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Abstract

In this paper we establish a strong connection between buildings and Hecke algebras by s
two algebras of averaging operators on buildings. To each locally finite regular building we as
a natural algebraB of chamber set averaging operators, and when the building is affine we
define an algebraA of vertex set averaging operators. We show that for appropriately parame
Hecke algebrasH andH̃ , the algebraB is isomorphic toH and the algebraA is isomorphic to the
centre ofH̃ . On the one hand these results give a thorough understanding of the algebrasA andB.
On the other hand they give a nice geometric and combinatorial understanding of Hecke al
and in particular of the Macdonald spherical functions and the centre of affine Hecke algebra
results also produce interesting examples of association schemes and polynomial hypergr
later work we use the results here to study random walks on affine buildings.
 2005 Elsevier Inc. All rights reserved.
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Introduction

Let G = PGL(n + 1,F ) whereF is a local field, and letK = PGL(n + 1,O), where
O is the valuation ring ofF . The space of bi-K-invariant compactly supported functio
on G forms a commutative convolution algebra (see [18, Corollary 3.3.7], for exam
Associated toG there is a buildingX (of typeÃn), and the above algebra is isomorphic
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an algebraA of averaging operators defined on the space of all functionsG/K → C. In [7]
it was shown that these averaging operators may be defined in a natural way using o
geometric and combinatorial properties ofX, hence removing the groupG entirely from
the discussion. For example, in the casen = 1, X is a homogeneous tree andA is the
algebra generated by the operatorA1, where for each vertex,(A1f )(x) is given by the
average value off over the neighbours ofx.

In [7], using this geometric approach, Cartwright showed thatA is a commutative al
gebra, and that the algebra homomorphismsh :A → C can be expressed in terms of t
classical Hall–Littlewood polynomials of [19, III, §2]. It was not assumed thatX was con-
structed from a groupG (although there always is such a group whenn � 3). Although not
entirely realised in [7], as a consequence of our work here we see that the commutat
the algebraA and the description of the algebra homomorphismsh :A → C follow from
the fact thatA is isomorphic to the centre of an appropriately parametrised affine H
algebra.

One objective of this paper is to put the above observations into a more general s
To do so we will demonstrate a close connection between buildings and Hecke al
through the ‘combinatorial’ study of two algebras of averaging operators associa
buildings. Apart from establishing these important connections, our results also ha
plications to the theory of random walks on buildings, and provides interesting examp
association schemes and polynomial hypergroups. We will elaborate on the random
applications in a later paper, where we generalise the results in [9]. Let us briefly de
the results we give here.

0.1. Regularity and parameter systems

To begin with we consider buildings as certainchamber systems. Thus abuilding X is
a setC of chamberswith an associated Coxeter system(W,S) and aW -distance function
δ :C × C → W . For eachc ∈ C andw ∈ W , defineCw(c) = {d ∈ C | δ(c, d) = w}. An im-
portant assumption we make throughout is thatX is regular, by which we mean that fo
eachs ∈ S, |Cs(c)| = |Cs(d)| for all c, d ∈ C. In a regular building we writeqs = |Cs(c)|,
and we call the set{qs}s∈S the parameter systemof the building. In Proposition 2.1 w
show that regularity implies the stronger result that|Cw(c)| = |Cw(d)| for all c, d ∈ C and
w ∈ W , and as such we defineqw = |Cw(c)|. In Theorem 2.4 we show that allthick build-
ings with no rank 2 residues of typẽA1 are regular, generalising [30, Proposition 3.4
This shows that regularity is a very weak hypothesis.

0.2. The algebraB

LetX be any (locally finite) regular building. For eachw ∈ W we define an operatorBw,
acting on the space of functionsf :C → C, by

(Bwf )(c) = 1

qw

∑
f (d) for all c ∈ C. (0.1)
d∈Cw(c)
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We call these operatorschamber set averaging operators, and writeB for the linear span
of {Bw}w∈W overC. Our main result here is Theorem 3.10, where we show thatB is iso-
morphic to a suitably parametrised Hecke algebra (the parametrisation depending
parameter system of the building). This result is a generalisation of results in [11,
ter 6] where an analogous algebra is studied under the assumption that there is a gG

(of label preserving simplicial complex automorphisms) actingstrongly transitivelyon the
building. We note that it is simple to see that all buildings admitting such a group ar
ular. However not all regular buildings admit such a group (see [28] for theÃ2, C̃2 and
G̃2 buildings). Since we only assume regularity, our results are more general. We r
this additional generality to prove the more difficult results concerning the algebraA of
vertex set operatorsin their full generality. We note that some of our results in Sectio
are proved in [34] using the quite different language ofassociation schemes.

0.3. The algebraA

The latter part of this paper is mainly devoted to the study of an algebraA of vertex set
averaging operatorsassociated to locally finite regularaffinebuildings, and the connec
tions withaffine Hecke algebras. We consider the study ofA to be the main contributio
of this paper. It is a considerably more complicated object than the algebraB. Let us give
a (simplified) description of this algebra.

We now consider a buildingX as a certainsimplicial complex[5, Chapter IV], and we
write V for the vertex setof X. In Definition 4.17 we define a subsetVP ⊆ V of good
vertices, which, for the sake of this simplified description, can be thought of as thespecial
verticesof X.

To each (locally finite regular) affine building we associate a root systemR. Let P be
thecoweightlattice ofR and writeP + for a set of dominant coweights. For eachx ∈ VP

andλ ∈ P + we define (Definition 5.5) setsVλ(x) in such a way that{Vλ(x)}λ∈P+ forms
a partition ofVP . In Theorem 5.15 we show that regularity implies that the cardinal
|Vλ(x)|, λ ∈ P +, are independent of the particularx ∈ VP , and as such we writeNλ =
|Vλ(x)|. For eachλ ∈ P + we define an averaging operatorAλ, acting on the space o
functionsf :VP → C, by

(Aλf )(x) = 1

Nλ

∑
y∈Vλ(x)

f (y) for all x ∈ VP . (0.2)

These operators specialise to the operators studied in [7] whenX is anÃn building.
We writeA for the linear span of{Aλ}λ∈P+ overC. Our first main result concerningA

is Theorem 5.24, where we show thatA is a commutative algebra. We stress that we o
assume regularity, and do not require the existence of groups or BN-pairs associat
the building. This puts our results in a very general setting.

To get a feel for the above definitions in a special case, letX be a homogeneous tre
with degreeq + 1, which is a special case of añA1 building. LetR = {α,−α}, whereα =
e1 − e2, be the usual root system of typeA1 in the vector spaceE = {x ∈ R2 | 〈x, e1 + e2〉
= 0}. Taking {α} as a base ofR we have P + = { k α}k∈N where N = {0,1, . . .}.
2
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HereVP = V , the set of all vertices, and, writingVk(x) in place ofVλ(x) whenλ = k
2α

with k � 0, we see thatVk(x) is the set of vertices of distancek from x. Thus we compute
Nk = 1 if k = 0 and(q + 1)qk−1 if k � 1. The algebraA in this case is a well-known
object (see [10], for example). It is generated byA1, where(A1f )(x) = 1

q+1

∑
y∼x f (y)

and the sum is over the neighbours ofx.
Our results on the algebraA give interesting examples ofassociation schemes(see

Remarks 4.19 and 5.25) which generalises the well-known construction of asso
schemes frominfinite distance regular graphs.

Remark 0.1. To increase the readability of this paper we have restricted our attenti
irreducible affine buildings. Everything we do here goes through perfectly well for
ducible affine buildings too, and the details will be given elsewhere. Put briefly, whenX is
a reducible building, it has a natural description as apolysimplicial complex, and by asso
ciating a reducible root system toX we can define the algebraA as in the irreducible case
It turns out thatX decomposes (essentially uniquely) into the Cartesian product of ce
irreducible components{Xj }kj=1, each of which is an irreducible building. The results
this paper can be used on each irreducible componentXj , thus obtaining a family{Aj }kj=1
of algebras. It turns out thatA ∼= A1 × · · · × Ak , where× is direct product.

0.4. Connections with affine Hecke algebras

The main result of this paper is Theorem 6.16, where we considerably strength
commutativity result of Theorem 5.24 by showing thatA is isomorphic to the centre o
an appropriately parametrisedaffine Hecke algebra(the parametrisation depending on t
parameters of the building). Let us briefly describe this important isomorphism. LetH̃ be
anaffine Hecke algebra, and writeZ(H̃) for the centre ofH̃ . It is well known thatZ(H̃)

equalsC[P ]W0, the algebra ofW0-invariant elements of the group algebra ofP (hereP is
considered as a multiplicative group in exponential notationλ ↔ xλ). Forλ ∈ P + letPλ(x)

denote theMacdonald spherical function. This is a special element ofC[P ]W0 which arises
naturally in connection with theSatake isomorphism. The isomorphism in Theorem 6.1
is thenAλ �→ Pλ.

This isomorphism serves two purposes. Firstly it gives us an essentially comple
derstanding the algebraA. For example, in Theorem 6.17 we use rather simple facts a
the Macdonald spherical functions to show thatA is generated by{Aλi

}i∈I0 where{λi}i∈I0

is a set of fundamental coweights ofR. On the other hand, sinceA is a purely combinato
rial object, the above isomorphism gives a nice combinatorial description ofZ(H̃) when a
suitable building exists. In particular thestructure constantscλ,µ;ν that appear in

Pλ(x)Pµ(x) =
∑

ν∈P+
cλ,µ;νPν(x) are cλ,µ;ν = Nν

NλNµ

∣∣Vλ(x) ∩ Vµ∗(y)
∣∣,

for someµ∗ ∈ P + (depending only onµ in a simple way). This shows that (when a suita
building exists)cλ,µ;ν � 0.

In Theorem 7.2 we extend this result by showing that thecλ,µ;ν ’s are (up to positive
normalisation factors) polynomials in the variables{qs − 1}s∈S with nonnegative intege
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coefficients (even when no building exists). This generalises the main theorem in
where the corresponding result for theAn case (where thecλ,µ;ν ’s are certainHall polyno-
mials) is proved. Thus we see how to construct a polynomial hypergroup from the stru
constantscλ,µ;ν as in [3] (see also [17]).

Since the submission of this paper we have learnt that Theorem 7.2 has been
independently by Schwer in [31], where a formula forcλ,µ;ν is given.

In later papers we will use our results here to give a description of the algebra hom
phismsh :A → C in terms of the Macdonald spherical functions of [18, Chapter 4].
will also provide an integral formula for these algebra homomorphisms (over theboundary
of X), and use these results to study local limit theorems, central limit theorems an
of escape theorems forradial random walks on affine buildings.

1. Coxeter groups, chamber systems and buildings

Let I be an index set, which we assume throughout is finite, and fori, j ∈ I let mi,j be
an integer or∞ such thatmi,j = mj,i � 2 for all i �= j , andmi,i = 1 for all i ∈ I . We call
M = (mi,j )i,j∈I aCoxeter matrix. TheCoxeter groupof typeM is the group

W = 〈{si}i∈I

∣∣ (sisj )
mi,j = 1 for all i, j ∈ I

〉
, (1.1)

where the relation(sisj )mi,j = 1 is omitted ifmi,j = ∞. Let S = {si | i ∈ I }. For subsets
J ⊂ I we writeWJ for the subgroup ofW generated by{si}i∈J . Givenw ∈ W , we define
the length�(w) of w to be smallestn ∈ N such thatw = si1 · · · sin , with i1, . . . , in ∈ I .

It will be useful on occasion to work withI ∗, the free monoid onI . Thus elements o
I ∗ arewordsf = i1 · · · in wherei1, . . . , in ∈ I , and we writesf = si1 · · · sin ∈ W . Recall
[29, Chapter 2, §1] that anelementary homotopyis an alteration from a word of the form
f1p(i, j)f2 to a word of the formf1p(j, i)f2, wherep(i, j) = · · · ij ij (mi,j terms). We
say that the wordsf andf ′ arehomotopicif f can be transformed intof ′ by a sequenc
of elementary homotopies, in which case we writef ∼ f ′. A word f is said to bereduced
if it is not homotopic to a word of the formf1iif2 for any i ∈ I . Thusf = i1 · · · in ∈ I ∗ is
reduced if and only ifsf = si1 · · · sin is a reduced expression inW (that is,�(sf ) = n).

TheCoxeter graphof W is the graphD = D(W) with vertex setI , such that vertice
i, j ∈ I are joined by an edge if and only ifmi,j � 3. If mi,j � 4 then the edge{i, j} is
labelled bymi,j .

By anautomorphism ofD we mean a permutation of the vertex set ofD that preserve
adjacency and edge labels, that is, a permutationσ of I such thatmσ(i),σ (j) = mi,j for all
i, j ∈ I . We write Aut(D) for the group of all automorphisms ofD.

An automorphismσ of D induces a group automorphism ofW , which we will also
denote byσ , via the (well-defined) action

σ(w) = sσ(i1) · · · sσ(in) (1.2)

wheneversi · · · sin is an expression forw. Note that�(σ (w)) = �(w) for all w ∈ W .
1
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Recall [29, p. 1] that a setC is achamber system over a setI if eachi ∈ I determines
a partition ofC, two elements in the same block of this partition being calledi-adjacent.
The elements ofC are calledchambers, and we writec ∼i d to mean that the chambe
c andd arei-adjacent. By agallery of type i1 · · · in ∈ I ∗ in C we mean a finite sequenc
c0, . . . , cn of chambers such thatck−1 ∼ik ck andck−1 �= ck for 1� k � n. If J ⊆ I , we say
thatd ∈ C is J -connectedto c ∈ C if d can be joined toc by a galleryc = c0, . . . , cn = d of
typej1 · · · jn with eachjk ∈ J . We call such a gallery aJ -gallery, and forc ∈ C we write
RJ (c) for the set of all chambers that can be joined toc by aJ -gallery. We callRJ (c) the
J -residue ofc. If C andD are chamber systems over a common index setI , we call a map
ψ :C → D an isomorphism of chamber systemsif ψ is a bijection such thatc ∼i d if and
only if ψ(c) ∼i ψ(d).

To a Coxeter groupW over the index setI we associate a chamber systemC(W), called
theCoxeter complexof W , by taking the elementsw ∈ W as chambers, and for eachi ∈ I

definei-adjacency by declaringw ∼i w andw ∼i wsi .
For the present purpose it is most convenient to considerbuildingsas certain chambe

systems. Thus we give the definition of buildings from [29].

Definition 1.1. [29]. Let M be the Coxeter matrix of a Coxeter groupW overI . ThenX
is abuilding of typeM if

(i) X is a chamber system overI such that for eachc ∈ X andi ∈ I , there is a chambe
d �= c in X such thatd ∼i c, and

(ii) there exists aW -distance functionδ :X × X → W such that iff is a reduced word
thenδ(c, d) = sf if and only if c andd can be joined by a gallery of typef .

We will always use the symbolX to denote a building. It is convenient to writeC =
C(X) for the chamber set ofX, even though according to the above definitionX is itself
a set of chambers. We sometimes say thatX is a building of typeW if W is the Coxeter
group of typeM . A building X is said to bethick if for eachc ∈ C andi ∈ I there exist at
least two distinct chambersd �= c such thatd ∼i c. Therank of a building of typeM is the
cardinality of the index setI . We sometimes call a buildingirreducible if the associated
Coxeter group is irreducible (that is, has connected Coxeter graph).

2. Regularity and parameter systems

In this section we writeX for a building of typeM , with associated Coxeter groupW
over index setI . We will assume thatX is locally finite, by which we mean|I | < ∞ and
|{b ∈ C | a ∼i b}| < ∞ for all i ∈ I anda ∈ C.

For eacha ∈ C andw ∈ W , let

Cw(a) = {
b ∈ C

∣∣ δ(a, b) = w
}
. (2.1)

Observe that for each fixeda ∈ C, the family{Cw(a)}w∈W forms a partition ofC.
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We say thatX is regular if for each s ∈ S, |Cs(a)| is independent ofa ∈ C. If X is
a regular building we defineqs = |Cs(a)| for eachs ∈ S (this is independent ofa ∈ C
by definition), and we call{qs}s∈S theparameter system of the building. Local finiteness
implies thatqs < ∞ for all s ∈ S. We often writeqi in place ofqsi for i ∈ I .

