

Theorem 5.24. The algebra is commutative.
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Proof. We need to show that, ., = a,, ., forall A, u, v € P*. Fixing any pairu, v in
Vp with v € V, (1), strong vertex regularity implies that

Ny
NiN,

N,
ay,u;v = —V‘V)»(u) N Vu* (U)‘ = ’VA*(U) N Vu(“)’ =day, v
NN,

completing the proof. O

We note that a similar calculation using Theorem 5.15 (specifically the fact that
N, = NA*) shows tham%,, = Q)= p*v* for all A, M, v e P+,

Remark 5.25. Let X be a set and leK be a partition ofX x X such thatd ¢ K and
{(x,x)|x € X} e K.Fork € K, definek* = {(y,x) | (x, y) € k}, and for eachx € X and
k € K definek(x) ={y € X | (x, y) € k}. Recall [34] that arassociation schemnie a pair
(X, K) as above such that (f)e K implies thatk* € K, and (ii) for eachk, [, m € K there
exists a cardinal numbey, ;.,,, such that

(x,y)em impliesthat |k(x)NI*(y)|= exim-

Let X = Vp, and for eacth € Pt let M’ ={(x,y) | y € Vi(x)}. The setL = {1/ | A €
PT) forms a partition ofVp x Vp, andr’(x) = Vy (x) for x € Vp.

By vertex regularity it follows that the paiVp, L) forms an association scheme, and
the cardinal numbers, .., are simplyN; N, N, ta; ... By strong vertex regularity this
association scheme also satisfies the conditjep,,, = e,/ ;v forall A, u, v e PT (see
[34, p. 1, footnote]).

Note that the algebrat is essentially theBose—Mesner algebraf the association
schemgVp, L) (see [1, Chapter 2]). With reference to Remark 4.19, the above construc-
tion generalises the familiar construction of association schemes from infinite distance
regular graphs (see [1, §1.4.4] for the casérufe distance regular graphs).

Recall the definition of the numbebs,, ..., given in Corollary 3.6.

Proposition 5.26. Let t(A) =1 and t(v) = n. Suppose thay € V,(x) and V,(x) N
Vs (y) # 9. Then

Wox(q) Wop (q)
v = 2 . Z GuiGwrbwy wpiw, -
Wou (DWW (D Gw; qw. o ciomsw,

woeWioy(wy, )Wy

Proof. By Lemma 5.20(ii) we have,, = o; o 0;,,. Thus by Proposition 4.16(iv) we have
W0 (wy )W) = (Wioy(w,,) Wy,) ™21, and so by (5.3) we see that
V2.0 N Ve ()| = > |Cus (@) mcwgl(b)\ (5.5)

w1€Wow, W;
woeWoy(wy ) Wy

Wo(q)

wheneves (a, b) € Wow, W,,.
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By Proposition 3.9 (and the proof thereof) we have
[Cu (@) N C,y-1(B)] = Gun G (Buy Buy8p) (@),

and the result now follows from (5.5) by using Theorem 5.15 and the definitioms 0f
andby,; wy:ws, DY choosing € Cy,(a). O

6. Affine Hecke algebrasand Macdonald spherical functions

In Section 6.3 we make an important connection between the algélaad affine
Hecke algebras. In particular, in Theorem 6.16 we show.thistisomorphic taZ (#), the
centre of an appropriately parametrised affine Hecke algébra

In Sections 6.1 and 6.2 we give an outline of some known results regarding affine Hecke
algebras. The main references for this material are [21,25]. Note that in [25] there is only
one parametey, although the results there go through without any serious difficulty in the
more general case of multiple parametgrscs. Note also that in [25]0 = Q(R) and
P = P(R), whereas for ug) = Q(RY) andP = P(R"Y).

