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Abstract

We classify the automorphisms of a Moufang hexagon mapping no chamber to an opposite
chamber (such automorphisms are called domestic). This forms part of a larger program to
classify domestic automorphisms of Moufang spherical buildings.

Dedicated to Jacques Tits

Introduction

An automorphism of a spherical building is called domestic if it maps no chamber to an opposite
chamber. Recently a systematic investigation of domestic automorphisms has revealed a beauti-
ful connection between domesticity and large rich fixed element structures of the automorphism,
and there are now complete classifications of the domestic automorphisms for various classes of
spherical buildings. For example, by [13] the domestic dualities of E6(F) buildings with |F| > 2
are precisely the polarities that fix a split building of type F4, and by [14] the domestic trialities
of thick D4 buildings are precisely the automorphisms fixing a split building of type G2. More-
over, in [6, 7] we classified the domestic automorphisms of split spherical buildings of types E6,
F4, and G2, as well as providing partial classifications in the E7 and E8 cases.

The case of rank 2 spherical buildings (equivalently, generalised polygons) is complicated
by the lack of classification of such buildings, which makes a complete classification of domes-
tic automorphisms of arbitrary generalised polygons impossible. However Moufang generalised
polygons have been classified by Tits and Weiss [11]. In the case of Moufang hexagons the
classification was announced in [10], with the complete proof appearing in [11]. The classifi-
cation is given in terms of hexagonal systems (which in turn were classified by Petersson and
Racine [8]). In this paper we give the complete classification of domestic automorphisms of
Moufang hexagons.

It is easy to see that no duality of a generalised hexagon is domestic, and so we restrict
attention to collineations (that is, type preserving automorphisms). A nontrivial collineation
can be domestic for one of three reasons: either it maps no point to an opposite point (point-
domestic), or no line to an opposite line (line-domestic), or it maps both points and lines to
opposite points and lines yet maps no chamber (that is, incident point-line pair) to an opposite
chamber (exceptional domestic). As a (very) special case of a result of Abramenko and Brown [1]
the first two possibilities are mutually exclusive.

∗This work was partially supported by the Australian Research Council Discovery Project DP200100712.
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Our main theorem is as follows. By convention we fix the duality class of Moufang hexagons
so that if Γ is associated to the hexagonal system (J,F,#) then the points on a line are indexed
by {∞} ∪ F and the lines through a point are indexed by {∞} ∪ J. For example, if Γ is finite
then it has parameters (s, t) = (|F|, |J|).

Theorem 1. Let Γ be a Moufang hexagon, with the above convention on the duality class.
(1) Γ admits a unique class of nontrivial line-domestic collineations (the long root elations).
(2) Γ admits a nontrivial point-domestic collineation if and only if Γ is a dual split Cayley

hexagon, a mixed hexagon, or a triality hexagon of type 3D4. Moreover, if θ is a nontrivial
point-domestic collineation then θ has order 3 and:
(a) if Γ is either mixed, or is a dual split Cayley hexagon over a field of characteristic 3,

then θ is a short root elation and there is a unique class of such collineations.
(b) if Γ is a dual split Cayley hexagon over a field F with charF 6= 3 then θ fixes an

ovoid (respectively, a large full subhexagon) if X2 +X + 1 is irreducible (respectively,
reducible) over F, and in each case there is a unique class of such collineations.

(c) if Γ is a triality hexagon of type 3D4 then θ fixes a large full subhexagon, and θ is
conjugate to a nontrivial element of the Galois group of the associated cubic Galois
extension E/F.

(3) Γ admits an exceptional domestic collineation if and only if Γ is a dual split Cayley hexagon
over F = F2 or the triality hexagon of type 3D4 associated to a cubic extension of F = F2.
Moreover, for each of these hexagons there exists a unique class of exceptional domestic
collineations, and these collineations have order 4.

In [5, 6] we developed the language of opposition diagrams for automorphisms of spherical
buildings. With the above convention on duality classes, the line-domestic collineations are
those with opposition diagram G2

2;1 = • • , and the point-domestic collineations are those with

opposition diagram G1
2;1 = • • (see [7] for the notation). The above theorem immediately

gives:

Corollary 2. Let Γ be a Moufang hexagon, with the above convention on duality classes.
(1) There exists a collineation with opposition diagram G2

2;1.

(2) There exists a collineation with opposition diagram G1
2;1 if and only if Γ is a dual split

Cayley hexagon, a mixed hexagon, or a triality hexagon of type 3D4.
(3) The hexagon Γ admits a domestic collineation not fixing a chamber if and only if Γ is a

dual split Cayley hexagon over a field F with X2 +X + 1 irreducible over F.