The two main results of this section are Proposition 2.1(ii), where we give a meth
finding relationships that must hold between the parameters of buildings, and Theore
where we generalise [30, Proposition 3.4.2] and show that all thick buildings with no r
residues of typẽA1 are regular.

Proposition 2.1. LetX be a locally finite regular building.

(i) |Cw(a)| = qi1qi2 · · ·qin wheneverw = si1 · · · sin is a reduced expression, and
(ii) qi = qj whenevermi,j < ∞ is odd.

Proof. We first prove (i). The result is true when�(w) = 1 by regularity. We claim tha
whenevers = si ∈ S and�(ws) = �(w) + 1,

Cws(a) =
⋃

b∈Cw(a)

Cs(b) (2.2)

where the union is disjoint, from which the result follows by induction.
First suppose thatc ∈ Cws(a) where�(ws) = �(w) + 1. Then there exists a minim

gallery a = c0, . . . , ck = c of type f i (wherew = sf with f ∈ I ∗ reduced) froma to c,
and in particularc ∈ Cs(ck−1) whereck−1 ∈ Cw(a). On the other hand, ifc ∈ Cs(b) for
someb ∈ Cw(a) thenc ∈ Cws(a) since�(ws) = �(w)+ 1, and so we have equality in (2.2
To see that the union is disjoint, suppose thatb, b′ ∈ Cw(a) and thatCs(b) ∩ Cs(b

′) �= ∅.
Then ifb′ �= b we haveb′ ∈ Cs(b), and thusb′ ∈ Cws(a), a contradiction.

To prove (ii), supposemi,j < ∞ is odd. Sincesisj si · · · si = sj sisj · · · sj (mi,j factors
on each side), by (i) we haveqiqj qi · · ·qi = qjqiqj · · ·qj (mi,j factors on each side), an
the result follows. �
Corollary 2.2. Let X be a locally finite regular building of typeW . If sj = wsiw

−1 for
somew ∈ W thenqi = qj .

Proof. By [4, IV, §1, No. 3, Proposition 3],sj = wsiw
−1 for somew ∈ W if and only if

there exists a sequencesi1, . . . , sip such thati1 = i, ip = j , andmik,ik+1 is finite and odd
for each 1� k < p. The result now follows from Proposition 2.1(ii).�

Proposition 2.1(i) justifies the notationqw = qi1 · · ·qin wheneversi1 · · · sin is a reduced
expression forw; it is independent of the particular reduced expression chosen. Clea
haveqw−1 = qw for all w ∈ W .

Example 2.3. Using Proposition 2.1(ii) it is now a simple exercise to describe the rela
between the parameters of any given (locally finite) regular building. For example

building of type
4• • • (with the nodes labelled 0,1 and 2 from left to right) we
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must haveq1 = q2 sincem1,2 = 3 is odd. Note that we cannot relateq0 to q1 sincem0,1 = 4
is even.

The following theorem seems to be well known (see [30, Proposition 3.4.2] for the
|W | < ∞), but we have been unable to find a direct proof in the literature. For the sa
completeness we will provide a proof here.

Theorem 2.4. Let X be a thick building such thatmi,j < ∞ for each pairi, j ∈ I . Then
X is regular.

Before giving the proof of Theorem 2.4 we make some preliminary observations
we note that the assumption thatmi,j < ∞ in Theorem 2.4 is essential, for̃A1 buildings
are not in general regular, as they are just trees with no end vertices. Secondly we n
Theorem 2.4 shows that most ‘interesting’ buildings are regular, for examining the Co
graphs of the affine Coxeter groups, for example, we see thatmi,j = ∞ only occurs inÃ1
buildings. Thus regularity is not a very restrictive hypothesis.

Recall that form � 2 or m = ∞ a generalisedm-gon is a connected bipartite grap

with diameterm and girth 2m. By [29, Proposition 3.2], a building of type
m• • is a

generalisedm-gon, and vice versa (where the edge set of them-gon is taken to be th
chamber set of the building, and vice versa).

In a generalisedm-gon we define thevalencyof a vertexv to be the number of edge
that containv, and we call the generalisedm-gonthick if every vertex has valency at least
By [29, Proposition 3.3], in a thick generalisedm-gon withm < ∞, vertices in the sam
partition have the same valency. In the statement of [29, Proposition 3.3], the assu
m < ∞ is inadvertently omitted. The result is in fact false ifm = ∞, for a thick generalised
∞-gon is simply a tree in which each vertex has valency at least 3.

Proof of Theorem 2.4. For eacha ∈ C and eachi ∈ I , let qi(a) = |Csi (a)|. By thickness,
we haveqi(a) > 1. We will show thatqi(a) = qi(b) for all a, b ∈ C and for alli ∈ I .

Fix a ∈ C. By [29, Theorem 3.5] we know that fori, j ∈ I , the residueR{i,j}(a) is a
thick building of typeM{i,j} which is in turn a thick generalisedmi,j -gon by [29, Proposi
tion 3.2]. Thus, sincemi,j < ∞ by assumption, [29, Proposition 3.3] implies that

qi(b) = qi(a) for all b ∈ R{i,j}(a). (2.3)

Now, with a fixed as before, letb ∈ C be any other chamber. Suppose firstly thatb ∼k a

for somek ∈ I . If k = i, thenqi(b) = qi(a) since∼i is an equivalence relation. So suppo
thatk �= i. Then

qi(b) + 1= ∣∣{c ∈ C | c ∼i b}∣∣
= ∣∣{c ∈ R{i,k}(b) | c ∼i b

}∣∣
= ∣∣{c ∈ R{i,k}(b) | c ∼i a

}∣∣ by (2.3)

= ∣∣{c ∈ R{i,k}(a) | c ∼i a
}∣∣ sinceR{i,k}(b) = R{i,k}(a)

= ∣∣{c ∈ C | c ∼i a}∣∣ = qi(a) + 1,
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and soqi(b) = qi(a). Induction now shows thatqi(a) is independent of the particulara,
and so the building is regular.�
Remark 2.5. The description of parameter systems given in this section by no m
comes close toclassifyingthe parameter systems of buildings. For example, it is an o
question as to whether thick̃A2 buildings exist with parameters that are not prime pow
By the free construction of certain buildings given in [28] this is equivalent to the
responding question concerning the parameters of projective planes (generalised 3
See [2, Section 6.2] for a discussion of the known parameter systems of generalised

We conclude this section by recording a definition of later reference.

Definition 2.6. Let {qs}s∈S be a set of indeterminates such thatqs′ = qs whenevers′ =
wsw−1 for somew ∈ W . Then [4, IV, §1, No. 5, Proposition 5] implies that forw ∈ W ,
the monomialqw = qsi1

· · ·qsin
is independent of the particular reduced decompos

w = si1 · · · sin of w. If U is a finite subset ofW , thePoincaré polynomialU(q) of U is

U(q) =
∑
w∈U

qw.

Usually the set{qs}s∈S will be the parameters of a building (see Corollary 2.2).

3. Chamber set operators and chamber regularity

The results of this section generalise the results in [11, Chapter 6], where it is as
that there is a groupG (of type preserving simplicial complex automorphisms) ac
strongly transitivelyon X (see [11, §5.2]). As noted in the introduction, all buildings
mitting such a group action are necessarily regular, whereas the converse is not tr
proofs work for all locally finite regular buildings, which, by Theorem 2.4, includes
thick buildings with no rank 2 residues of typẽA1. It should be noted that our results al
apply to thin buildings (whereqi = 1 for all i ∈ I ), as well as to regular buildings that a
neither thick nor thin (that is, buildings that haveqi = 1 for some but not alli ∈ I ). We
note that some of the results of this section are proved in [34] in the context ofassociation
schemes.

Let X be a locally finite regular building. We say thatX is chamber regularif for all
w1 andw2 in W ,∣∣Cw1(a) ∩ Cw2(b)

∣∣ = ∣∣Cw1(c) ∩ Cw2(d)
∣∣ whenever δ(a, b) = δ(c, d),

where the setsCw(a) are as in (2.1). In this section we will prove that regularity imp
chamber regularity (Proposition 3.9), and we introduce an algebraB of chamber set av
eraging operators (Definition 3.7) and show that this algebra is isomorphic to a su
parametrised Hecke algebra (Theorem 3.10). Recall that for a regular building we
qs = |Cs(a)|, and we writeqs = qi .
i
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Definition 3.1. For eachw ∈ W , define an operatorBw , acting on the space of all function
f :C → C as in (0.1).

Observe thatb ∈ Cw(a) if and only if a ∈ Cw−1(b). If C′ ⊆ C, write 1C′ :C → {0,1} for
the characteristic function onC′. Thus forw1,w2 ∈ W we have

(Bw1Bw2f )(a) = 1

qw1

∑
b∈Cw1(a)

(Bw2f )(b)

= 1

qw1qw2

∑
b∈Cw1(a)

∑
c∈Cw2(b)

f (c)

= 1

qw1qw2

∑
b∈C

∑
c∈C

1Cw1(a)(b)1Cw2(b)(c)f (c)

= 1

qw1qw2

∑
c∈C

(∑
b∈C

1Cw1(a)(b)1C
w

−1
2

(c)(b)

)
f (c)

= 1

qw1qw2

∑
c∈C

∣∣Cw1(a) ∩ C
w−1

2
(c)

∣∣f (c). (3.1)

We wish to explicitly compute the above whenw2 = s ∈ S (and sow−1
2 = w2). Thus

we have the following lemmas.

Lemma 3.2. Letw ∈ W ands ∈ S, and fixa ∈ C. Then

Cw(a) ∩ Cs(b) �= ∅ ⇒
{

b ∈ Cws(a) if �(ws) = �(w) + 1,
b ∈ Cw(a) ∪ Cws(a) if �(ws) = �(w) − 1.

Proof. Let s = si wherei ∈ I . Suppose first that�(ws) = �(w) + 1 and thatc ∈ Cw(a) ∩
Cs(b). Let f be a reduced word inI ∗ so thatsf = w, and so there exists a gallery froma
to c of typef . Sinceb ∈ Cs(c), there is a gallery of typef i from a to b, which is a reduced
word by hypothesis. It follows thatb ∈ Cws(a).

Suppose now that�(ws) = �(w) − 1, and thatc ∈ Cw(a) ∩ Cs(b). Sincews is not re-
duced, there exists a reduced wordf ′ such thatf ′i is a reduced word forw. This shows tha
there exist a minimal gallerya = a0, . . . , am = c such thatam−1 ∈ Cs(c). Sinceb ∈ Cs(c)

too, it follows that eitherb = am−1 or b ∈ Cs(am−1). In the former case we haveb ∈ Cws(a)

and in the latter we haveb ∈ Cw(a). �
We now perform counts that will be used to demonstrate chamber regularity.

Lemma 3.3. Letw ∈ W ands ∈ S. Fix a, b ∈ C. Then

∣∣Cw(a) ∩ Cs(b)
∣∣ =

{1 if �(ws) = �(w) + 1 andb ∈ Cws(a),
qs if �(ws) = �(w) − 1 andb ∈ Cws(a),

qs − 1 if �(ws) = �(w) − 1 andb ∈ Cw(a).
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Proof. Suppose first that�(ws) = �(w) + 1 and thatb ∈ Cws(a). Thus there is a minima
gallerya = a0, . . . , am = b such thatam−1 ∈ Cs(b). There areqs chambersc in Cs(b). One
of these chambers isam−1, which lies inCw(a), and the remainingqs − 1 lie in Cws(a),
soam−1 is the only element ofCw(a) ∩ Cs(b). Thus|Cw(a) ∩ Cs(b)| = 1 as claimed in this
case.

Suppose now that�(ws) = �(w) − 1 and thatb ∈ Cws(a). Write s = si , and letw = sf
wheref ∈ I ∗ is reduced. Since�(ws) = �(w)−1, there exists a reduced wordf ′ such that
f ′i is a reduced word forw, and thus there exists a minimal gallery of typef ′ from a to b.
Thus eachc ∈ Cs(b) can be joined toa by a gallery of typef ′i ∼ f , and hencec ∈ Cw(a),
verifying the count in this case.

Finally, suppose that�(ws) = �(w) − 1 and b ∈ Cw(a). Then, as in the proof o
Lemma 3.2, there exists a minimal gallerya = a0, . . . , am = b such thatb ∈ Cs(am−1).
Exactly one of theqs chambersc ∈ Cs(b) equalsam−1, and thus lies inCws(a). For the
remainingqs − 1 chambers we havec ∈ Cs(am−1), and thusc ∈ Cw(a), completing the
proof. �
Theorem 3.4. Letw ∈ W ands ∈ S. Then

BwBs =
{

Bws when�(ws) = �(w) + 1,
1
qs

Bws + (
1− 1

qs

)
Bw when�(ws) = �(w) − 1.

Proof. Let us look at the case�(ws) = �(w) − 1. The case�(ws) = �(w) + 1 is similar.
By (3.1) and Lemma 3.3 we have

BwBs = qws

qw

Bws +
(

1− 1

qs

)
Bw.

All that remains is to show thatqws/qw = 1/qs . If f is a reduced word withsf = w and
s = si , the hypothesis that�(ws) = �(w) − 1 implies that there exists a reduced wordf ′
such thatf ′i is a reduced word forw. The result now follows. �
Corollary 3.5. Bw1Bw2 = Bw1w2 whenever�(w1w2) = �(w1) + �(w2).

Corollary 3.6. Letw1,w2 ∈ W . There exist numbersbw1,w2;w3 ∈ Q+ such that

Bw1Bw2 =
∑

w3∈W

bw1,w2;w3Bw3 and
∑

w3∈W

bw1,w2;w3 = 1.

Moreover,|{w3 ∈ W | bw1,w2;w3 �= 0}| is finite for allw1,w2 ∈ W .

Proof. An induction on�(w2) shows existence of the numbersbw1,w2;w3 ∈ Q+ such that
Bw1Bw2 = ∑

w3
bw1,w2;w3Bw3, and shows that only finitely many of thebw1,w2;w3’s are

nonzero for fixedw1 andw2. Evaluating both sides at the constant function 1C :C → {1}
shows that

∑
w3

bw1,w2;w3 = 1. �
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Definition 3.7. Let B be the linear span of the set{Bw | w ∈ W } over C. Corollary 3.6
shows thatB is an associative algebra.

Proposition 3.8. {Bw | w ∈ W } is a vector space basis ofB, and B is generated by
{Bs | s ∈ S}.

Proof. Suppose we have a relation
∑n

k=1 bkBwk
= 0, and fixa, b ∈ C with δ(a, b) = wj

with 1� j � n. Then writingδb = 1{b} we have

0=
n∑

k=1

bk(Bwk
δb)(a) =

n∑
k=1

bkq
−1
wk

δk,j = bjq
−1
wj

,

and sobj = 0. From Corollary 3.5 we see that{Bs | s ∈ S} generatesB. �
We refer to the numbersbw1,w2;w3 from Corollary 3.6 as thestructure constantsof the

algebraB (with respect to the natural basis{Bw | w ∈ W }).

Proposition 3.9. Let X be a regular building of typeW , and letw1,w2,w3 ∈ W . For any
pair a, b ∈ C with b ∈ Cw3(a) we have

∣∣Cw1(a) ∩ C
w−1

2
(b)

∣∣ = qw1qw2

qw3

bw1,w2;w3,

and soX is chamber regular.

Proof. Using (3.1) we compute(Bw1Bw2δb)(a) = q−1
w1

q−1
w2

|Cw1(a)∩C
w−1

2
(b)|, whereas by

Corollary 3.6 we have(Bw1Bw2δb)(a) = q−1
w3

bw1,w2;w3. �
Those readers familiar with Hecke algebras will notice immediately from Theorem

the connection betweenB and Hecke algebras. For our purposes we defineHecke algebras
as follows (see [14, Chapter 7]). For eachs ∈ S, let as andbs be complex numbers suc
that as′ = as andbs′ = bs whenevers′ = wsw−1 for somew ∈ W . The (generic) Hecke
algebraH(as, bs) is the algebra overC with presentation given by basis elementsTw,
w ∈ W , and relations

TwTs =
{

Tws when�(ws) = �(w) + 1,
asTws + bsTw when�(ws) = �(w) − 1.

(3.2)

Theorem 3.10. Suppose a buildingX of typeW exists with parameters{qs}s∈S . Then
B ∼= H(q−1

s ,1− q−1
s ).