6.1. Affine Hecke algebras
Let {gs}ses be a set of positive real numbers wigly = g;; whenevers; ands; are

conjugate inW. Theaffine Hecke algebra# with parametersg;}ses is the algebra over
C with presentation given by the generat@ls w € W, and relations

Tuy Ty = Tuqw,  If L(wrwz) = €(w1) + £(w2), (6.1)
1 1

TyTy = —Tys + (1— —)Tw if £(ws) < £(w) ands € S. (6.2)
qs s

By (6.1), hTyy = TyTh =Ty, for all w € W, and hencely = I since{Ty}, oy 9en-
erates#. Then (6.2) implies that eachi, s € S, is invertible, and from (6.1) we see that
eachTy, g € G, is invertible, with inversd’, -1 (recall the definition of from Section 4.7).
Since eachw € W can be written asy = w’g for w’ € W andg € G it follows that each
T,, w € W, is invertible.

Remark 6.1. (i) In [21] the numbergq;};cs are taken as positive real variables. Our choice
to fix the numbersg, };cs does not change the algebraic structuréfoiin any serious way
(for our purposes, at least).

(if) The condition that;,, = gs, whenever; = ws; w1 for somew € W is equivalent
to the condition thagy, =qs; wheneves; = usg(j)u—l for someo € Auty (D) andu € W.
This condition is quite restrictive, and it is easy to see that we obtain the parameter systems
given in Appendix A. Thus connections with our earlier results on the alggbuaill
become apparent when we take the numlgrs s to be the parameters of a locally finite
regular affine building.
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Definition 6.2. (i) We write g, = g5, - -4qs;, if si;---si, is a reduced expression for
w € W. This is easily seen to be independent of the particular reduced expression (see [4,
IV, 81, No. 5, Proposition 5]). Eacti € W can be written uniquely aé = wg for w e W
andg € G, and we defingy; = ¢,,. In particularg, = 1 for all g € G. Furthermore, if
s =s5; We writeg; = g;.
(il) To conveniently state later results we make the following definitions. Ret=
{e€eR|20 ¢ R}, Ro={a €R| %CX¢R} andR3=R1N Ry (SOR1 =Ry =R3=RIif R
is reduced). Fow € Ry, write g, = g; if o € Woa; (note that ife € Wow; then necessarily
a € Ry). It follows easily from Corollary 2.2 that this definition is unambiguous.
Note thatR is the disjoint union ofR3, R1 \ Rz andR2 \ R3, and define set of numbers

{Ta}acr DY

qu if « € R3,
w=q490 ?faGRl\R&
9aqq - fae R2\ R3,

wherego = gy, (With so = s55.1 andea is as in (4.1)). Itis convenient to also define= 1 if
a ¢ R. The reader only interested in the reduced case can simplyrgeasly, . Note that
Twe = T fOralla € R andw € Wy.

Remark 6.3. We have chosen a slight distortion of the usual definition of the algéhra

This choice has been made so as to make the connection between the algetndge

more transparent, as the reader will shortly see. To allow the reader to convert between
our notation and that in [21], we provide the following instructions. With reference to our
presentation fot# given above, let; = Vai andT,, = \/q, T,, (theser’s are unrelated to
those in Definition 6.2(ii)). Our presentation then transforms into that given in [21, 4.1.2]
(with the T’s there replaced by’’s). This transformation also makes it clear why the
V4w 's appear in the following discussion.

If e P letx* = /g, Tp,, and ifA = o — v with 1, v € P letx* = x#(x”)~1. This
is well defined by [21, p. 40], and for all, 1 € P we havex*x* = x*+# = x#x*,

We write C[ P] for the C-span of{x* | » € P}. The groupWy acts onC[P] by linearly
extending the actiomx* = x**. We write C[P]"° for the set of elements of[P] that
are invariant under the action @fy. By Corollary 6.7, the centri(#) of J¢ is C[P]".

Let # be the subalgebra off generated by(T; | s € S}. The following relates the
algebra#f to the algebraB of chamber set averaging operators on an irreducible affine
building.

Proposition 6.4. Suppose a building¢ of type R exists with parameter§g};cs. Then
H=B.

Proof. This follows in the same way as Theorem 3.1@3
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We make the following parallel definition to (5.1). Recall the definition of Poincaré
polynomials from Definition 2.6. For eacte I, let

1
ﬂ-l = wTun 63
Wiq) 24 63)

weW;

whereW; = Wy\(;) (as before). Thus; is an element of¢. As a word of warning, we have
used the same notation as in (5.1) where we defined the analogous elengntliere
should be no confusion caused by this decision.