The structure of this paper is as follows. In Section 1 we outline background material and
definitions on generalised hexagons, domesticity, and hexagonal systems. We also extend the
coordinatisation of dual split Cayley hexagons and triality hexagons from [12, Chapter 3] to
general Moufang hexagons (see Theorem 1.5). By Theorem 1.3, a collineation of a generalised
hexagon is point-domestic if and only if its fixed element structure is either a ball of radius
3 in the incidence graph centred at a line, a large full subhexagon, or an ovoid (and dually
for line-domestic collineations). These three possibilities, and their duals, are each analysed in
Sections 2.1, 2.2, and 2.3, culminating in the proof of Theorem 1 in Section 2.4.
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1 Background and definitions

In this section we begin by giving some basic definitions concerning generalised hexagons, and
recalling results from the literature on domestic automorphisms of generalised hexagons. In
Section 1.3 we recall the classification of Moufang hexagons in terms of hexagonal systems,
following [11], and record commutation relations and related formulae that will be used re-
peatedly throughout the paper. In Section 1.4 we extend the coordinatisation of dual split
Cayley hexagons and triality hexagons from [12, Chapter 3] to general Moufang hexagons (this
coordinatisation will be used in Section 2.2).

1.1 Generalised hexagons

A generalised hexagon is a nonempty point line geometry Γ = (P,L) containing no ordinary
2, 3, 4, or 5-gon as a subgeometry such that any two elements x, y ∈ P ∪ L are contained in
an ordinary hexagon. We will typically drop the adjective “generalised”, and simply refer to
generalised hexagons as hexagons.

The hexagon Γ is thick if each line contains at least 3 points, and each point is on at least 3
lines. The distance d(x, y) between elements x, y ∈ P ∪L is the distance in the incidence graph.
Thus d(x, y) ≤ 6, and elements x, y are opposite one another if and only if d(x, y) = 6. If x and
y are opposite then necessarily x, y are either both points, or are both lines. For p ∈ P let p⊥

denote the set of all points collinear with p, and write p⊥⊥ for the set of all points that are not
opposite p.

An ovoid of Γ is a set O of mutually opposite points such that every element x ∈ P ∪ L is
at distance at most 3 from some element of O. The dual notion of an ovoid is a spread.

A subhexagon of Γ is a subgeometry Γ′ that is itself a generalised hexagon. A subhexagon
Γ′ is full if every point of Γ incident with a line of Γ′ belongs to Γ′, and large if every element
of Γ is at distance at most 3 from some element of Γ′. The dual notion to a full subhexagon is
an ideal subhexagon.

1.2 Domestic automorphisms of generalised hexagons

We now recall the known results concerning domesticity in hexagons. Firstly, it is easy to see that
no duality of a thick hexagon is domestic (see [4, Theorem 2.7]). If θ is a domestic collineation of
a thick hexagon Γ then there are three possibilities. If θ maps no point (respectively no line) to
an opposite point (respectively line) then θ is called point-domestic (respectively line-domestic).
The third possibility is that θ maps both points and lines to opposite points and lines, yet
maps no chamber (that is, incident point-line pair) to an opposite. Such a collineation is called
exceptional domestic.

Exceptional domestic collineations are extremely rare, and have been completely classified
for finite (that is |P|, |L| <∞) thick hexagons.

Theorem 1.1 ([4, Corollary 2.11]). If a finite thick (not necessarily Moufang) hexagon with
parameters (s, t) admits an exceptional domestic collineation then (s, t) ∈ {(2, 2), (2, 8), (8, 2)}.
Moreover, for each hexagon with these parameters there exists a unique exceptional domestic
collineation up to conjugation, and these collineations have order 4.

Moreover, the possibility of exceptional domestic collineations of infinite Moufang hexagons
was also eliminated in [4] (see [11] for the definition of the Moufang condition).

Theorem 1.2 ([4, Theorem 2.14]). No infinite Moufang hexagon admits an exceptional domestic
collineation.
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Theorems 1.1 and 1.2 prove Theorem 1(3), and so the classification of domestic collineations
of Moufang hexagons is reduced to the classification of collieations that are either point-domestic
or line-domestic. The following theorem shows that such collineations are characterised by their
fixed element structures. This gives an important guiding framework for our classification of
domestic collineations of Moufang hexagons.

Theorem 1.3 ([4, Theorems 2.7 and 2.8]). A nontrivial collineation θ of a thick generalised
hexagon is point-domestic if and only if its fixed element structure is either a ball of radius 3 in
the incidence graph centred at a line, a large full subhexagon, or an ovoid. Dually, a nontrivial
collineation θ of a thick generalised hexagon is line-domestic if and only if its fixed element
structure is either a ball of radius 3 in the incidence graph centred at a point, a large ideal
subhexagon, or a spread.