Proof. We note first that by Corollary 2.2, the numbersas = q−1
s andbs = 1− q−1

s satisfy
the conditionas′ = as andbs′ = bs whenevers′ = wsw−1 for somew ∈ W .
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Since{Tw | w ∈ W } is a vector space basis ofH(q−1
s ,1 − q−1

s ) and {Bw | w ∈ W }
is a vector space basis ofB (see Proposition 3.8) there exists a unique vector space
morphismΦ :H(q−1

s ,1− q−1
s ) → B such thatΦ(Tw) = Bw for all w ∈ W . By (3.2) and

Theorem 3.4 we haveΦ(TwTs) = Φ(Tw)Φ(Ts) for all w ∈ W ands ∈ S, and soΦ is an
algebra homomorphism. It follows thatΦ is an algebra isomorphism.�

Recall that we writeD for the Coxeter graph ofW .

Definition 3.11. Let X be a locally finite regular building. Define

Autq(D) = {
σ ∈ Aut(D)

∣∣ qσ(i) = qi for all i ∈ I
}
.

Lemma 3.12. For all w1,w2 ∈ W andσ ∈ Autq(D) we have∣∣Cσ(w1)(a
′) ∩ Cσ(w2)(b

′)
∣∣ = ∣∣Cw1(a) ∩ Cw2(b)

∣∣,
whenevera, b, a′, b′ ∈ C are chambers withδ(a′, b′) = σ(δ(a, b)).

Proof. We first show that, in the notation of Corollary 3.6,

bw1,w2;w3 = bσ(w1),σ (w2);σ(w3) (3.3)

for all w1,w2,w3 ∈ W .
Theorem 3.4, the definition of Autq(D) and the fact that�(σ (w)) = �(w) for all w ∈

W show that this is true when�(w2) = 1, beginning an induction. Suppose (3.3) ho
whenever�(w2) < n, and supposew = si1 · · · sin−1sin has lengthn. Write w′ = si1 · · · sin−1

ands = sin . Observe thatσ(w) = σ(w′)σ (s) so thatBσ(w) = Bσ(w′)Bσ(s) by Theorem 3.4
and so

Bσ(w1)Bσ(w) = (Bσ(w1)Bσ(w′))Bσ(s)

=
∑

w3∈W

bσ(w1),σ (w′);σ(w3)Bσ(w3)Bσ(s)

=
∑

w3∈W

(
bw1,w

′;w3

∑
w4∈W

bσ(w3),σ (s);σ(w4)Bσ(w4)

)

=
∑

w4∈W

( ∑
w3∈W

bw1,w
′;w3bw3,s;w4

)
Bσ(w4).

Thus

bσ(w1),σ (w);σ(w4) =
∑

w3∈W

bw1,w
′;w3bw3,s;w4 for all w4 ∈ W. (3.4)

The same calculation without theσ ’s shows that this is alsobw1,w;w4. This completes the
induction step, and so (3.3) holds for allw1,w2 andw3 in W .
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Thus for any chambersa, b, a′, b′ with δ(a, b) = w3, andδ(a′, b′) = σ(w3) we have
(using Proposition 3.9)

∣∣Cw1(a) ∩ Cw2(b)
∣∣ =

qw1qw−1
2

qw3

b
w1,w

−1
2 ;w3

=
qσ(w1)qσ(w−1

2 )

qσ(w3)

b
σ(w1),σ (w−1

2 );σ(w3)

= ∣∣Cσ(w1)(a
′) ∩ Cσ(w2)(b

′)
∣∣. �

4. Preliminary material

This section is preparation for our study of the vertex set averaging operators ass
to locally finite regular affine buildings.

4.1. Chamber systems and simplicial complexes

Recall that asimplicial complexwith vertex setV is a collectionX of finite subsets
of V (calledsimplices) such that for everyv ∈ V , the singleton{v} is a simplex, and ever
subset of a simplexx is a simplex (called aface ofx). If x is a simplex which is not a
proper subset of any other simplex, then we callx amaximal simplex, or chamberof X.

A labelled simplicial complexwith vertex setV is a simplicial complex equipped wit
a setI of types, and atype mapτ :V → I such that the restrictionτ |C :C → I of τ to any
chamberC is a bijection.

An isomorphismof simplicial complexes is a bijection of the vertex sets that m
simplices, and only simplices, to simplices. If both simplicial complexes are labelle
the same set, then an isomorphism which preserves types is said to betype preserving.

There is a well-known method of producing labelled simplicial complexes from ch
ber systems, and vice versa (see [6, §1.4] for details). This allows us to consider
ings and Coxeter complexes as certain labelled simplicial complexes (with canoni
bellings). The following is an alternative (and of course equivalent) definition of build
from a simplicial complex approach.

Definition 4.1. [5]. Let W be a Coxeter group of typeM . A building of typeM is a non-
empty simplicial complexX which contains a family of subcomplexes calledapartments
such that

(i) each apartment is isomorphic to the (simplicial) Coxeter complex ofW ,
(ii) given any two chambers ofX there is an apartment containing both, and

(iii) given any two apartmentsA andA′ that contain a common chamber, there exists
isomorphismψ :A → A′ fixing A∩A′ pointwise.

We remark that Definition 4.1(iii) can be replaced with the following [5, p. 76].
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(iii) ′ If A andA′ are apartments both containing simplicesρ and σ , then there is an
isomorphismψ :A →A′ fixing ρ andσ pointwise.

It is easy to see thatX is in fact a labellable simplicial complex, and all the isom
phisms in the above definition may be taken to be label preserving.

4.2. Root systems

For the purpose of fixing notation we will give a brief discussion of root systems. A
ough reference to this well-known material is [4]. LetE be ann-dimensional vector spac
overR with inner product〈· , ·〉, and forα ∈ E \ {0} defineα∨ = 2α/〈α,α〉.

Let R be anirreducible, but not necessarilyreduced, root systemin E (see [4, VI, §1,
Nos. 1, 2]).

The elements ofR are calledroots, and therank of R is n, the dimension ofE. A root
system that is not reduced is said to benonreduced. See [4, VI, §4, Nos. 5–14] for th
classification of irreducible root systems.

Let B = {αi | i ∈ I0} be abaseof R, whereI0 = {1,2, . . . , n}. ThusB is a subset o
R such (i) a vector space basis ofE, and (ii) each root inR can be written as a linea
combination of elements ofB with integer coefficients which are either all nonnegative
all nonpositive. We say thatα ∈ R is positive(respectivelynegative) if the expression forα
from (ii) has only nonnegative (respectively nonpositive) coefficients. LetR+ (respectively
R−) be the set of all positive (respectively negative) roots. ThusR− = −R+ and R =
R+ ∪ R−, where the union is disjoint.

Define theheight(with respect toB) of α = ∑
i∈I0

kiαi ∈ R by ht(α) = ∑
i∈I0

ki . By [4,
VI, §1, No. 8, Proposition 25] there exists a unique rootα̃ ∈ R whose height is maxima
and defining numbersmi by

α̃ =
∑
i∈I0

miαi (4.1)

we havemi � 1 for all i ∈ I0. To complete the notation we definem0 = 1.
Thedual (or inverse) of R is R∨ = {α∨ | α ∈ R}. By [4, VI, §1, No. 1, Proposition 2

R∨ is an irreducible root system which is reduced if and only ifR is.
We define a dual basis{λi}i∈I0 of E by 〈λi,αj 〉 = δi,j . Recall that thecoroot latticeQ

of R is theZ-span ofR, and thecoweight latticeP of R is theZ-span of{λi}i∈I0. Elements
of P are calledcoweights(of R), and it is clear thatQ ⊆ P . Note that in the literatureQ
andP are also called theroot andweightlattices ofR∨. We call a coweightλ = ∑

i∈I0
aiλi

dominantif ai � 0 for all i ∈ I0, and we writeP + for the set of all dominant coweights.
For eachn � 1 there is exactly one irreducible nonreduced root system (up to iso

phism) of rankn, denoted byBCn [4, VI, §4, No. 14]. We may takeE = Rn with the usual
inner product, and letαj = ej − ej+1 for 1� j < n andαn = en. ThenB = {αj }nj=1, and

R+ = {ek,2ek, ei + ej , ei − ej | 1� k � n, 1� i < j � n}.

Notice thatR∨ = R, and one easily sees thatQ = P .
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4.3. Hyperplane arrangements and reflection groups

Let R be an irreducible root system, and for eachα ∈ R andk ∈ Z let Hα;k = {x ∈ E |
〈x,α〉 = k}. LetH denote the family of these (affine)hyperplanesHα;k , α ∈ R, k ∈ Z. We
write Hα in place ofHα;0, and denote byH0 the family of these hyperplanesHα , α ∈ R.

GivenHα;k ∈ H, the associatedorthogonal reflectionis the mapsα;k :E → E given by
sα;k(x) = x − (〈x,α〉 − k)α∨ for all x ∈ E. We write sα in place ofsα;0, andsi in place
of sαi

. The Weyl group ofR, denotedW0(R), or simply W0, is the subgroup of GL(E)

generated by the reflectionssα , α ∈ R, and theaffine Weyl group ofR, denotedW(R), or
simplyW , is the subgroup of Aff(E) generated by the reflectionssα;k , α ∈ R, k ∈ Z. Here
Aff (E) is the set of mapsx �→ T x + v, T ∈ GL(E), v ∈ E. Writing tv for the translation
x �→ x + v, we considerE as a subgroup of Aff(E) by identifying v and tv . We have
Aff (E) = GL(E) � E, andW ∼= W0 � Q. Note thatW0(R

∨) = W0(R) [4, VI, §1, No. 1].
Let s0 = sα̃;1, defineI = I0 ∪ {0}, and letS0 = {si | i ∈ I0} andS = {si | i ∈ I }. The

groupW0 (respectivelyW ) is a Coxeter group overI0 (respectivelyI ) generated byS0
(respectivelyS).

We writeΣ = Σ(R) for the vector spaceE equipped with the sectors, chambers a
vertices as defined below. The open connected components ofE \ ⋃

H∈H H are called the
chambersof Σ (this terminology is motivated by building theory, and differs from that u
in [4] where there arechambersandalcoves), and we writeC(Σ) for the set of chamber
of Σ . SinceR is irreducible, eachC ∈ C(Σ) is an open (geometric) simplex [4, V, §
No. 9, Proposition 8]. Call the extreme points of the setsC̄, C ∈ C(Σ), verticesof Σ , and
write V (Σ) for the set of all vertices ofΣ .

In choice ofB gives a naturalfundamental chamber

C0 = {
x ∈ E

∣∣ 〈x,αi〉 > 0 for all i ∈ I0 and〈x, α̃〉 < 1
}
, (4.2)

where we use the notation of (4.1).
Thefundamental sectorof Σ is

S0 = {
x ∈ E

∣∣ 〈x,αi〉 > 0 for all i ∈ I0
}
, (4.3)

and thesectorsof Σ are the setsλ + wS0, whereλ ∈ P andw ∈ W0. The sectorS =
λ + wS0 is said to havebase vertexλ (we will see in Section 4.5 thatλ is indeed a vertex
of Σ ).

The groupW0 acts simply transitively on the set of sectors based at 0, andS̄0 is a
fundamental domain for the action ofW0 on E. Similarly, W acts simply transitively on
C(Σ), andC̄0 if a fundamental domain for the action ofW onE [4, VI, §1–3].

The following fact follows easily from [4, VI, §2, No. 2, Proposition 4(ii)].

Lemma 4.2. W0 acts simply transitively on the set ofC ∈ C(Σ) with 0∈ C̄.

4.4. A geometric realisation of the Coxeter complex

The setC(Σ) from Section 4.3 forms a chamber system overI if we declarewC0 ∼i

wC0 andwC0 ∼i wsiC0 for eachw ∈ W and eachi ∈ I . The mapw �→ wC0 is an iso-
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morphism of the Coxeter complexC(W) of Section 1 onto this chamber system, and soΣ

may be regarded as ageometric realisationof C(W).
The vertices ofC̄0 are{0} ∪ {λi/mi | i ∈ I0} (see [4, VI, §2, No. 2]), and we decla

τ(0) = 0 andτ(λi/mi) = i for i ∈ I0. This extends to a unique labellingτ :V (Σ) → I

(see [6, Lemma 1.5]), and the action ofW onΣ is type preserving.

4.5. Special and good vertices ofΣ

Following [4, V, §3, No. 10], a pointv ∈ E is said to bespecialif for every H ∈ H
there exists a hyperplaneH ′ ∈ H parallel toH such thatv ∈ H ′. Note that in our set-up
0 ∈ E is special. Each special point is a vertex ofΣ [4, V, §3, No. 10], and thus we wil
call the special pointsspecial vertices. Note that in general not all vertices are special
example, in theC̃2 andG̃2 complexes). WhenR is reducedP is the set of special vertice
of Σ [4, VI, §2, No. 2, Proposition 3]. WhenR is nonreduced thenP is a proper subset o
the special vertices ofΣ (see Example 4.5).

To deal with the reduced and nonreduced cases simultaneously, we define thgood
vertices ofΣ to be the elements ofP . On the first reading the reader is encourage
think of P as the set of all special vertices, for this is true unlessR is of typeBCn. Note
that, according to our definitions, every sector ofΣ is based at a good vertex ofΣ .

We writeIP for the set ofgood types. That is,IP = {τ(λ) | λ ∈ P } ⊆ I .

Lemma 4.3. Let the numbersmi be as in(4.1). ThenIP = {i ∈ I | mi = 1}.

Proof. The vertices ofC0 are {0} ∪ {λi/mi | i ∈ I0}. The good vertices ofC0 are those
in P , and thus have type 0 ori for somei with mi = 1. �
4.6. Examples

Example 4.4. (R = C2). TakeE = R2, α1 = e1 − e2 andα2 = 2e2. ThenB = {α1, α2} and
R+ = {α1, α2, α1 + α2,2α1 + α2}.

The dotted lines in Fig. 1 are the hyperplanes{Hwα1;k | w ∈ W0, k ∈ Z}, and the dashe
lines are the hyperplanes{Hwα2;k | w ∈ W0, k ∈ Z}. In this exampleλ1 = e1 and λ2 =
1
2(e1 + e2), and τ(0) = 0, τ(1

2e1) = 1 andτ(1
2(e1 + e2)) = 2. We haveP = {(x, y) ∈

(1
2Z)2 | x + y ∈ Z}, which coincides with the set of all special vertices (as expected,

R is reduced here). ThusIP = {0,2}.

Example 4.5. (R = BC2). TakeE = R2, α1 = e1 − e2 andα2 = e2. ThenB = {α1, α2} and
R+ = {α1, α2, α1 + α2, α1 + 2α2,2α2,2α1 + 2α2}.

The dotted and solid lines in Fig. 2 represent the hyperplanes in the sets{Hwα1;k | w ∈
W0, k ∈ Z} and{Hwα2;k | w ∈ W0, k ∈ Z} respectively. The union of the dashed and so
lines represent the hyperplanes in{Hw(2α2);k | w ∈ W0, k ∈ Z}.

In contrast to the previous example, here we haveλ1 = e1 andλ2 = e1 + e2. The set
of special vertices and the vertex types are as in Example 4.4, but hereP = Z2 (and so
IP = {0}).
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Fig. 2.

4.7. The extended affine Weyl group

The extended affine Weyl group ofR, denotedW̃ (R) or simply W̃ , is W̃ = W0 � P .
In generalW̃ is larger thanW . In fact, W̃/W ∼= P/Q [4, VI, §2, No. 3]. We note tha
while W(Cn) = W(BCn), W̃ (Cn) is not isomorphic toW̃ (BCn).

In particular, notice that for eachλ ∈ P , the translationtλ :E → E, tλ(x) = x + λ, is
in W̃ .
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The groupW̃ permutes the chambers ofΣ , but in general does not act simply tran
tively. Recall [21, §2.2] that forw ∈ W̃ , thelengthof w is defined by

�(w) = ∣∣{H ∈H
∣∣ H separatesC0 andw−1C0

}∣∣.
Whenw ∈ W , this definition agrees with the definition of�(w) given previously for Cox-
eter groups.