The following lemma follows in exactly the same way as Lemma 5.12.

Lemma®6.b. 1;T, =T,1; =1, forall w e W; andi € I. Furthermore]ll.2 =1;.
6.2. The Macdonald spherical functions
The following relations are of fundamental significance.

Theorem 6.6. Let A € P andi € Ip.
(i) If (R,i)# (BCy,n)foranyn > 1, then

A A

— xSi
xATYi - TSixSi)\ = (1 - qi_l)

—aY "
1—x"%

(i) If R=BC, for somen > 1 andi = n, then

T T xs,,k:[l_ -1, —1/2( 1/2 _1/2)x’(2°‘n)v] xX* — xS
Sn Sn qn qn CIO qo 1_ x_z(zan)v .

Proof. This follows from [21, (4.2.4)] (see Remark 6.3), taking into account [21, (1.4.3)

and (2.1.6)] in case (ii). O

We note that the fractions appearing in Theorem 6.6 are in fact finite linear combina-
tions of thex*’s [21, (4.2.5)]. We refer to the relations in Theorem 6.6 asBbeenstein
relations for they are a crucial ingredient in the so-callBdrnstein presentatioof the
Hecke algebra.

Corollary 6.7. The centreZ (#) of # is C[P]"°.

Proof. This well-known fact can be proved using the Bernstein relations, exactly as in [21,
(4.2.10)]. O
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For eachh € P, define an elemen®, (x) € C[P]"0 by

Py < da 5 ( IR Tup X _1) (6.4)
2 (X == wlx 127 v . | .
W( )weW aeRt 0(//2 -1

We call the element#®; (x) the Macdonald spherical functionsf .

Remark 6.8. (i) We have chosen a slightly different normalisation of the Macdonald spher-

ical function from that in [21]. Our formula uses the normalisation of [18, Theorem 4.1.2].
(i) Notice that the formula simplifies in the reduced case (namgly = 1). (iii) It

is not immediately clear thaP, (x) as defined in (6.4) is itC[P]"0, although this is a

consequence of [4, VI, 83, No. 3, Propaosition 2].

The proof of Theorem 6.9 below follows [25, Theorem 2.9] very closely.
Theorem 6.9. [25, Theorem 2.9]For > € P+ we haveql P,\(x)Jlo = 1ox"1g.
Proof. By the Satake isomorphism (see [25, Theorem 2.4] and [16, 5.2], for example) there

exists some?} (x) € C[P]"0 such thatP] (x)1o = Lox*1o. If i € Ipand(R, i) # (BC,, n),
then by Theorem 6.6(i) (and using Lemma 6.5) we have

)\_ Si A

, xt—x
(1+¢iTs)x* 1o = x* 1o+ qix"* Ty, Lo + (gi — D=yl
—x %
qixk _x)nfot[\/ _qixs,')woziv + xSi*
= < 1o
1—x"%
i —1 o —1
<‘sz )L_i_% v )]10
x% —1 x~% —1
1 A
=1+ ,)7 1o. (6.5)
x% —1

A similar calculation, using Theorem 6.6(ii), shows that # Ip and(R, i) = (BC,, n),
then

(\/ q04n x @) 1) (\/ Qn/qox(za")v + 1) A

1+gq, Ts,l)x)‘]lo =A+s,) 2 _ 1 x*1o. (6.6)

It will be convenient to write (6.5) and (6.6) as one equation, as follows. In the reduced
case, lets; = «; for all i € Ip, and in the nonreduced case (Be= BC,, for somen > 1)
letB; =a; for1<i <n—1andletB, =2u,. Fora € R andi € Iy, write

1/2 v 1/2
av) _ (tﬁi Tﬂ,-//zxa - 1)( f}//Zx + 1)

a,-(x 20V 1

)
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and so in all cases
(L4 qiTs)x* 1o = (L4 s;)a; (xP)x* 10. (6.7)

By induction we see that (writing; for 7j,)