1.3 Moufang hexagons and hexagonal systems

Let Γ = (P,L) be a Moufang hexagon. Let A0 be a fixed choice of apartment (an ordinary
hexagon), and let C0 = {p0, L0} be a fixed choice chamber of A0. Let G = G(Γ) denote the
full collineation group of Γ. Let B denote the stabiliser of C0, and let N denote the (set-wise)
stabiliser of A0. Then (B,N) is a split BN -pair in G with Weyl group W = 〈s1, s6 | s21 =
s26 = (s1s6)

6 = e〉 the dihedral group of order 12 (see [11, (33.4)]). Let U1, . . . , U12 denote the
root subgroups associated to A0 (as in [11]), and let U = 〈U1, . . . , U6〉 denote the subgroup
of G generated by the positive root subgroups. Then B = H n U , where H = B ∩ N is the
element-wise stabiliser of A0. Let w0 = s1s6s1s6s1s6 = s6s1s6s1s6s1 denote the longest element
of W .

The Moufang hexagons are determined (up to isomorphism) by the commutator relations
that hold amongst the root subgroups in U . In [11] this classiciation is given in terms of
the following algebraic structures. An hexagonal system is a triple (J,F,#), where F is a
commutative field, J is a vector space over F, and # : J → J is a function called the adjoint
satisfying various axioms (see [11, (15.15)]). There is a unique element 1 ∈ J\{0} with 1# = 1
and we identify F with the subset {t1 | t ∈ F} of J. The map # determines a function N : J→ F
(called the norm), a symmetric bilinear form T : J× J→ F (called the trace), and a symmetric
bilinear map × : J× J→ J. These maps satisfy various properties, including the following (for
a, b, c ∈ J and t ∈ F; see [11, (15.15), (30.4)]): N(1) = 1, T(1) = 3, (ta)# = t2a#, N(ta) = t3N(a),
a× a = 2a#,

(a+ b)# = a# + (a× b) + b#, T(a× b, c) = T(a, b× c), T(a, a#) = 3N(a)

a = T(a)− 1× a N(a#) = N(a)2 a## = N(a)a.

The simplest examples are the hexagonal systems (F,F,#) with F any field and a# = a2

(and then N(a) = a3, T(a, b) = 3ab, and a×b = 2ab), and the hexagonal systems (E,F,#) where
E/F is a separable cubic extension and a# = aσaσ

2
with σ a nontrivial element of Gal(L/F)

where L/F is the normal closure of E/F (and then N(a) = aaσaσ
2
, T(a, b) = ab+ aσbσ + aσ

2
bσ

2
,

and a× b = aσbσ
2

+ aσ
2
bσ). The complete list of hexagonal systems is given in [11, (15.14)].

By a subhexagonal system of (J,F,#) we shall mean a triple (J′,F,#) with J′ a subspace of
J closed under # (such systems are called substructures in [11]).

By the classification of Tits and Weiss [11, Theorem 17.5] every Moufang hexagon arises from
an hexagonal system (J,F,#) via the construction in [11, (16.8)]. The nontrivial commutator
relations amongst the groups U1, . . . , U6 are as follows (where [g, h] = g−1h−1gh and a, b ∈ J
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and t, u ∈ F; see [11, (16.8)])

[x1(a), x3(b)] = x2(T(a, b)) (1.1)

[x3(a), x5(b)] = x4(T(a, b)) (1.2)

[x1(a), x5(b)] = x2(−T(a#, b))x3(a× b)x4(T(a, b#)) (1.3)

[x2(t), x6(u)] = x4(tu) (1.4)

[x1(a), x6(t)] = x2(−tN(a))x3(ta
#)x4(t

2N(a))x5(−ta). (1.5)

We have Ui = 〈xi(a) | a ∈ J〉 if i is odd, and Ui = 〈xi(t) | t ∈ F〉 if i is even. Each Ui is abelian
and xi(a)xi(b) = xi(a + b) (for a, b ∈ J if i is odd, and a, b ∈ F if i is even). Note that U4 is
central in U , and that U3 is central in U if and only if the bilinear form T(·, ·) is identically zero.

It will be convenient to divide Moufang hexagons into the following classes.

(H1) The G2-hexagons associated to the Chevalley group G2(F) with charF 6= 3. These are
associated to hexagonal systems (F,F,#) of type 1/F from [11, (15.20)] with charF 6= 3,
where a# = a2 for all a ∈ F.