The subgroupG = {g ∈ W̃ | �(g) = 0} will play an important role; it is the stabiliser o
C0 in W̃ . We haveW̃ ∼= W � G [4, VI, §2, No. 3], and furthermore,G ∼= P/Q, and so
G is a finite abelian group. Letw0 andw0λ denote the longest elements ofW0 andW0λ

respectively, where forλ ∈ P ,

W0λ = {w ∈ W0 | wλ = λ}. (4.4)

Recall the definition of the numbersmi (with m0 = 1) from (4.1). Then

G = {gi | mi = 1} (4.5)

whereg0 = 1 andgi = tλi
w0λi

w0 for i ∈ IP \ {0} (see [4, VI, §2, No. 3] in the reduce
case and note thatG = {1} in the nonreduced case sinceG ∼= P/Q).

4.8. Automorphisms ofΣ andD

An automorphismof Σ is a bijectionψ of E that maps chambers, and only chamb
to chambers with the property thatC ∼i D if and only if ψ(C) ∼i′ ψ(D) for somei′ ∈ I

(depending onC,D and i). Let Aut(Σ) denote the automorphism group ofΣ . Clearly
W0, W andW̃ can be considered as subgroups of Aut(Σ), and we haveW0 � W � W̃ �
Aut(Σ). Note that in some cases̃W is a proper subgroup of Aut(Σ). For example, ifR is
of typeA2, then the mapa1λ1 + a2λ2 �→ a1λ2 + a2λ1 is in Aut(Σ) but is not inW̃ .

Write D for the Coxeter graph ofW (see Section 1). Recall the definition of the ty
mapτ :V (Σ) → I from Section 4.4.

Proposition 4.6. Let ψ ∈ Aut(Σ). Then there existsσ ∈ Aut(D) such that(τ ◦ ψ)(v) =
(σ ◦ τ)(v) for all v ∈ V (Σ). If C ∼i D, thenψ(C) ∼σ(i) ψ(D).

Proof. The result follows from [5, pp. 64–65].�
For eachgi ∈ G (see (4.5)), letσi ∈ Aut(D) be the automorphism induced as in Pro

sition 4.6. We call the automorphismsσi ∈ Aut(D) type rotating(for in the Ãn case they
are the permutationsk �→ k + i modn+1), and we write Auttr(D) for the group of all type
rotating automorphisms ofD. Thus

Auttr(D) = {σi | i ∈ IP }. (4.6)

Note that sinceg0 = 1, σ0 = id.
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Let D0 be the Coxeter graph ofW0. We have [4, VI, §4, No. 3]

Aut(D) = Aut(D0) � Auttr(D). (4.7)

The groupW̃ has a presentation with generatorssi , i ∈ I , andgj , j ∈ IP , and relations
(see [25, (1.20)])

(sisj )
mi,j = 1 for all i, j ∈ I , and

gj sig
−1
j = sσj (i) for all i ∈ I andj ∈ IP . (4.8)

Proposition 4.7. Let i ∈ IP andσ ∈ Auttr(D).

(i) σi(0) = i.
(ii) If σ(i) = i, thenσ = σ0 = id.

(iii) Aut tr(D) acts simply transitively on the good types ofD.

Proof. (i) follows from the formulagi = tλi
w0λi

w0 (i ∈ I0) given in Section 4.7. By (i)
we have(σ−1

i ◦ σ ◦ σi)(0) = 0, and soσ−1
i ◦ σ ◦ σi = σ0 = id. Thus (ii) holds, and (iii) is

now clear. �
Proposition 4.8. Letψ ∈ Aut(Σ).

(i) The image underψ of a gallery inΣ is again a gallery inΣ .
(ii) A gallery inΣ is minimal if and only if its image underψ is minimal.

(iii) There exists a uniqueσ ∈ Aut(D) so thatψ maps galleries of typef to galleries
of typeσ(f ). If ψ = w ∈ W̃ thenσ ∈ Auttr(D). If w = w′gi , wherew′ ∈ W , then
σ = σi .

(iv) If ψ ∈ W̃ mapsλ ∈ P to µ ∈ P , then the induced automorphism from(iii) is σ =
σm ◦ σ−1

l , wherel = τ(λ) andm = τ(µ).

Proof. (i) and (ii) are obvious.
(iii) The first statement follows easily from Proposition 4.6, and the remaining s

ments follow from the definition of Auttr(D).
(iv) Sinceσ(l) = m, we have(σ ◦ σl)(0) = σm(0), and soσ = σm ◦ σ−1

l by Proposi-
tion 4.7. �
Proposition 4.9. x �→ −x is an automorphism ofΣ .

Proof. The mapx �→ −x mapsH to itself and is continuous, and so maps chamber
chambers. IfC ∼i D andC �= D then there is only oneH ∈ H separatingC andD, and
then−H is the only hyperplane inH separating−C and−D, and so−C ∼i′ −D for
somei′ ∈ I . �
Definition 4.10. Let σ∗ ∈ Aut(D) be the automorphism ofD induced by the automorphism
x �→ −x of Σ (see Proposition 4.9). Furthermore, forλ ∈ P let λ∗ = w0(−λ), wherew0
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is the longest element ofW0. Finally, for l ∈ IP let l∗ = τ(λ∗), whereλ ∈ P is any vertex
with τ(λ) = l.

We need to check that the definition ofl∗ is unambiguous. Ifτ(λ) = τ(µ), thenλ = wµ

for somew ∈ W . SinceW = W0 �Q we havew = w′tγ for somew′ ∈ W0 andγ ∈ Q, and
so−λ = −w′(γ + µ) = w′t−γ (−µ) = w′′(−µ) for somew′′ ∈ W . Thusτ(−λ) = τ(−µ),
and soτ(λ∗) = τ(µ∗).

Note that in generalσ∗ is not an element of Auttr(D). In theBCn case,σ∗ is the identity,
for the mapx �→ −x fixes the good type 0, implying thatσ∗ = id by direct consideration
of the Coxeter graph.

Proposition 4.11. If λ ∈ P +, thenλ∗ ∈ P +.

Proof. Observe thatw0(−S0) = S0 since−S0 is a sector that lies on the opposite side
every wall toS0. Thusw0(−λ) ∈ P +. �
4.9. Special group elements and technical results

For i ∈ I , let Wi = WI\{i} (this extends our notation forW0). Given λ ∈ P +, define
t ′λ to be the unique element ofW such thattλ = t ′λg for someg ∈ G, and, using [4, VI,
§1, Exercise 3], letwλ be the unique minimum length representative of the double c
W0t

′
λWl , wherel = τ(λ). Fix a reduced wordfλ ∈ I ∗ such thatsfλ = wλ.

Proposition 4.12. Letλ ∈ P + andi ∈ IP . Suppose thatτ(λ) = l, and writej = σi(l). Then
gj = gigl and tλ = t ′λgl .

Proof. We see thatgj = gigl since the image of 0 under both functions is the same. T
porarily writetλ = t ′λgλ, and sogλ = t ′−1

λ tλ. Observe thatgλ(0) = vk for somek ∈ IP (here
vk is the typek vertex ofC0). But (t ′−1

λ tλ)(0) = t ′−1
λ (λ) = vl , sincet ′λ is type preserving

Thusvk = vl , sok = l, and sogλ = gl . �
Recall thatσ ∈ Aut(D) induces an automorphism (which we also denote byσ ) of W as

in (1.2). From (4.8) we have the following.

Lemma 4.13. Let λ ∈ P and l = τ(λ). ThenglW0g
−1
l = Wl = σl(W0), and soWl is the

stabiliser of the typel vertexvl of C0.

Proposition 4.14. Letλ ∈ P +. Then:

(i) wλ = tλw0λw0g
−1
l = t ′λσl(w0λw0), wherel = τ(λ), andw0λ andw0 are the longes

elements ofW0λ andW0 respectively.
(ii) λ ∈ wλC̄0, andwλC0 is the unique chamber nearestC0 with this property.
(iii) wλC0 ⊆ S0.



22 J. Parkinson / Journal of Algebra 297 (2006) 1–49

ive

he
ers

e
e

this,

es
Proof. (i) By Proposition 4.12 and Lemma 4.13 we haveW0tλW0 = W0t
′
λglW0 =

W0t
′
λWlgl , and so the double cosetW0tλW0 has unique minimal length representat

mλ = wλgl . By [21, (2.4.5)] (see also [25, (2.16)]) we havemλ = tλw0λw0, proving the
first equality in (i). Then

wλ = mλg
−1
l = tλw0λw0g

−1
l = t ′λglw0λw0g

−1
l = t ′λσl(w0λw0).

(ii) With mλ as above we havemλ(0) = (tλw0λw0)(0) = λ, so λ ∈ mλC̄0. Now
wλ = mλg

−1
l , and sinceg−1

l ∈ G fixes C0 we haveλ ∈ wλC̄0. To see thatwλ is the
unique chamber nearestC0 that containsλ in its closure, notice that by Lemma 4.13 t
stabiliser ofλ in W is t ′λWlt

′−1
λ , which acts simply transitively on the set of chamb

containingλ in their closure. So ifwC0 is a chamber containingλ in its closure, then
wC0 = (t ′λwlt

′−1
λ )t ′λ(C0) = t ′λwlC0 for somewl ∈ Wl . Thusw = t ′λwl ∈ t ′λWl ⊂ W0t

′
λWl ,

and so�(wλ) � �(w). The uniqueness follows from [29, Theorem 2.9].
We now prove (iii). The result is clear ifλ = 0, so letλ ∈ P + \ {0}. If λ ∈ S0 thenS0 ∩

wλC0 �= ∅, and sowλC0 ⊆ S0 sincewλC0 is connected and contained inE \ ⋃
H∈H0

H .

Now suppose thatλ ∈ S̄0 \ S0, soλ ∈ Hα for someα ∈ B. Let C0,C1, . . . ,Cm = wλC0
be the gallery of typefλ from C0 to wλC0. If wλC0 � S0 then this gallery crosses th
wall Hα , so letCk be the first chamber on the opposite side ofHα to C0. The sequenc
C0, . . . ,Ck−1, sα(Ck), . . . , sα(wλC0) joins 0 toλ assα(λ) = λ. SinceCk−1 = sα(Ck), we
can construct a gallery joining 0 toλ of length strictly less thanm, a contradiction. �

Each cosetwW0λ, w ∈ W0, has a unique minimal length representative. To see
notice that by Lemma 5.4,W0λ is the subgroup ofW0 generated byS0λ = {s ∈ S0 | sλ = λ},
and apply [4, IV, §1, Exercise 3]. We writeWλ

0 for the set of minimal length representativ
of elements ofW0/W0λ. The following proposition records some simple facts.

Proposition 4.15. Letλ ∈ P + and writel = τ(λ). Then:

(i) t ′λ = wλwl for somewl ∈ Wl , and�(t ′λ) = �(wλ) + �(wl).
(ii) Eachw ∈ W0 can be written uniquely asw = uv with u ∈ Wλ

0 and v ∈ W0λ, and
moreover�(w) = �(u) + �(v).

(iii) For v ∈ W0λ, vwλ = wλwlσl(v)w−1
l wherewl ∈ Wl is as in(i). Moreover,

�(vwλ) = �(v) + �(wλ) = �(wλ) + �
(
wlσl(v)w−1

l

)
.

(iv) Eachw ∈ W0wλWl can be written uniquely asw = uwλw
′ for someu ∈ Wλ

0 and
w′ ∈ Wl , and moreover�(w) = �(u) + �(wλ) + �(w′).

Proof. (i) follows from the proof of Proposition 4.14 and [4, VI, §1, Exercise 3].
(ii) is immediate from the definition ofWλ

0 , and [4, VI, §1, Exercise 3].
(iii) Observe first thatvtλ = tλv in the extended affine Weyl group, forvtλv

−1 = tvλ for
all v ∈ W0, andtvλ = tλ if v ∈ W0λ. Sincetλ = t ′λgl (see Proposition 4.12) we have

vt ′ = vtλg
−1 = tλvg

−1 = t ′
(
glvg

−1) = t ′ σl(v),
λ l l λ l λ
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and so from (i),vwλ = wλwlσl(v)w−1
l . By [4, IV, §1, Exercise 3] we have�(vwλ) = �(v)+

�(wλ); in fact,�(wwλ) = �(w) + �(wλ) for all w ∈ W0. Observe now thatwsαw−1 = swα

for w ∈ W0, and it follows that�(wlσl(v)w−1
l ) = �(v).

(iv) By [4, IV, §1, Exercise 3] eachw ∈ W0wλWl can be written asw = w1wλw2 for
somew1 ∈ W0 andw2 ∈ Wl with �(w) = �(w1) + �(wλ) + �(w2). Write w1 = uv where
u ∈ Wλ

0 andv ∈ W0λ as in (ii). Then by (iii)

w1wλw2 = uvwλw2 = uwλ

(
wlσl(v)w−1

l w2
)
,

and so eachw ∈ W0wλWl can be written asw = uwλw
′ for someu ∈ Wλ

0 andw′ ∈ Wl

with �(w) = �(u) + �(wλ) + �(w′). Suppose that we have two such expressionsw =
u1wλw

′
1 = u2wλw

′
2 whereu1, u2 ∈ Wλ

0 andw′
1,w

′
2 ∈ Wl . Write vl for the typel vertex

of C0. Then(u1wλw
′
l)(vl) = (u1wλ)(vl) = u1λ, and similarly(u2wλw

′
2)(vl) = u2λ. Thus

u−1
1 u2 ∈ W0λ, and sou1W0λ = u2W0λ, forcingu1 = u2. This clearly implies thatw′

1 = w′
2

too, completing the proof. �
Recall the definitions ofσ∗, λ∗ andl∗ from Definition 4.10.

Proposition 4.16. Letλ ∈ P + (soλ∗ ∈ P + too), and writeτ(λ) = l.

(i) σ 2∗ = id andσ∗(0) = 0.
(ii) σ∗(wλ) = wλ∗ andσ∗(l) = l∗.
(iii) σ∗ ◦ σi ◦ σ−1∗ = σi∗ for all i ∈ IP .
(iv) wλ∗ = σ−1

l (w−1
λ ).

Proof. (i) is clear, since−(−x) = x for all x ∈ E.
(ii) Let ψ be the automorphism ofΣ given byψ(x) = w0(−x) for all x ∈ E. Then

the automorphism ofD induced byψ is σ∗ (see Proposition 4.6). LetC0, . . . ,Cm = wλC0

be the gallery of typefλ in Σ starting atC0, and soψ(C0), . . . ,ψ(Cm) is a minimal
gallery of typeσ∗(fλ) (see Proposition 4.8). Observe thatψ(C0) = C0 andλ∗ ∈ ψ(C̄m).
The galleryψ(C0), . . . ,ψ(Cm) from C0 to λ∗ cannot be replaced by any shorter gall
joining C0 andλ∗, for if so, by applyingψ−1 we could obtain a gallery fromC0 to λ of
length< �(wλ). Thusψ(Cm) = Cλ∗ by Proposition 4.14, and soσ∗(fλ) ∼ fλ∗ . Therefore
σ∗(wλ) = wλ∗ , and soσ∗(l) = l∗.

(iii) Since Auttr(D) is normal in Aut(D) (see (4.7)) we know thatσ∗ ◦ σi ◦ σ−1∗ = σk

for somek ∈ IP . By (i) and (ii) we have(σ∗ ◦ σi ◦ σ−1∗ )(0) = i∗ and the result follows.
(iv) Let C0, . . . ,Cm be the gallery from (ii) and writefλ = i1 · · · im. ThenCm, . . . ,C0

is a gallery of type rev(fλ) = im · · · i1 joining λ to 0. Letψ = w0 ◦ w−1
0λ ◦ t−λ :Σ → Σ

wherew0λ is the longest element ofW0λ. By Proposition 4.14(i) we have

ψ(Cm) = (
w0 ◦ w−1 ◦ t−λ ◦ wλ

)
(C0) = C0.
0λ
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Thus by Proposition 4.8C0 = ψ(Cm), . . . ,ψ(C0) is a gallery of typeσ−1
l (rev(fλ)) joining

0 to λ∗ (sinceλ∗ ∈ ψ(C̄0)). Since no shorter gallery joining 0 toλ∗ exists (for if so apply
ψ−1 to obtain a contradiction) it follows that

wλ∗ = σ−1
l (srev(fλ)) = σ−1

l

(
s−1
fλ

) = σ−1
l

(
w−1

λ

)
. �

4.10. Affine buildings

A building X is calledaffineif the associated Coxeter groupW is an affine Weyl group
To study the algebraA of the next section, it is convenient to associate a root systemR to
each irreducible locally finite regular affine building. IfX is of typeW , we wish to choose
R so that (among other things) (i) the affine Weyl group ofR is isomorphic toW , and
(ii) qσ(i) = qi for all i ∈ I andσ ∈ Auttr(D) (note that Auttr(D) depends on the choice o
R, see (4.6)).