{1’[(“% )]x Jlo—|:1_[(1+?lk)azk( )} *o, (6.8)
k=1

k=1

where we writg] ;_ ; x« for the ordered produat; - - - x,. Thereforelgx 1o can be written
as fx*1g, where f is independent of. and is a finite linear combination of terms of the
form

A+ si)aiy (1) - A+ 53,)a, (P,

whereiy, ..., i, € Ip.
Thus we have

Plx)= Y w(by(x)x"),

weWp

where eaclb,, (x) is a linear combination of products of terraz;t{xﬂiv) and is independent
of L € PT. Itis easily seen that this expression is unique, and sitjce) € C[PI™o it
follows thatb,, (x) = b, (x) for all w, w’ € Wy, and we writeb(x) for this common value.
Thus

P (x)= Z w(b(x)x)‘)z Z w(xwo)‘wob(x)),

weWp weWp

wherewy is the longest element d¥.

We now compute the coefficient ®f*°* in the above expression. Since this coefficient
is independent of € P we may assume that, ;) > 0 for all i € Ip and sowX # wok
forall w € Wy \ {wo}.

If wo=s;, ---s;, iS areduced expression, then

1
lo= W()((1+q,1 T (1+4q:,T;)

+terms(1+q;, 7)) -~ (L+¢q;, Tj,) with ji € Ip andl < m).

Thus, by (6.8)

]lox)“]lo =

Wol@) [(HS”‘“”‘ )x fo

+ terms( l_[ 5jaj, (xﬂ«ka)>x’\]lo with j; € Ip andl < m]
k=1



J. Parkinson / Journal of Algebra 297 (2006) 1-49 41

Thus the coefficient af“* is

1 Vv v
wob(x) = - sidia (x"0) 51, (xn)
1 (55" — D (rgpx" +1)
“ o™ 11 -1 ’
BeRY

where we have used the fact that

\ Y \V2 +\V
{ﬂim’ simlBim,l’ cees Sy Sty g .siZIBil} - (Rl )

(see [21, (2.2.9)]) and the fact that, = 7, for all w € W anda € R. The result now
follows after an elementary manipulationt

Sincex* = qtlk/ZT,A by definition, we have the following.
Corollary 6.10. For > € P* we have
107}, 1o = Py (x)1o.

We write 9 for theN-span of{a" | @ € R™}. Define a partial ordeg on P by u < A
ifand only if A — € Q.

Theorem 6.11. {P,(x) | » € Pt} is a basis ofC[P]"0. Furthermore, the Macdonald
spherical functions satisfy

Pix)Pu(x)= Y ¢ Po(x)
VXAt

for some numbers, .., with ¢, a4, > 0.

Proof. This is a simple application of the triangularity condition of the Macdonald spher-
ical functions, see [20, §10].0

6.3. Connectings and Z(#)

We can now see how to relate the vertex set averaging operétdrem Section 5 to
the algebra elementg, (x). Let us recall (and make) some definitions. Ko, v € P
andwy, wz, w3z € W, define numbers;, ., buy, wo;wsr Cr, v ANAdy wy:wz DY

A)»A[L = Z ak,u;vAm Bwleg = Z bwl,wg;wngg,v
veP+t wzeW

PX(X)PM(X) = Z CA,;,L;UPV(X), TwlTwz = Z dwl,wz;ngwg'

veP+t wzeW
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Thus the numbers are the structure constants of the algelyras C[P]"° and # with
respect to the basdsl; | L € P}, {By |w e W}, {Pi(x) | A € PT}and{T, | w € W)
respectively.

Note that by Proposition 6.4 we ha¥@, ,.ws; = dw;,w:w; Whenever a building with
parameter systerfy,};cs exists. We stress thak,, ,,.,.., IS @ more general object, for it
makes sense for a much more general set ‘sf

Recall the definition ofv, from Section 4.9, and recall the definition W, from (4.4).
We give the following lemma linking double cosetsWhwith double cosets ifiV.

Lemma 6.12. Let . € P* andi € Ip. Suppose that (1) = [, and write j = o;() (so
oj =0;007). Then

Wioi ()W = gi Woty, Wogj_l,
where the elemenig are defined in(4.5).