It turns out (as should be expected) that the choice ofR is in most cases straight forwar
for example, ifX is of typeF̃4 then chooseR to be a root system of typeF4 (and callX
an affine building of typeF4). The regular buildings of types̃A1 andC̃n (n � 2) are the
only exceptions to this rule, and in these cases the nonreduced root systemsBCn (n � 1)
play an important role. Let us briefly describe why.

Using Proposition 2.1(ii) we see that the parameters of a regularC̃n (n � 2) building
must be as follows:

q0
�

q1
�

4 q1
� �� �

q1
�

q1
�

qn
�

4

If we chooseR to be aCn root system then the automorphismσn ∈ Auttr(D) interchanges
the left most and right most nodes, and so condition (ii) is not satisfied (unlessq0 = qn). If,
however, we takeR to be aBCn root system, then Auttr(D) = {id}, and so both condition
(i) and (ii) are satisfied.

Thus, in order to facilitate the statements of later results, we rename regularC̃n (n � 2)

buildings, and call themaffine buildings of typeBCn (or B̃Cn (n � 2) buildings). We re-
serve the name ‘̃Cn building’ for the special case whenq0 = qn in the above paramete
system. For a similar reason we rename regularÃ1 buildings (which aresemi-homogeneou
trees) and call themaffine buildings of typeBC1 (or B̃C1 buildings), and reserve the nam
‘ Ã1 building’ for homogeneous trees. With these conventions we make the following
nitions.

Definition 4.17. Let X be an affine building of typeR with vertex setV , and letΣ =
Σ(R). Let Vsp(Σ) denote the set of all special vertices ofΣ (see Section 4.5), and le
Isp= {τ(λ) | λ ∈ Vsp(Σ)}.

(i) A vertexx ∈ V is said to bespecialif τ(x) ∈ Isp. We writeVsp for the set of all specia
vertices ofX.

(ii) A vertex x ∈ V is said to begoodif τ(x) ∈ IP , whereIP is as in Section 4.5. We writ
VP for the set of all good vertices ofX.
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ClearlyVP ⊂ Vsp. In fact if R is reduced, then by the comments made in Section
VP = Vsp. If R is nonreduced (soR is of typeBCn for somen � 1), thenVP is the set of
all type 0 vertices ofX, whereasVsp is the set of all type 0 and typen vertices ofX.

Proposition 4.18. A vertexx ∈ V is good if and only if there exists an apartmentA con-
tainingx and a type preserving isomorphismψ :A → Σ such thatψ(x) ∈ P .

Proof. Let x ∈ VP , and choose any apartmentA containingx. Let ψ :A → Σ be a type
preserving isomorphism (from the building axioms). Thenψ(x) is a vertex inΣ with
typeτ(x) ∈ IP , and soψ(x) ∈ P . The converse is obvious.�
Remark 4.19. We note thatinfinite distance regular graphsare justB̃C1 buildings in very
thin disguise. To see the connection, given anyp,q � 1, construct aB̃C1 building (that is,
a semi-homogeneous tree) with parametersq0 = p andq1 = q. Construct a new graphΓp,q

with vertex setVP and verticesx, y ∈ VP connected by an edge if and only ifd(x, y) = 2.
It is simple to see thatΓp,q is the (graph) free productKq ∗ · · · ∗ Kq (p copies) whereKq

is the complete graph onq letters. By the classification [15,22]Γp,q is infinite distance
regular, and all infinite distance regular graphs occur in this way.

Recall the definition of Autq(D) from Definition 3.11.

Theorem 4.20. The diagrams in AppendixA characterise the parameter systems of
locally finite regular affine buildings. In each caseAuttr(D) ∪ {σ∗} ⊆ Autq(D).

Proof. These parameter systems are found case by case using Proposition 2.1(ii)
classification of the irreducible affine Coxeter graphs. Note that Auttr(D) ∪ {σ∗} = {id} if
X is aB̃Cn building. Thus the final result follows by considering each Coxeter graph�

5. Vertex set operators and vertex regularity

Let X be a locally finite regular affine building of typeR (see Section 4.10). Reca
(Definition 4.17) that we writeVP for the set of all good vertices ofX.

For eachλ ∈ P + we will define an averaging operatorAλ acting on the space of a
functionsf :VP → C, and we will introduce an algebraA of these operators. The oper
torsAλ were defined in [32, II, §1.1.2, Exercise 3] for homogeneous trees, [8,23] foÃ2
buildings, and [7] forÃn buildings. Our definition gives the generalisation of the opera
Aλ and the algebraA to all (irreducible) root systems.

5.1. Initial observations

Recall the definition of type preserving isomorphisms of simplicial complexes.

Definition 5.1. Let A1 andA2 be apartments ofX.
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(i) An isomorphismψ :A1 → A2 is calledtype-rotatingif it is of the form ψ = ψ−1
2 ◦

w ◦ ψ1 whereψ1 :A1 → Σ andψ2 :A2 → Σ are type preserving isomorphisms, a
w ∈ W̃ .

(ii) We have an analogous definition to (i) for isomorphismsψ :A1 → Σ by omittingψ2.

Proposition 5.2. LetA,A′ be any apartments and suppose thatψ :A → A′ is an isomor-
phism. Then:

(i) The image underψ of a gallery inA is a gallery inA′.
(ii) A gallery inA is minimal if and only if its image underψ is minimal inA′.

(iii) There exists a uniqueσ ∈ Aut(D) so thatψ maps galleries of typef in A to galleries
of typeσ(f ) in A′. If ψ is type rotating, thenσ ∈ Auttr(D), and (τ ◦ ψ)(x) = (σ ◦
τ)(x) for all verticesx of A.

(iv) If ψ is type rotating and maps a typei ∈ IP vertex inA to a typej ∈ IP vertex inA′,
then the induced automorphism from(iii) is σ = σj ◦ σ−1

i .

Proof. This follows from Proposition 4.8 and the definition of type rotating isom
phisms. �
Lemma 5.3. Supposex ∈ VP is contained in the apartmentsA andA′ of X, and suppose
that ψ :A → Σ and ψ ′ :A′ → Σ are type rotating isomorphisms such thatψ(x) = 0 =
ψ ′(x). Let ψ ′′ :A → A′ be a type preserving isomorphism mappingx to x (the existence
of which is guaranteed by Definition4.1). Thenφ = ψ ′ ◦ ψ ′′ ◦ ψ−1 is in W0.

Proof. Observe thatφ :Σ → Σ hasφ(0) = 0. Sinceψ andψ ′ are type rotating isomor
phisms we haveψ = w ◦ ψ1 andψ ′ = w′ ◦ ψ ′

1 for somew,w′ ∈ W̃ andψ1 :A → Σ ,
ψ ′

1 :A′ → Σ type preserving isomorphisms. Therefore,

φ = w′ ◦ ψ ′
1 ◦ ψ ′′ ◦ ψ−1

1 ◦ w−1 = w′ ◦ φ′ ◦ w−1, say.

Now φ′ = ψ ′
1 ◦ ψ ′′ ◦ ψ−1

1 :Σ → Σ is a type preserving automorphism, as it is a com
sition of type preserving isomorphisms. By [29, Lemma 2.2] we haveφ′ = v for some
v ∈ W , and henceφ = w′ ◦v ◦w−1 ∈ W̃ . Sinceφ(0) = 0 andW̃ = W0 �P we in fact have
φ ∈ W0, completing the proof. �
5.2. The setsVλ(x)

The following definition gives the analogue of the partition{Cw(a)}w∈W used for the
chamber set ofX. Let us first record the following lemma from [5, p. 24] (or [13, §10
Lemma B]). Recall the definition of the fundamental sectorS0 from (4.3).

Lemma 5.4. Let w ∈ W0 and λ ∈ E. If λ′ = wλ ∈ S̄0 ∩ wS̄0 thenλ′ = λ, andw ∈ 〈{si |
siλ = λ}〉.
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Definition 5.5. Given x ∈ VP andλ ∈ P +, we defineVλ(x) to be the set of ally ∈ VP

such that there exists an apartmentA containingx andy and a type rotating isomorphis
ψ :A → Σ such thatψ(x) = 0 andψ(y) = λ.

Proposition 5.6. LetVλ(x) be as in Definition5.5.

(i) Givenx, y ∈ VP , there exists someλ ∈ P + such thaty ∈ Vλ(x).
(ii) If y ∈ Vλ(x) ∩ Vλ′(x) thenλ = λ′.
(iii) Let y ∈ Vλ(x). If A is any apartment containingx and y, then there exists a type

rotating isomorphismψ :A → Σ such thatψ(x) = 0 andψ(y) = λ.

Proof. First we prove (i). By Definition 4.1 there exists an apartmentA containingx andy

and a type preserving isomorphismψ1 :A → Σ . Let µ = ψ1(x) andν = ψ1(y), soµ,ν ∈
P . There exists aw ∈ W0 such thatw(ν − µ) ∈ S̄0 ∩ P [13, p. 55, Exercise 14], and so th
isomorphismψ = w◦ t−µ ◦ψ1 satisfiesψ(x) = 0 andψ(y) = w(ν −µ) ∈ P +, proving (i).

We now prove (ii). Suppose that there are apartmentsA andA′ containingx andy, and
type-rotating isomorphismsψ :A → Σ andψ ′ :A′ → Σ such thatψ(x) = ψ ′(x) = 0 and
ψ(y) = λ ∈ P + andψ ′(y) = λ′ ∈ P +. We claim thatλ = λ′.

By Definition 4.1(iii)′ there exists a type preserving isomorphismψ ′′ :A → A′ which
fixes x andy. Thenφ = ψ ′ ◦ ψ ′′ ◦ ψ−1 :Σ → Σ is a type-rotating automorphism ofΣ

that fixes 0 and mapsλ to λ′. By Lemma 5.3 we haveφ = w for somew ∈ W0, and so we
haveλ′ = wλ ∈ S̄0 ∩ wS̄0. Thus by Lemma 5.4 we haveλ′ = λ.

Note first that (iii) is not immediate from the definition ofVλ(x). To prove (iii), by the
definition of Vλ(x) there exists an apartmentA′ containingx andy, and a type-rotating
isomorphismψ ′ :A′ → Σ such thatψ ′(x) = 0 andψ ′(y) = λ. Then by Definition 4.1(iii)′
there is a type preserving isomorphismφ :A →A′ fixing x andy. Thenψ = ψ ′ ◦φ :A →
Σ has the required properties.�
Remark 5.7. Note that the assumption thatψ is type-rotating in Definition 5.5 is essenti
for Proposition 5.6(ii) to hold. To see this we only need to look at an apartment of aÃ2
building. The mapa1λ1 + a2λ2 �→ a1λ2 + a2λ1 is an automorphism which mapsλ1 to λ2.
Thus if we omitted the hypothesis thatψ is type-rotating in Definition 5.5, part (ii) o
Proposition 5.6 would be false.

Proposition 5.8. If y ∈ Vλ(x), thenx ∈ Vλ∗(y) whereλ∗ is as in Definition4.10.

Proof. If ψ :A → Σ is a type rotating isomorphism mappingx to 0 andy to λ, thenw0 ◦
t−λ ◦ ψ :A → Σ is a type rotating isomorphism mappingy to 0 andx to λ∗ = w0(−λ) ∈
P + (see Proposition 4.11).�
Lemma 5.9. Letx ∈ VP andλ ∈ P +. If y, y′ ∈ Vλ(x) thenτ(y) = τ(y′).

Proof. Let A be an apartment containingx andy, andA′ be an apartment containingx
and y′. Let ψ :A → Σ and ψ ′ :A′ → Σ be type rotating isomorphisms withψ(x) =
ψ ′(x) = 0 andψ(y) = ψ ′(y′) = λ. Thusχ = ψ ′−1 ◦ ψ :A → A′ is a type preserving
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automorphism sinceχ(x) = x (see Proposition 4.7). Sinceχ(y) = y′ we haveτ(y) =
τ(y′). �

In light of the above lemma we defineτ(Vλ(x)) = τ(y) for anyy ∈ Vλ(x).
Clearly the setsVλ(x) are considerably more complicated objects than the setsCw(a).

The following theorem provides an important connection between the setsVλ(x) andCw(a)

that will be relied on heavily in subsequent work. Given a chamberc ∈ C and an index
i ∈ I , we defineπi(c) to be the typei vertex ofc. For the following theorem the reader
reminded of the definition ofwλ ∈ W andfλ ∈ I ∗ from Section 4.9.

Theorem 5.10. Letx ∈ VP andλ ∈ P +. Supposeτ(x) = i andτ(Vλ(x)) = j , and leta ∈ C
be any chamber withπi(a) = x. Then{

b ∈ C
∣∣ πj (b) ∈ Vλ(x)

} =
⋃

w∈Wiσi(wλ)Wj

Cw(a),

where the union is disjoint.

Proof. Suppose first thaty = πj (b) ∈ Vλ(x). Let a = c0, c1, . . . , cn = b be a minimal
gallery froma tob of typef , say. By [29, Theorem 3.8], all theck lie in some apartment,A,
say. Letψ :A → Σ be a type rotating isomorphism such thatψ(x) = 0 andψ(y) = λ.
Thenψ(c0),ψ(c1), . . . ,ψ(cn) is a minimal gallery of typeσ−1

i (f ) by Proposition 5.2.
Recall the definition of the fundamental chamberC0 from (4.2). Since 0 is a verte

of ψ(c0), we can construct a gallery fromψ(c0) to C0 of type e1, say, wherese1 ∈ W0.
Similarly there is a gallery fromwλC0 to ψ(cn) of typee2, wherese2 ∈ W

σ−1
i (j)

. Thus we
have a gallery

ψ(c0)
e1−→ C0

fλ−→ wλC0
e2−→ ψ(cn)

of typee1fλe2. SinceΣ is a Coxeter complex, galleries (reduced or not) from one cham
to another of typesf1 andf2, say, satisfysf1 = sf2 [29, p. 12], sos

σ−1
i (f )

= se1fλe2. Thus

δ(a, b) = sf = σi(sσ−1
i (f )

) = σi(se1fλe2) = se′
1
sσi (fλ)se′

2
,

wheree′
1 ∈ Wi ande′

2 ∈ Wj . Thusb ∈ Cw(a) for somew ∈ Wiσi(wλ)Wj .
Now suppose thatb ∈ Cw(a) for somew ∈ Wiσi(wλ)Wj . Let y = πj (b). By [29, p. 35,

Exercise 1], there exists a gallery of typee′
1σi(fλ)e

′
2 from a to b wheree′

1 ∈ Wi and
e′

2 ∈ Wj . Let ck, ck+1, . . . , cl be the subgallery of typeσi(fλ). Note thatπi(ck) = x and
πj (cl) = y. Observe thatσi(fλ) is reduced sinceσi ∈ Aut(D), and so all of the chambe
cm, k � m � l, lie in an apartmentA, say. Letψ :A → Σ be a type rotating isomorphism
such thatψ(x) = 0. Thusψ(ck), . . . ,ψ(cl) is a gallery of typefλ in Σ (Proposition 5.2).
SinceW0 acts transitively on the chambersC ∈ C(Σ) with 0∈ C̄ (Lemma 4.2) there exist
w ∈ W0 such thatw(ψ(ck)) = C0. Thenψ ′ = w ◦ ψ :A → Σ is a type rotating isomor
phism that takes the galleryck, . . . , cl in A of type σi(fλ) to a galleryC0, . . . ,ψ

′(cl) of
typefλ. But in a Coxeter complex there is only one gallery of each type. Soψ ′(cl) must
bewλ(C0), and by considering typesψ ′(y) = λ, and soy ∈ Vλ(x). �
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For x ∈ V we write st(x) for the set of all chambers that havex as a vertex. Recall th
definition of Poincaré polynomials from Definition 2.6.

Lemma 5.11. Let x ∈ VP . Then|st(x)| = W0(q). In particular, this value is independe
of the particularx ∈ VP .

Proof. Supposeτ(x) = i ∈ IP and letc0 be any chamber that hasx as a vertex. Then

st(x) = {
c ∈ C

∣∣ δ(c0, c) ∈ Wi

} =
⋃

w∈Wi

Cw(c0)

where the union is disjoint, and so|st(x)| = ∑
w∈Wi

qw. Theorem 4.20 now shows that∣∣st(x)
∣∣ =

∑
w∈W0

qσi(w) =
∑

w∈W0

qw = W0(q). �

Note that if the hypothesis ‘letx ∈ VP ’ in Lemma 5.11 is replaced by the hypothe
‘let x be a special vertex’, then in the nonreduced case it is no longer true in gener
|st(x)| = W0(q).

5.3. The cardinalities|Vλ(x)|

In this subsection we will find a closed form for|Vλ(x)|. We need to return to th
operatorsBw introduced in Section 3.

For eachi ∈ I define an element1i ∈ B by

1i = 1

Wi(q)

∑
w∈Wi

qwBw. (5.1)

Lemma 5.12. Let i ∈ I . Then1iBw = Bw1i = 1i for all w ∈ Wi , and12
i = 1i .

Proof. Supposes is a generator ofWi and setW±
i = {w ∈ Wi | �(ws) = �(w) ± 1}. Then

Wi(q)1iBs =
∑

w∈W+
i

qwBws +
∑

w′∈W−
i

qw

(
1

qs

Bws +
(

1− 1

qs

)
Bw

)

=
∑

w∈W−
i

qw

qs

Bw +
∑

w′∈W−
i

qw

(
1

qs

Bws +
(

1− 1

qs

)
Bw

)

=
∑

w∈W−
i

(
qw

qs

Bws + qwBw

)

=
∑

w∈W+
qwBw +

∑
w∈W−

qwBw = Wi(q)1i .
i i
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A similar calculation works forBs1i too. It follows that1iBw = Bw1i = 1i for all w ∈ Wi

and so12
i = 1i . �

Recall the definition ofW0λ from (4.4).

Theorem 5.13. Letλ ∈ P + and writel = τ(λ). Then

∑
w∈W0wλWl

qwBw = W2
0 (q)

W0λ(q)
qwλ10Bwλ1l .

Proof. Recall from Corollary 3.5 thatBw1Bw2 = Bw1w2 whenever�(w1w2) = �(w1) +
�(w2). Then by Proposition 4.15(ii), Proposition 4.15(iii), Lemma 5.12 and Prop
tion 4.15(iv) (in that order)

10Bwλ1l = 1

W0(q)

∑
u∈Wλ

0

∑
v∈W0λ

quqvBuBvBwλ1l

= 1

W0(q)

∑
u∈Wλ

0

∑
v∈W0λ

quqvBuBwλBwlσl(v)w−1
l

1l

= 1

W0(q)

∑
u∈Wλ

0

∑
v∈W0λ

quqvBuBwλ1l

= W0λ(q)

W0(q)Wl(q)
q−1
wλ

∑
w∈W0wλWl

qwBw,

and the result follows, since

Wl(q) =
∑

w∈Wl

qw =
∑

w∈W0

qσl(w) = W0(q)

by Proposition 4.20. �
Lemma 5.14. Letλ ∈ P +, x ∈ VP , andy ∈ Vλ(x). Writeτ(x) = i, τ(y) = j andτ(λ) = l.
Thenσ−1

i (j) = l, and soσj = σi ◦ σl .

Proof. Sincey ∈ Vλ(x), there exists an apartmentA containingx andy and a type rotating
isomorphismψ :A → Σ such thatψ(x) = 0 andψ(y) = λ. Sinceψ(x) = 0, theσ from
Proposition 5.2(iii) mapsi to 0 and so isσ−1

i . Thusλ = ψ(y) has typeσ(j) = σ−1
i (j) and

so l = σ−1
i (j). Thusσj (0) = (σi ◦ σl)(0), and soσj = σi ◦ σl . �

Theorem 5.15. Letx ∈ VP andλ ∈ P + with τ(λ) = l ∈ IP . Then∣∣Vλ(x)
∣∣ = 1

W0(q)

∑
qw = W0(q)

W0λ(q)
qwλ = ∣∣Vλ∗(x)

∣∣.

w∈W0wλWl
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Proof. Supposeτ(x) = i ∈ IP andτ(y) = j ∈ IP for all y ∈ Vλ(x). Let Cλ(x) = {c ∈ C |
πj (c) ∈ Vλ(x)} and construct a mapψ :Cλ(x) → Vλ(x) by c �→ πj (c) for all c ∈ Cλ(x).
Clearlyψ is surjective.

Observe that for eachy ∈ Vλ(x) the set{c ∈ Cλ(x) | ψ(c) = y} has|st(y)| distinct ele-
ments, and so by Lemma 5.11 we see thatψ :Cλ(x) → Vλ(x) is aW0(q)-to-one surjection
Let c0 ∈ C be any chamber that hasx as a vertex. Then by the above and Theorem 5.10
have

∣∣Vλ(x)
∣∣ = |Cλ(x)|

W0(q)
= 1

W0(q)

∑
w∈Wiσi(wλ)Wj

∣∣Cw(c0)
∣∣ = 1

W0(q)

∑
w∈Wiσi(wλ)Wj

qw.

Sinceσ−1
i (j) = l (Lemma 5.14) we haveWiσi(wλ)Wj = σi(W0wλWl), and so by Theo

rem 4.20

∣∣Vλ(x)
∣∣ = 1

W0(q)

∑
w∈W0wλWl

qσi(w) = 1

W0(q)

∑
w∈W0wλWl

qw.

Let 1C :C → {1} be the constant function. Then(Bw1C)(c) = 1 for all c ∈ C, and so we
compute(1l1C)(c) = 1 for all c ∈ C. Thus by Theorem 5.13

∑
w∈W0wλWl

qw = W2
0 (q)

W0λ(q)
qwλ.

Now, by Proposition 4.16 and Theorem 4.20 we have

∣∣Vλ∗(x)
∣∣ = 1

W0(q)

∑
w∈σ∗(W0wλWl)

qw = 1

W0(q)

∑
w∈W0wλWl

qw = ∣∣Vλ(x)
∣∣. �

Definition 5.16. For λ ∈ P + we defineNλ = |Vλ(x)|, which is independent ofx ∈ VP by
Theorem 5.15.

By the above we haveNλ = Nλ∗ .

5.4. The operatorsAλ and the algebraA

We now define thevertex set averaging operatorsonX.

Definition 5.17. For eachλ ∈ P +, define an operatorAλ, acting on the space of all func
tionsf :VP → C as in (0.2).

Lemma 5.18. The operatorsAλ are linearly independent.
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Proof. Suppose we have a relation
∑

λ∈P+ aλAλ = 0, and fixx, y ∈ VP with y ∈ Vµ(x).
Then writingδy for the function taking the value 1 aty and 0 elsewhere,

0=
∑

λ∈P+
aλ(Aλδy)(x) =

∑
λ∈P+

aλN
−1
λ δλ,µ = aµN−1

µ ,

and soaµ = 0. �
Following the same technique used in (3.1) for the chamber set averaging operat

have

(AλAµf )(x) = 1

NλNµ

∑
y∈VP

∣∣Vλ(x) ∩ Vµ∗(y)
∣∣f (y) for all x ∈ VP . (5.2)

Our immediate goal now is to understand the cardinalities|Vλ(x) ∩ Vµ∗(y)|.

Definition 5.19. We say thatX is vertex regularif, for all λ,µ, ν ∈ P +,∣∣Vλ(x) ∩ Vµ∗(y)
∣∣ = ∣∣Vλ(x

′) ∩ Vµ∗(y′)
∣∣ whenevery ∈ Vν(x) andy′ ∈ Vν(x

′),

andstrongly vertex regularif for all λ,µ, ν ∈ P +

∣∣Vλ(x) ∩ Vµ∗(y)
∣∣ = ∣∣Vλ∗(x′) ∩ Vµ(y′)

∣∣ whenevery ∈ Vν(x) andy′ ∈ Vν∗(x′).

Strong vertex regularity implies vertex regularity. To see this, suppose we are
x, y, x′, y′ ∈ VP with y ∈ Vν(x) andy′ ∈ Vν(x

′), and choose any pairx′′, y′′ ∈ VP with
y′′ ∈ Vν∗(x′′). Then if strong vertex regularity holds, we have∣∣Vλ(x) ∩ Vµ∗(y)

∣∣ = ∣∣Vλ∗(x′′) ∩ Vµ(y′′)
∣∣ = ∣∣Vλ(x

′) ∩ Vµ∗(y′)
∣∣.

Lemma 5.20. Let y ∈ Vν(x) and suppose thatz ∈ Vλ(x) ∩ Vµ∗(y). Write τ(x) = i,
τ(y) = j , τ(z) = k, τ(λ) = l, τ(µ) = m, andτ(ν) = n.

(i) σ−1
i (k) = l, σ−1

k (j) = m and σ−1
i (j) = n. Thusσ−1

i ◦ σk = σl , σ−1
k ◦ σj = σm and

σ−1
i ◦ σj = σn.

(ii) σn = σl ◦ σm.

Proof. (i) follows immediately from Lemma 5.14. To prove (ii), we have

σl ◦ σm = σ−1
i ◦ σk ◦ σ−1

k ◦ σj = σ−1
i ◦ σj = σn. �

Recall the definition of the automorphismσ∗ ∈ Aut(D) from Section 4.8.

Theorem 5.21. X is strongly vertex regular.
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Proof. Let x, y ∈ VP with y ∈ Vν(x) and suppose thatz ∈ Vλ(x) ∩ Vµ∗(y). Let τ(x) = i,
τ(y) = j and τ(z) = k. With the notation used in the proof of Theorem 5.15, defin
mapψ :Cλ(x) ∩ Cµ∗(y) → Vλ(x) ∩ Vµ∗(y) by the ruleψ(c) = πk(c). As in the proof of
Theorem 5.15 we see that this is aW0(q)-to-one surjection, and thus by Theorem 5.10

∣∣Vλ(x) ∩ Vµ∗(y)
∣∣ = 1

W0(q)

∑
w1∈Wiσi(wλ)Wk

w2∈Wj σj (wµ∗ )Wk

∣∣Cw1(a) ∩ Cw2(b)
∣∣,

wherea andb are any chambers withπi(a) = x andπj (b) = y. Notice that this implies
thatδ(a, b) ∈ Wiσi(wν)Wj , by Theorem 5.10.

Writing τ(λ) = l andτ(ν) = n, Lemma 5.20(i) implies that

Wiσi(wλ)Wk = σi

(
W0wλσ

−1
i (Wk)

) = σi(W0wλWσ−1
i (k)

) = σi(W0wλWl),

Wjσj (wµ∗)Wk = σi

(
W

σ−1
i (j)

(
σ−1

i ◦ σj

)
(wµ∗)W

σ−1
i (k)

) = σi

(
Wnσn(wµ∗)Wl

)
and similarly Wiσi(wν)Wj = σi(W0wνWn). Applying Lemma 3.12 (withσ = σi ) we
therefore have

∣∣Vλ(x) ∩ Vµ∗(y)
∣∣ = 1

W0(q)

∑
w1∈W0wλWl

w2∈Wnσn(wµ∗ )Wl

∣∣Cw1(a
′) ∩ Cw2(b

′)
∣∣, (5.3)

wherea′, b′ are any chambers withδ(a′, b′) ∈ W0wνWn.
Vertex regularity follows from (5.3), for the value of|Vλ(x) ∩ Vµ∗(y)| is seen to only

depend onλ,µ andν. To see that strong vertex regularity holds, we use Proposition
to see that

W0wλWl = σ∗
(
W

σ−1∗ (0)
σ−1∗ (wλ)Wσ−1∗ (l)

) = σ∗(W0wλ∗Wl∗),

Wnσn(wµ∗)Wl = σ∗
(
Wn∗

(
σ−1∗ ◦ σn ◦ σ∗

)
(wµ)Wl∗

) = σ∗
(
Wn∗σn∗(wµ)Wl∗

)
,

and similarlyW0wνWn = σ∗(W0wν∗Wn∗). A further application of Lemma 3.12 (wit
σ = σ∗) implies that

∣∣Vλ(x) ∩ Vµ∗(y)
∣∣ = 1

W0(q)

∑
w1∈W0wλ∗Wl∗

w2∈Wn∗σn∗ (wµ)Wl∗

∣∣Cw1(a
′′) ∩ Cw2(b

′′)
∣∣,

wherea′′, b′′ are any chambers withδ(a′′, b′′) ∈ W0wν∗Wn∗ . Thus by comparison with
(5.3) we have ∣∣Vλ(x) ∩ Vµ∗(y)

∣∣ = ∣∣Vλ∗(x′) ∩ Vµ(y′)
∣∣,
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where x′, y′ ∈ VP are any vertices withy′ ∈ Vν∗(x′); that is, strong vertex regularit
holds. �
Corollary 5.22. There exist numbersaλ,µ;ν ∈ Q+ such that forλ,µ ∈ P +,

AλAµ =
∑

ν∈P+
aλ,µ;νAν and

∑
ν∈P+

aλ,µ;ν = 1.

Moreover,|{ν ∈ P + | aλ,µ;ν �= 0}| is finite for allλ,µ ∈ P +.

Proof. Let v ∈ Vν(u) and set

aλ,µ;ν = Nν

NλNµ

∣∣Vλ(u) ∩ Vµ∗(v)
∣∣, (5.4)

which is independent of the particular pairu,v by vertex regularity. The numbersaλ,µ;ν
are clearly nonnegative and rational, and from (5.2) we have

(AλAµf )(x) =
∑

ν∈P+

( ∑
y∈Vν(x)

|Vλ(x) ∩ Vµ∗(y)|
NλNµ

f (y)

)

=
∑

ν∈P+
aλ,µ;ν

(
1

Nν

∑
y∈Vν(x)

f (y)

)
=

∑
ν∈P+

aλ,µ;ν(Aνf )(x).

Whenf = 1VP
:VP → {1} we see that

∑
aλ,µ;ν = 1.

We now show that only finitely many of theaλ,µ;ν ’s are nonzero for each fixed pa
λ,µ ∈ P +. Fix x ∈ VP and observe thataλ,µ;ν �= 0 if and only if Vλ(x) ∩ Vµ∗(y) �= ∅ for
eachy ∈ Vν(x). Applying (NλAλ)(NµAµ) to the constant function 1VP

:VP → {1}, we
obtain ∑

y∈VP

∣∣Vλ(x) ∩ Vµ∗(y)
∣∣ = NλNµ,

and henceVλ(x) ∩ Vµ∗(y) �= ∅ for only finitely manyy ∈ VP . �
Definition 5.23. Let A be the linear span of{Aλ | λ ∈ P +} overC. The previous corollary
shows thatA is an associative algebra.

We refer to the numbersaλ,µ;ν in Corollary 5.22 as thestructure constantsof the alge-
braA.

Theorem 5.24. The algebraA is commutative.
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Proof. We need to show thataλ,µ;ν = aµ,λ;ν for all λ,µ, ν ∈ P +. Fixing any pairu,v in
VP with v ∈ Vν(u), strong vertex regularity implies that

aλ,µ;ν = Nν

NλNµ

∣∣Vλ(u) ∩ Vµ∗(v)
∣∣ = Nν

NλNµ

∣∣Vλ∗(v) ∩ Vµ(u)
∣∣ = aµ,λ;ν

completing the proof. �
We note that a similar calculation using Theorem 5.15 (specifically the fact

Nλ = Nλ∗ ) shows thataλ,µ;ν = aλ∗,µ∗;ν∗ for all λ,µ, ν ∈ P +.

Remark 5.25. Let X be a set and letK be a partition ofX × X such that∅ /∈ K and
{(x, x) | x ∈ X} ∈ K . For k ∈ K , definek∗ = {(y, x) | (x, y) ∈ k}, and for eachx ∈ X and
k ∈ K definek(x) = {y ∈ X | (x, y) ∈ k}. Recall [34] that anassociation schemeis a pair
(X,K) as above such that (i)k ∈ K implies thatk∗ ∈ K , and (ii) for eachk, l,m ∈ K there
exists a cardinal numberek,l;m such that

(x, y) ∈ m implies that
∣∣k(x) ∩ l∗(y)

∣∣ = ek,l;m.