Proof. By Proposition 4.12g; = g;g andr, =1; g;, and by (4.8) g (w) = gkwgk_l for
allwe W andk € Ip. Thus

Wioi (1)W; = (& Wog; V) (gitrg; g7 *) (g Wog; ) = &iWot Wog; ' D

Lemma6.13. [25, Lemma 2.7]LetA € P*. Then

W5 (@)
Z quw = WO ( )wa:ﬂ-OTtx]]-O-
we Wty Wo orlq

Proof. This can be deduced from Theorem 5.13, or see the proof in [25].

The following important theorem will be used (along with Proposition 5.26) to prove
thatA = Z(F).

Theorem 6.14. Let A, u,v € P and write t(A) =, () =m and t(v) = n. Then if
¢, ;v 7 0we have

Woi(q) Wou(q) Z

= Gu19wsQwy,wo:w, -
Wou (9 WE (@) qu, G, i

Ch,p;v

w1 Wow, W
w2 Wiy (wy) Wy

Proof. To abbreviate notation we writ®, = P, (x). First observe that by Theorem 6.11 we
havec; ,,, =0 unlessy < A + w. In particular we have, ., =0 whent(v) # (A + ).

It follows thato,, = 07 0 0;,,, and sog,, = g2, (See Proposition 4.12). We will use this fact
later.
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By Corollary 6.10 and Lemma 6.13, for ainye P we have

Woi(q)

P\lo=1oT;, 1o = W&

quwTy,
(@) Gu; we Wt Wo

and so ifi € Ip, t(A) =1 andj = o;(I) we have (see Lemma 6.12)

Won(q)

o) duTo. 6.9)
W2(q)qu, o

Ty, P)LIlngjfl =
wEWiO‘,’(t)/L)Wj

We can replace thg by w;. in the above becaus&;o; (1) W; = W;o; (w;)W; by Propo-
sition 4.15(i) and the fact that; (W;) = W;.
Using the fact thag, = gigm if cx, ;v # 0 we have, by (6.9)

Py1oP, llngn_l = (P ]lngl_l) (T, Py ]lngn_l)

_ Wor(g@)Wou(q) Z

W (@) qw, quw, .

w1 Wow, W,
w2eWop(w, )Wy

Wor(q)Wou(q)
:47M Z Z GuwrGuwrdwy, wa;ws Tws |-
WQ(‘])‘]wAQw
wowzeW w1€Wow;, W

w2eWjo; (w/l,) Wy

So the coefficient ofy,, in the expansion oP)\JloPﬂjlngfl in terms of theT,’s is

Wo..(q)Wo, (q)
5 Z Gu1 Gwodwy,wo; w, - (6.10)

WD) G, G,

w1€Wow;, W;
waeWjop(wy) Wy

On the other hand, by Theorem 6.11 we have

PiloPyToT 1 = > Gy PlloT 1

N=SA+u
Woy,(q)
- % (peiicn ¥ i)
NKA+p 0 (q)qw’? weWow, Wy

Since the double cose®ow, W, are disjoint over{n € P* | n < A + u} we see that the
coefficient ofTy,, is

WOV(q)C
A Lsve
weq)

(6.11)

The theorem now follows by equating (6.10) and (6.11)
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Corollary 6.15. Suppose that an irreducible affine building exists with parameter system
{gs}ses. Then for alli, pu, v € Pt we haves; ., = ¢ :v-

Proof. This follows from Theorem 6.14 and Propositions 5.26 and 6@.

Theorem 6.16. Suppose that an irreducible affine building exists with paramétgises.
Then the magP, (x) — A, determines an algebra isomorphism, and4& Z (#).

Proof. Since{P,(x) | » € PT} is a basis ofC[P]"0 and{A; | » € P*} is a basis ofA,
there exists a unique vector space isomorphisny (#) — A with @(P;) = A, for all
re Pt Sinceay ;v = ), ;0 Dy Corollary 6.15, we see thak is an algebra isomor-
phism. O

Theorem 6.17. The algebraZ (#) is generated byP,, (x) | i € I}, and soA is generated
by{Aj, | i € Ip}.