Let X = VP , and for eachλ ∈ P + let λ′ = {(x, y) | y ∈ Vλ(x)}. The setL = {λ′ | λ ∈
P +} forms a partition ofVP × VP , andλ′(x) = Vλ(x) for x ∈ VP .

By vertex regularity it follows that the pair(VP ,L) forms an association scheme, a
the cardinal numberseλ′,µ′;ν′ are simplyNλNµN−1

ν aλ,µ;ν . By strong vertex regularity thi
association scheme also satisfies the conditioneλ′,µ′;ν′ = eµ′,λ′;ν′ for all λ,µ, ν ∈ P + (see
[34, p. 1, footnote]).

Note that the algebraA is essentially theBose–Mesner algebraof the association
scheme(VP ,L) (see [1, Chapter 2]). With reference to Remark 4.19, the above con
tion generalises the familiar construction of association schemes from infinite dis
regular graphs (see [1, §1.4.4] for the case offinitedistance regular graphs).

Recall the definition of the numbersbw1,w2;w3 given in Corollary 3.6.

Proposition 5.26. Let τ(λ) = l and τ(ν) = n. Suppose thaty ∈ Vν(x) and Vλ(x) ∩
Vµ∗(y) �= ∅. Then

aλ,µ;ν = W0λ(q)W0µ(q)

W0ν(q)W2
0 (q)qwλqwµ

∑
w1∈W0wλWl

w2∈Wlσl(wµ)Wn

qw1qw2bw1,w2;wν
.

Proof. By Lemma 5.20(ii) we haveσn = σl ◦ σm. Thus by Proposition 4.16(iv) we hav
Wnσn(wµ∗)Wl = (Wlσl(wµ)Wn)

−1, and so by (5.3) we see that∣∣Vλ(x) ∩ Vµ∗(y)
∣∣ = 1

W0(q)

∑
w1∈W0wλWl

w2∈Wlσl(wµ)Wn

∣∣Cw1(a) ∩ C
w−1

2
(b)

∣∣ (5.5)

wheneverδ(a, b) ∈ W0wνWn.
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By Proposition 3.9 (and the proof thereof) we have∣∣Cw1(a) ∩ C
w−1

2
(b)

∣∣ = qw1qw2(Bw1Bw2δb)(a),

and the result now follows from (5.5) by using Theorem 5.15 and the definitions ofaλ,µ;ν
andbw1,w2;w3, by choosingb ∈ Cwν (a). �

6. Affine Hecke algebras and Macdonald spherical functions

In Section 6.3 we make an important connection between the algebraA and affine
Hecke algebras. In particular, in Theorem 6.16 we show thatA is isomorphic toZ(H̃), the
centre of an appropriately parametrised affine Hecke algebraH̃ .

In Sections 6.1 and 6.2 we give an outline of some known results regarding affine
algebras. The main references for this material are [21,25]. Note that in [25] there i
one parameterq, although the results there go through without any serious difficulty in
more general case of multiple parameters{qs}s∈S . Note also that in [25]Q = Q(R) and
P = P(R), whereas for usQ = Q(R∨) andP = P(R∨).

6.1. Affine Hecke algebras

Let {qs}s∈S be a set of positive real numbers withqsi = qsj wheneversi and sj are
conjugate inW̃ . Theaffine Hecke algebraH̃ with parameters{qs}s∈S is the algebra ove
C with presentation given by the generatorsTw, w ∈ W̃ , and relations

Tw1Tw2 = Tw1w2 if �(w1w2) = �(w1) + �(w2), (6.1)

TwTs = 1

qs

Tws +
(

1− 1

qs

)
Tw if �(ws) < �(w) ands ∈ S. (6.2)

By (6.1), T1Tw = TwT1 = Tw for all w ∈ W̃ , and henceT1 = I since{Tw}
w∈W̃

gen-
eratesH̃ . Then (6.2) implies that eachTs , s ∈ S, is invertible, and from (6.1) we see th
eachTg , g ∈ G, is invertible, with inverseTg−1 (recall the definition ofG from Section 4.7).
Since eachw ∈ W̃ can be written asw = w′g for w′ ∈ W andg ∈ G it follows that each
Tw, w ∈ W̃ , is invertible.

Remark 6.1. (i) In [21] the numbers{qs}s∈S are taken as positive real variables. Our cho
to fix the numbers{qs}s∈S does not change the algebraic structure ofH̃ in any serious way
(for our purposes, at least).

(ii) The condition thatqsi = qsj wheneversi = wsjw
−1 for somew ∈ W̃ is equivalent

to the condition thatqsi = qsj wheneversi = usσ(j)u
−1 for someσ ∈ Auttr(D) andu ∈ W .

This condition is quite restrictive, and it is easy to see that we obtain the parameter s
given in Appendix A. Thus connections with our earlier results on the algebraA will
become apparent when we take the numbers{qs}s∈S to be the parameters of a locally fini
regular affine building.
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Definition 6.2. (i) We write qw = qsi1
· · ·qsim

if si1 · · · sim is a reduced expression f
w ∈ W . This is easily seen to be independent of the particular reduced expression (
IV, §1, No. 5, Proposition 5]). Each̃w ∈ W̃ can be written uniquely as̃w = wg for w ∈ W

andg ∈ G, and we defineqw̃ = qw. In particularqg = 1 for all g ∈ G. Furthermore, if
s = si we writeqs = qi .

(ii) To conveniently state later results we make the following definitions. LetR1 =
{α ∈ R | 2α /∈ R}, R2 = {α ∈ R | 1

2α /∈ R} andR3 = R1 ∩ R2 (soR1 = R2 = R3 = R if R

is reduced). Forα ∈ R2, write qα = qi if α ∈ W0αi (note that ifα ∈ W0αi then necessaril
α ∈ R2). It follows easily from Corollary 2.2 that this definition is unambiguous.

Note thatR is the disjoint union ofR3, R1 \ R3 andR2 \ R3, and define set of numbe
{τα}α∈R by

τα =


qα if α ∈ R3,
q0 if α ∈ R1 \ R3,
qαq−1

0 if α ∈ R2 \ R3,

whereq0 = qs0 (with s0 = sα̃;1 andα̃ is as in (4.1)). It is convenient to also defineτα = 1 if
α /∈ R. The reader only interested in the reduced case can simply readτα asqα . Note that
τwα = τα for all α ∈ R andw ∈ W0.

Remark 6.3. We have chosen a slight distortion of the usual definition of the algebrH̃ .
This choice has been made so as to make the connection between the algebrasA andH̃
more transparent, as the reader will shortly see. To allow the reader to convert be
our notation and that in [21], we provide the following instructions. With reference to
presentation forH̃ given above, letτi = √

qi andT ′
w = √

qw Tw (theseτ ’s are unrelated to
those in Definition 6.2(ii)). Our presentation then transforms into that given in [21, 4
(with the T ’s there replaced byT ′’s). This transformation also makes it clear why t√

qw ’s appear in the following discussion.

If λ ∈ P + let xλ = √
qtλ Ttλ , and ifλ = µ − ν with µ,ν ∈ P + let xλ = xµ(xν)−1. This

is well defined by [21, p. 40], and for allλ,µ ∈ P we havexλxµ = xλ+µ = xµxλ.
We writeC[P ] for theC-span of{xλ | λ ∈ P }. The groupW0 acts onC[P ] by linearly

extending the actionwxλ = xwλ. We writeC[P ]W0 for the set of elements ofC[P ] that
are invariant under the action ofW0. By Corollary 6.7, the centreZ(H̃) of H̃ is C[P ]W0.

Let H be the subalgebra of̃H generated by{Ts | s ∈ S}. The following relates the
algebraH to the algebraB of chamber set averaging operators on an irreducible a
building.

Proposition 6.4. Suppose a buildingX of typeR exists with parameters{qs}s∈S . Then
H ∼= B.

Proof. This follows in the same way as Theorem 3.10.�
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We make the following parallel definition to (5.1). Recall the definition of Poinc
polynomials from Definition 2.6. For eachi ∈ I , let

1i = 1

Wi(q)

∑
w∈Wi

qwTw, (6.3)

whereWi = WI\{i} (as before). Thus1i is an element ofH . As a word of warning, we hav
used the same notation as in (5.1) where we defined the analogous element inB. There
should be no confusion caused by this decision.

The following lemma follows in exactly the same way as Lemma 5.12.

Lemma 6.5. 1iTw = Tw1i = 1i for all w ∈ Wi andi ∈ I . Furthermore12
i = 1i .

6.2. The Macdonald spherical functions

The following relations are of fundamental significance.

Theorem 6.6. Letλ ∈ P andi ∈ I0.

(i) If (R, i) �= (BCn,n) for anyn � 1, then

xλTsi − Tsi x
siλ = (

1− q−1
i

)xλ − xsiλ

1− x−α∨
i

.

(ii) If R = BCn for somen � 1 andi = n, then

xλTsn − Tsnx
snλ = [

1− q−1
n + q

−1/2
n

(
q

1/2
0 − q

−1/2
0

)
x−(2αn)∨] xλ − xsnλ

1− x−2(2αn)∨ .

Proof. This follows from [21, (4.2.4)] (see Remark 6.3), taking into account [21, (1.
and (2.1.6)] in case (ii). �

We note that the fractions appearing in Theorem 6.6 are in fact finite linear com
tions of thexµ’s [21, (4.2.5)]. We refer to the relations in Theorem 6.6 as theBernstein
relations, for they are a crucial ingredient in the so-calledBernstein presentationof the
Hecke algebra.

Corollary 6.7. The centreZ(H̃) of H̃ is C[P ]W0.

Proof. This well-known fact can be proved using the Bernstein relations, exactly as i
(4.2.10)]. �
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For eachλ ∈ P +, define an elementPλ(x) ∈ C[P ]W0 by

Pλ(x) = q
−1/2
tλ

W0(q)

∑
w∈W0

w

(
xλ

∏
α∈R+

τατ
1/2
α/2 xα∨ − 1

τ
1/2
α/2 xα∨ − 1

)
. (6.4)

We call the elementsPλ(x) theMacdonald spherical functionsof H̃ .

Remark 6.8. (i) We have chosen a slightly different normalisation of the Macdonald sp
ical function from that in [21]. Our formula uses the normalisation of [18, Theorem 4.

(ii) Notice that the formula simplifies in the reduced case (namely,τα/2 = 1). (iii) It
is not immediately clear thatPλ(x) as defined in (6.4) is inC[P ]W0, although this is a
consequence of [4, VI, §3, No. 3, Proposition 2].

The proof of Theorem 6.9 below follows [25, Theorem 2.9] very closely.

Theorem 6.9. [25, Theorem 2.9].For λ ∈ P + we haveq1/2
tλ

Pλ(x)10 = 10x
λ10.

Proof. By the Satake isomorphism (see [25, Theorem 2.4] and [16, 5.2], for example)
exists someP ′

λ(x) ∈ C[P ]W0 such thatP ′
λ(x)10 = 10x

λ10. If i ∈ I0 and(R, i) �= (BCn,n),
then by Theorem 6.6(i) (and using Lemma 6.5) we have

(1+ qiTsi )x
λ10 = xλ10 + qix

siλTsi 10 + (qi − 1)
xλ − xsiλ

1− x−α∨
i

10

= qix
λ − xλ−α∨

i − qix
siλ−α∨

i + xsiλ

1− x−α∨
i

10

=
(

qix
α∨

i − 1

xα∨
i − 1

xλ + qix
−α∨

i − 1

x−α∨
i − 1

xsiλ

)
10

= (1+ si)
qix

α∨
i − 1

xα∨
i − 1

xλ10. (6.5)

A similar calculation, using Theorem 6.6(ii), shows that ifi ∈ I0 and(R, i) = (BCn,n),
then

(1+ qnTsn)x
λ10 = (1+ sn)

(√
q0qn x(2αn)∨ − 1

)(√
qn/q0 x(2αn)∨ + 1

)
x2(2αn)∨ − 1

xλ10. (6.6)

It will be convenient to write (6.5) and (6.6) as one equation, as follows. In the red
case, letβi = αi for all i ∈ I0, and in the nonreduced case (soR = BCn for somen � 1)
let βi = αi for 1� i � n − 1 and letβn = 2αn. Forα ∈ R andi ∈ I0, write

ai

(
xα∨) =

(
τβi

τ
1/2
βi/2x

α∨ − 1
)(

τ
1/2
βi/2 xα∨ + 1

)
2α∨ ,
x − 1



40 J. Parkinson / Journal of Algebra 297 (2006) 1–49

he

t

.

ent
and so in all cases

(1+ qiTsi )x
λ10 = (1+ si)ai

(
xβ∨

i
)
xλ10. (6.7)

By induction we see that (writingTi for Tsi )[
m∏

k=1

(1+ qikTik )

]
xλ10 =

[
m∏

k=1

(1+ sik )aik

(
x

β∨
ik

)]
xλ10, (6.8)

where we write
∏m

k=1 xk for the ordered productx1 · · ·xm. Therefore10x
λ10 can be written

asf xλ10, wheref is independent ofλ and is a finite linear combination of terms of t
form

(1+ si1)ai1

(
x

β∨
i1
) · · · (1+ sim)aim

(
x

β∨
im

)
,

wherei1, . . . , im ∈ I0.
Thus we have

P ′
λ(x) =

∑
w∈W0

w
(
bw(x)xλ

)
,

where eachbw(x) is a linear combination of products of termsai(x
β∨

i ) and is independen
of λ ∈ P +. It is easily seen that this expression is unique, and sinceP ′

λ(x) ∈ C[P ]W0 it
follows thatbw(x) = bw′(x) for all w,w′ ∈ W0, and we writeb(x) for this common value
Thus

P ′
λ(x) =

∑
w∈W0

w
(
b(x)xλ

) =
∑

w∈W0

w
(
xw0λw0b(x)

)
,

wherew0 is the longest element ofW0.
We now compute the coefficient ofxw0λ in the above expression. Since this coeffici

is independent ofλ ∈ P + we may assume that〈λ,αi〉 > 0 for all i ∈ I0 and sowλ �= w0λ

for all w ∈ W0 \ {w0}.
If w0 = si1 · · · sim is a reduced expression, then

10 = 1

W0(q)

(
(1+ qi1Ti1) · · · (1+ qimTim)

+ terms(1+ qj1Tj1) · · · (1+ qjl
Tjl

) with jk ∈ I0 andl < m
)
.

Thus, by (6.8)

10x
λ10 = 1

W0(q)

[(
m∏

k=1

sik aik

(
x

β∨
ik

))
xλ10

+ terms

(
l∏

sjk
ajk

(
x

β∨
jk

))
xλ10 with jk ∈ I0 andl < m

]
.

k=1
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Thus the coefficient ofxw0λ is

w0b(x) = 1

W0(q)
si1ai1

(
x

β∨
i1
) · · · simaim

(
x

β∨
im

)
= 1

W0(q)
w0

∏
β∈R+

1

(
τβτ

1/2
β/2x

β∨ − 1
)(

τ
1/2
β/2 xβ∨ + 1

)
x2β∨ − 1

,

where we have used the fact that{
β∨

im
, simβ∨

im−1
, . . . , simsim−1 · · · si2β∨

i1

} = (
R+

1

)∨

(see [21, (2.2.9)]) and the fact thatτwα = τα for all w ∈ W0 andα ∈ R. The result now
follows after an elementary manipulation.�

Sincexλ = q
1/2
tλ

Ttλ by definition, we have the following.

Corollary 6.10. For λ ∈ P + we have

10Ttλ10 = Pλ(x)10.

We writeQ+ for theN-span of{α∨ | α ∈ R+}. Define a partial order� onP by µ � λ

if and only if λ − µ ∈ Q+.

Theorem 6.11. {Pλ(x) | λ ∈ P +} is a basis ofC[P ]W0. Furthermore, the Macdonal
spherical functions satisfy

Pλ(x)Pµ(x) =
∑

ν�λ+µ

cλ,µ;νPν(x)

for some numberscλ,µ;ν , with cλ,µ;λ+µ > 0.

Proof. This is a simple application of the triangularity condition of the Macdonald sp
ical functions, see [20, §10].�
6.3. ConnectingA andZ(H̃)

We can now see how to relate the vertex set averaging operatorsAλ from Section 5 to
the algebra elementsPλ(x). Let us recall (and make) some definitions. Forλ,µ, ν ∈ P +
andw1,w2,w3 ∈ W , define numbersaλ,µ;ν , bw1,w2;w3, cλ,µ;ν anddw1,w2;w3 by

AλAµ =
∑

ν∈P+
aλ,µ;νAν, Bw1Bw2 =

∑
w3∈W

bw1,w2;w3Bw3,

Pλ(x)Pµ(x) =
∑

+
cλ,µ;νPν(x), Tw1Tw2 =

∑
dw1,w2;w3Tw3.
ν∈P w3∈W
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Thus the numbers are the structure constants of the algebrasA, B, C[P ]W0 andH with
respect to the bases{Aλ | λ ∈ P +}, {Bw | w ∈ W }, {Pλ(x) | λ ∈ P +} and {Tw | w ∈ W }
respectively.

Note that by Proposition 6.4 we havebw1,w2;w3 = dw1,w2;w3 whenever a building with
parameter system{qs}s∈S exists. We stress thatdw1,w2;w3 is a more general object, for
makes sense for a much more general set ofqs ’s.

Recall the definition ofwλ from Section 4.9, and recall the definition ofW0λ from (4.4).
We give the following lemma linking double cosets inW with double cosets iñW .

Lemma 6.12. Let λ ∈ P + and i ∈ IP . Suppose thatτ(λ) = l, and write j = σi(l) (so
σj = σi ◦ σl). Then

Wiσi(t
′
λ)Wj = giW0tλW0g

−1
j ,

where the elementsgi are defined in(4.5).

Proof. By Proposition 4.12,gj = gigl and tλ = t ′λgl , and by (4.8),σk(w) = gkwg−1
k for

all w ∈ W andk ∈ IP . Thus

Wiσi(t
′
λ)Wj = (

giW0g
−1
i

)(
gitλg

−1
l g−1

i

)(
gjW0g

−1
j

) = giW0tλW0g
−1
j . �

Lemma 6.13. [25, Lemma 2.7].Letλ ∈ P +. Then

∑
w∈W0tλW0

qwTw = W2
0 (q)

W0λ(q)
qwλ10Ttλ10.

Proof. This can be deduced from Theorem 5.13, or see the proof in [25].�
The following important theorem will be used (along with Proposition 5.26) to p

thatA ∼= Z(H̃).

Theorem 6.14. Let λ,µ, ν ∈ P + and write τ(λ) = l, τ(µ) = m and τ(ν) = n. Then if
cλ,µ;ν �= 0 we have

cλ,µ;ν = W0λ(q)W0µ(q)

W0ν(q)W2
0 (q)qwλqwµ

∑
w1∈W0wλWl

w2∈Wlσl(wµ)Wn

qw1qw2dw1,w2;wν
.

Proof. To abbreviate notation we writePλ = Pλ(x). First observe that by Theorem 6.11 w
havecλ,µ;ν = 0 unlessν � λ+µ. In particular we havecλ,µ;ν = 0 whenτ(ν) �= τ(λ+µ).
It follows thatσn = σl ◦ σm, and sogn = glgm (see Proposition 4.12). We will use this fa
later.
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By Corollary 6.10 and Lemma 6.13, for anyλ ∈ P + we have

Pλ10 = 10Ttλ10 = W0λ(q)

W2
0 (q)qwλ

∑
w∈W0tλW0

qwTw,

and so ifi ∈ IP , τ(λ) = l andj = σi(l) we have (see Lemma 6.12)

Tgi
Pλ10Tg−1

j
= W0λ(q)

W2
0 (q)qwλ

∑
w∈Wiσi(t

′
λ)Wj

qwTw. (6.9)

We can replace thet ′λ by wλ in the above becauseWiσi(t
′
λ)Wj = Wiσi(wλ)Wj by Propo-

sition 4.15(i) and the fact thatσi(Wl) = Wj .
Using the fact thatgn = glgm if cλ,µ;ν �= 0 we have, by (6.9)

Pλ10Pµ10Tg−1
n

= (Pλ10Tg−1
l

)(Tgl
Pµ10Tg−1

n
)

= W0λ(q)W0µ(q)

W4
0 (q)qwλqwµ

∑
w1∈W0wλWl

w2∈Wlσl(wµ)Wn

qw1qw2Tw1Tw2

= W0λ(q)W0µ(q)

W4
0 (q)qwλqwµ

∑
w3∈W

( ∑
w1∈W0wλWl

w2∈Wlσl(wµ)Wn

qw1qw2dw1,w2;w3Tw3

)
.

So the coefficient ofTwν in the expansion ofPλ10Pµ10Tg−1
n

in terms of theTw ’s is

W0λ(q)W0µ(q)

W4
0 (q)qwλqwµ

∑
w1∈W0wλWl

w2∈Wlσl(wµ)Wn

qw1qw2dw1,w2;wν
. (6.10)

On the other hand, by Theorem 6.11 we have

Pλ10Pµ10Tg−1
n

=
∑

η�λ+µ

cλ,µ;ηPη10Tg−1
n

=
∑

η�λ+µ

(
W0η(q)

W2
0 (q)qwη

cλ,µ;η
∑

w∈W0wηWn

qwTw

)
.

Since the double cosetsW0wηWn are disjoint over{η ∈ P + | η � λ + µ} we see that the
coefficient ofTwν is

W0ν(q)

W2
0 (q)

cλ,µ;ν. (6.11)

The theorem now follows by equating (6.10) and (6.11).�
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Corollary 6.15. Suppose that an irreducible affine building exists with parameter sy
{qs}s∈S . Then for allλ,µ, ν ∈ P + we haveaλ,µ;ν = cλ,µ;ν .

Proof. This follows from Theorem 6.14 and Propositions 5.26 and 6.4.�
Theorem 6.16. Suppose that an irreducible affine building exists with parameters{qs}s∈S .
Then the mapPλ(x) �→ Aλ determines an algebra isomorphism, and soA ∼= Z(H̃).

Proof. Since{Pλ(x) | λ ∈ P +} is a basis ofC[P ]W0 and{Aλ | λ ∈ P +} is a basis ofA,
there exists a unique vector space isomorphismΦ :Z(H̃) → A with Φ(Pλ) = Aλ for all
λ ∈ P +. Sinceaλ,µ;ν = cλ,µ;ν by Corollary 6.15, we see thatΦ is an algebra isomor
phism. �
Theorem 6.17. The algebraZ(H̃) is generated by{Pλi

(x) | i ∈ I0}, and soA is generated
by {Aλi

| i ∈ I0}.

Proof. First we define a less restrictive partial order onP + than�. For λ,µ ∈ P + we
defineµ < λ if and only if λ − µ is an R+-linear combination of(R∨)+ and λ �= µ.
Clearly if µ ≺ λ thenµ < λ. Observe also thatλi > 0 for all i ∈ I0 (see Exercises 7 and
on p. 72 of [13]). Thus ifλ = λ′ +λi for someλ′ ∈ P + andi ∈ I0, we haveλ−λ′ = λi > 0
and soλ′ < λ.

LetP(λ) be the statement thatPλ is a polynomial inPλ1, . . . ,Pλn (andP0 = 1). Suppose
thatP(λ) fails for someλ ∈ P +. Since{µ ∈ P + | µ � λ} is finite (by the proof of [13,
Lemma 13.2B]) we can pickλ ∈ P + minimal with respect to� such thatP(λ) fails. There
is ani such thatλ−λi = λ′ is in P +. Thenλ′ < λ andPλ = cPλ′Pλi

+ a linear combination
of Pµ’s, whereµ < λ, µ �= λ. ThenP(λ′) holds, as doesP(µ) for all theseµ’s. SoP(λ)

holds, a contradiction. �

7. A positivity result and hypergroups

Here we show that the structure constantscλ,µ;ν of the algebraC[P ]W0 are, up to
positive normalisation factors, polynomials with nonnegative integer coefficients i
variables{qs − 1 | s ∈ S}. This result has independently been obtained by Schwer in
where a formula forcλ,µ;ν is given (in the caseqs = q for all s ∈ S).

Thus ifqs � 1 for all s ∈ S, thencλ,µ;ν � 0 for all λ,µ, ν ∈ P +. This result was prove
for root systems of typeAn by Miller Malley in [24], where the numberscλ,µ;ν are Hall
polynomials (up to positive normalisation factors). Note that it is clear from (5.4)
Corollary 6.15 thatcλ,µ;ν � 0 when there exists a building with parameters{qs}s∈S .

In a recent series of papers [12,27,31,33] the numbersaλ,µ appearing inPλ(x) =∑
µ aλ,µmµ are studied. Heremµ is the monomial symmetric function

∑
γ∈W0µ

xγ , where
W0µ is the orbit{wµ | w ∈ W0}. We will provide a connection with the results we pro
here and the numbersaλ,µ in [26, Theorem 6.2]. In particular, forλ ∈ P +, let Πλ ⊂ P
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denote the saturated set (see [4, VI, §1, Exercise 23]) with highest coweightλ. If µ /∈ Πλ

thenaλ,µ = 0, and for allµ ∈ Πλ,

aλ,µ =
√

Nν−µ

Nν

cλ,µ;ν,

whereν is any dominant coweight with each〈ν,αi〉 ‘sufficiently large’.
The results of this section show how to construct a (commutative) polynomial h

group, in the sense of [3] (see also [17] where theA2 case is discussed).
For eachw1,w2,w3 ∈ W , let d ′

w1,w2;w3
= qw1qw2q

−1
w3

dw1,w2;w3.

Lemma 7.1. For all w1,w2,w3 ∈ W , d ′
w1,w2;w3

is a polynomial with nonnegative integ
coefficients in the variablesqs − 1, s ∈ S.

Proof. We prove the result by induction on�(w2). When�(w2) = 1, sow2 = s for some
s ∈ S, we have

d ′
w1,s;w3

=


1 if �(w1s) = �(w1) + 1 andw3 = w1s,
qs if �(w1s) = �(w1) − 1 andw3 = w1s,
qs − 1 if �(w1s) = �(w1) − 1 andw3 = w1,
0 otherwise,

proving the result in this case.
Suppose thatn � 2 and that the result is true for�(w2) < n. Then if �(w2) = n, write

w2 = ws with �(w) = n − 1. Thus

Tw1Tw2 = (Tw1Tw)Ts =
∑

w′∈W

dw1,w;w′Tw′Ts =
∑

w3∈W

( ∑
w′∈W

dw1,w;w′dw′,s;w3

)
Tw3,

which implies that

d ′
w1,w2;w3

=
∑

w′∈W

d ′
w1,w;w′d ′

w′,s;w3
.

The result follows since�(w) < n and�(s) = 1. �
For eachλ,µ, ν ∈ P +, let

c′
λ,µ;ν = W0(q)W0ν(q)

W0λ(q)W0µ(q)

qwλqwµ

qwν

cλ,µ;ν. (7.1)

Theorem 7.2. For all λ,µ, ν ∈ P +, the structure constantsc′
λ,µ;ν are polynomials with

nonnegative integer coefficients in the variablesqs − 1, s ∈ S.
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Proof. We will use the same notation as in Theorem 6.14, so letτ(λ) = l, τ(µ) = m and
τ(ν) = n. By Theorem 6.14 we have

c′
λ,µ;ν = 1

W0(q)

∑
w1∈W0wλWl

w2∈Wlσl(wµ)Wn

d ′
w1,w2;wν

,

and so it immediately follows from Lemma 7.1 thatW0(q)c′
λ,µ;ν is a polynomial in the

variablesqs − 1, s ∈ S, with nonnegative integer coefficients. The result stated in the
orem is stronger than this, and so we need to sharpen the methods used in the p
Theorem 6.14.

We make the following observations. See Proposition 4.15 for proofs of similar
(we use the notations of Proposition 4.15 here). Firstly, eachw1 ∈ W0wλWl can be writ-
ten uniquely asw1 = u1wλwl for someu1 ∈ Wλ

0 andwl ∈ Wl , and moreover�(w1) =
�(u1) + �(wλ) + �(wl). Similarly, eachw2 ∈ Wlσl(wµ)Wn can be written uniquely a
w2 = w′

lσl(wµ)u2 for someu2 ∈ W
µ
n and w′

l ∈ Wl , and moreover�(w2) = �(w′
l ) +

�(σl(wµ)) + �(u2).
Secondly, eachw ∈ W0wλ can be written uniquely asw = uwλ for someu ∈ Wλ

0 , and
moreover�(w) = �(u) + �(wλ). Similarly, eachw′ ∈ σl(wµ)Wn can be written uniquely
asw′ = σl(wµ)u′ for someu′ ∈ W

µ
n , and, moreover,�(w′) = �(σl(wµ)) + �(u′).

Using these facts, along with the facts that12
l = 1l andWl(q) = W0(q), we have (com-

pare with the proof of Theorem 6.14)

Pλ10Pµ10Tg−1
n

= W0λ(q)W0µ(q)

W4
0 (q)qwλqwµ

∑
w1∈W0wλWl

w2∈Wlσl(wµ)Wn

qw1qw2Tw1Tw2

= W0λ(q)W0µ(q)W2
l (q)

W4
0 (q)qwλqwµ

( ∑
u1∈Wλ

0

qu1wλTu1wλ

)
12

l

×
( ∑

u2∈W
µ
n

qσl(wµ)u2Tσl(wµ)u2

)

= W0λ(q)W0µ(q)

W2
0 (q)qwλqwµ

( ∑
w∈W0wλ

qwTw

)
1l

( ∑
w′∈σl(wµ)Wn

qw′Tw′
)

= W0λ(q)W0µ(q)

W3
0 (q)qwλqwµ

∑
w1∈W0wλ,w2∈Wl

w3∈σl(wµ)Wn

qw1qw2qw3Tw1Tw2Tw3.

It is simple to see that∑
w1∈W0wλ,w2∈Wl

w ∈σ (w )W

qw1qw2qw3Tw1Tw2Tw3 =
∑
w∈W

dw(λ,µ)qwTw
3 l µ n
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are
wheredw(λ,µ) is a linear combination of products ofd ′
w1,w2;w3

’s with nonnegative intege
coefficients, and so

Pλ10Pµ10Tg−1
n

= W0λ(q)W0µ(q)

W3
0 (q)qwλqwµ

∑
w∈W

dw(λ,µ)qwTw.

So the coefficient ofTwν whenPλ10Pµ10Tg−1
n

is expanded in terms of theTw ’s is

W0λ(q)W0µ(q)

W3
0 (q)

qwν

qwλqwµ

dwν (λ,µ). (7.2)

Comparing (7.2) with (6.11) we see thatc′
λ,µ;ν = dwν (λ,µ), and so the result follows from

Lemma 7.1 and the fact thatdwν (λ,µ) is a linear combination of products ofd ′
w1,w2;w3

’s
with nonnegative integer coefficients.�
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Appendix A. Parameter systems of regular affine buildings

For anX̃n building theren + 1 vertices in the Coxeter graph. The special vertices
marked with ans. If all of the parameters are equal we writeqi = q.

Ã1: � �
∞q q

s s
B̃C1: � �

∞q0 q1
s s

Ãn (n � 2):
q

s
�

q

s
�

q

s
�

q

s
�

q

s
�

� ��

�����

�����

B̃n (n � 3):
q0
�

s
q0
�

s
q0
�

���
���

q0
� � ��

q0
�

q0
�

qn
�

4

C̃n (n � 2): s
q0
�

q1
�

4 q1
� �� �

q1
�

q1
� s

q0
�

4

B̃Cn (n � 2): s
q0
�

q1
�

4 q1
� �� �

q1
�

q1
� s

qn
�

4

D̃n (n � 4):
q
�

s
q
�

q
���
��

q
� � ��

q
�

q
�

s
q
�

q
���
��
s �� s��
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�

q
�
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�

q �
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q
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�
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q
�

q
�

q
�

q
�

q �

q
�

q
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�

Ẽ8:
q
�

q
�

q
�

q �
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�

q
�

q
�

q
� s

q
�
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�
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�

q0
�

q4
�

q4
�

4

G̃2: s
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�
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�

q1
�
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