Proof. First we define a less restrictive partial order Bi than<. For i, u € Pt we
defineu < A if and only if A — x is anR*-linear combination of RV)* and A # p.
Clearly if u < A thenu < A. Observe also that; > 0 for all i € Iy (see Exercises 7 and 8
onp. 72 of [13]). Thus ik = 1"+ 1; for some)’ € Pt andi € Ip, we haveh — 1 = 1; >0
and so\’ < A.

LetP (1) be the statement th&, is a polynomial inP,, ..., Py, (andPy = 1). Suppose
that P (1) fails for someir € P*. Since{u € P | u < A} is finite (by the proof of [13,
Lemma 13.2B]) we can pick € P minimal with respect ta< such thatP (1) fails. There
isani suchthat —; = A’ isin P*. Then)’ < A andP, = c P,/ P;, + alinear combination
of P,’s, wherep < i, u # A. ThenP(1') holds, as doe®(u) for all theseu's. SoP(%)
holds, a contradiction. O

7. A positivity result and hypergroups

Here we show that the structure constasjts,., of the algebraC[P]"0 are, up to
positive normalisation factors, polynomials with nonnegative integer coefficients in the
variables{g; — 1| s € S}. This result has independently been obtained by Schwer in [31],
where a formula foe;_ ., is given (in the casg, = ¢ for all s € ).

Thusifg, > 1 foralls € S, thenc; ., = 0forall A, u, v € PT. This result was proved
for root systems of typel, by Miller Malley in [24], where the numbers, .., are Hall
polynomials (up to positive normalisation factors). Note that it is clear from (5.4) and
Corollary 6.15 that; ,.., > 0 when there exists a building with parametgyg;es.

In a recent series of papers [12,27,31,33] the numbgrs appearing inPy(x) =
>, @.pmy are studied. Herer, is the monomial symmetric function,, .y, x”', where
Wou is the orbit{wu | w € Wp}. We will provide a connection with the results we prove
here and the numbets,_, in [26, Theorem 6.2]. In particular, for € P*, let [T, C P
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denote the saturated set (see [4, VI, §1, Exercise 23]) with highest coweiliht ¢ IT,
thena, , =0, and for allu € IT,,

No—p
N,

= Cx s

wherev is any dominant coweight with eagh, «;) ‘sufficiently large’.

The results of this section show how to construct a (commutative) polynomial hyper-
group, in the sense of [3] (see also [17] where hecase is discussed).

For eachwy, wp, wz e W, Ietd{vl’wz;w3 = Guy Quyq gy wy . wpiws-

Lemma 7.1. For all wy, wo, wze W, d’ is a polynomial with nonnegative integer

.. . . w1, w2; w3
coefficients in the variableg — 1, s € S.

Proof. We prove the result by induction difwz). When{(wz2) = 1, sowp = s for some
s € S, we have

1 if £(wys) =£(w1) + 1 andwz = wys,
, ) gs if £(w1s) =£(w1) — 1 andwsz = w1s,
wsws T ) go— 1 if £(was) = £(wy) — 1 andws = w1,
0 otherwise,

proving the result in this case.
Suppose that > 2 and that the result is true féfwz) < n. Then if £(w2) = n, write
wp = ws With £(w) =n — 1. Thus

TwlTwz = (TwlTw)Ts = Z dwl,w;w’Tw’Ts = Z ( Z dwl,w;w’dw’,s;w3> ng’

w'eWw wizeW “w'eW

which implies that

/ _ / /
dwlswz;ws - Z dwl,w;w’dw’,s;wa'

wew
The result follows sincé(w) <n and{(s) =1. O
For eachh, u,v e PT, let

c _ Wo(q@)Wou(q) qw,qw,
RV Wo (@ Wou(@)  qu,

C)\,/L;v- (71)

Theorem 7.2. For all A, u,v € P, the structure constanis oy are polynomials with
nonnegative integer coefficients in the variabjes- 1, s € S.
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Proof. We will use the same notation as in Theorem 6.14, se(ef =1, T(x) = m and
7(v) =n. By Theorem 6.14 we have
, 1
C . =
YT Wolg)

4
Z dwlvwzlwv ’

w1€Wow; W;
w2 Wy (wy,) Wy

and so it immediately follows from Lemma 7.1 th%(q)c;’w is a polynomial in the
variablesg; — 1, s € S, with nonnegative integer coefficients. The result stated in the the-
orem is stronger than this, and so we need to sharpen the methods used in the proof of
Theorem 6.14.

We make the following observations. See Proposition 4.15 for proofs of similar facts
(we use the notations of Proposition 4.15 here). Firstly, each Wow; W; can be writ-
ten uniquely aswi; = uyw, w; for someu; € W& andw; € W;, and moreovert(wy) =
L(uy) + L(wy) + £(wy). Similarly, eachw, € Wio;(w, )W, can be written uniquely as
w2 = wjoy(w,)uz for someus € w}t and w; € W;, and moreover(wz) = £(w)) +
Llo1(wp)) + £(u2).

Secondly, eaclv € Wow;, can be written uniquely a® = uw, for someu € Wé, and
moreoverf(w) = £(u) + £(w;). Similarly, eachw’ € o;(w, )W, can be written uniquely
asw’ = o;(w,)u’ for someu’ € Wy', and, moreover,(w’) = £(a7(wy,)) + £(u').

Using these facts, along with the facts thl%t: 1; andW;(g) = Wo(q), we have (com-
pare with the proof of Theorem 6.14)

_ Woi(g)Wou(g) Z

P, 1oP, 10T 1=
e WD qw, G,

CleCIwz Tw1 ng

w1 Wow;, W,
waeWjop(wy) Wy

_ WOA(CI)WOM(Q)WZZ(CI)( Y o T )12
= ugwy fugwy -

4
Wo (@) Gw, qu, e
X( Z qGJ(wu)uszfz(wu)m)
quW,lf
Woxr(g)Wou(q)
227”' Z QwTw 1 Z Qw’Tw’
W (@) quw, q
0 WAL N e Wowy, w' oy (wy) W

_ Woi.(g)Won(q) Z

3
WO (q)qw*qwﬂ w1€Wow;,, waeW;
w3€oy(w )Wy

qU)j_qwzqwg Twl Twz Tw3 .

It is simple to see that

Z qwlqwzqwaTwlTwz ng = Z dy (A, WquwTy

w1eWowy, woeW; weW
w3€Eo] (wu)Wn



J. Parkinson / Journal of Algebra 297 (2006) 1-49 a7
whered,, (1, 1) is a linear combination of products a);f)l wws S with nonnegative integer
coefficients, and so

Woi(q)Wou(q)
PylloPuloT, 1 = ————F—= % " dy (h, ;) qu T
" Wo(‘])CIwAQwM weW

So the coefficient of,,, when PxﬂoPuﬂngfl is expanded in terms of tHg,’s is

Wor (@) Won (@)  quw,
WO3 (C]) qw;. qw//.

dw, (X, ). (7.2)

Comparing (7.2) with (6.11) we see thagw =dy, (%, n), and so the result follows from
Lemma 7.1 and the fact thai, (i, 1) is a linear combination of products dgjlywz;w,&'s
with nonnegative integer coefficientso
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Appendix A. Parameter systems of regular affine buildings

For anX, building theren + 1 vertices in the Coxeter graph. The special vertices are
marked with ary. If all of the parameters are equal we write= q.

Ali q o0 9 B~C1' 40 00 91

I e—e
N S N S
q
S
~ q q q q
An(n22) e ® o o o ¢ ?
q0
S
~ 0 0 0 0
B, (n > 3): 40 g q ¢ o o qo—qoiqon
S
~ 0 1 1 1 1 0
T i . S L L B

~ Q491 q1 91 491 4 4n
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Eg:
q

E7Z sq q q 4 q q qs

q
E~,8: q q9 4 q q q q qs
~ q0 490 40 4 94 44
Fp. se—eo——eo——o—o
~ . 40 40 6 91
Gy, se—eo—o
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