(H2) The D4-hexagons associated to Tits indices 3D2
4,2 and 6D2

4,2. These correspond to the
hexagonal systems (E,F,#) of type 3/F from [11, (15.21)] with E/F a separable cubic
extension (normal for 3D2

4,2 and not normal for 6D2
4,2), and a# = aσaσ

2
with σ a nontrivial

element of Gal(L/F), with L/F the normal closure of E/F. We shall abbreviate the notation
3D2

4,2 to 3D4 and 6D2
4,2 to 6D4.

(H3) The type E-hexagons associated to Tits indices 1E16
6,2,

2E16′′
6,2 , and E78

8,2. These correspond

to the hexagonal systems of type 9/F (for 1E16
6,2), 9K/F (for 2E16′′

6,2 ), 27/F, and 27K/F from
[11, (15.22), (15.29), (15.31), (15.34)]. We will recall some basic properties of hexagonal
systems of type 9/F and 9K/F in Section 2.3. It will turn out that we do not require any
detailed information on systems of type 27/F or 27K/F.

(H4) The mixed hexagons associated to the hexagonal systems (E,F,#) where charF = 3 and
either E = F or E/F is a (necessarily purely inseparable) field extension with E3 ⊆ F ⊆ E,
where a# = a2 for all a ∈ E. These correspond to the hexagonal systems of type 1/F
from [11, (15.20)] with charF = 3 (note that this class includes hexagons associated to the
Chevalley group G2(F) with charF = 3).

From the classification, if (J,F,#) is an hexagonal system not in class (H4) then dim J ∈
{1, 3, 9, 27}. We note that in classes (H1), (H2) and (H4) the vector space J has the additional
algebraic structure of a field. Moreover, in an hexagonal system (J,F,#) of type 9/F the vector
space J has the structure of a (noncommutative) cyclic division algebra of degree three with
centre F.

We shall fix the duality class of a Moufang hexagon throughout this paper as follows.

Convention 1.4. If Γ is associated to the hexagonal system (J,F,#) then the points on a line
are indexed by {∞} ∪ F, and the lines through a point are indexed by {∞} ∪ J.

Thus, in particular, class (H1) consists precisely of the dual split Cayley hexagons over fields
of characteristic different from 3, while the dual split Cayley hexagons over fields of character-
istic 3 are a subset of class (H4). We refer to the root subgroups Ui with i odd (respectively i
even) as the short (respectively long) root subgroups. The short (respectively long) root elations
are the conjugates of elements of Ui with i odd (respectively i even).

For a ∈ J\{0} let
a−1 = N(a)−1a#.
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Following [11, (32.12)], for a ∈ J\{0} and t ∈ F\{0} let

s1(a) = x7(a
−1)x1(a)x7(a

−1) and s6(t) = x12(t
−1)x6(t)x12(t

−1),

and so s1(a) 7→ s1 and s6(t) 7→ s6 under the homomorphism N → N/H = W . In particular
Hs1(a) = s1(a)H = s1(1)H and Hs6(t) = s6(t)H = s6(1)H for all a ∈ J\{0} and t ∈ F\{0}.
We will sometimes write si in place of si(1), i = 1, 6, when there is no risk of ambiguity, however
as we show below the elements si(1) are not involutions (unless charF = 2), and instead they
have order 4.

Writing gh = hgh−1 we have (see [11, (29.35), (32.12)]; note that our convention for gh differs
from [11], and is chosen as we often need to move a si(·) past an xj(·) term from left to right –
thus the formulae from [11] have been modified accordingly):

x1(b)
s1(a) = x7(T(a−1, b)a−1 − (a−1)# × b) x1(a)s6(t) = x5(ta)

x2(t)
s1(a) = x6(t/N(a)) x2(u)s6(t) = x4(−tu)

x3(b)
s1(a) = x5(−a−1 × b+ N(a)−1T(a, b)a) x3(a)s6(t) = x3(a)

x4(t)
s1(a) = x4(t) x4(u)s6(t) = x2(t

−1u)

x5(b)
s1(a) = x3(a× b− N(a)T(a−1, b)a−1) x5(a)s6(t) = x1(−t−1a)

x6(t)
s1(a) = x2(−tN(a)) x6(u)s6(t) = x12(t

−2u).

In particular, note that si(1)xj(a)si(1)−1 = x2i+6−j(εija) for i ∈ {1, 6} and j ∈ {1, 2, 3, 4, 5, 6}
(with a ∈ J for j odd and a ∈ F for j even), where εij ∈ {−1, 1} and the index 2i+ 6− j is read
cyclically to lie between 1 and 12. It is convenient to record the signs εij in the following table
(with i indexing rows, and j indexing columns):

εij 1 2 3 4 5 6

1 1 1 1 1 −1 −1

6 1 −1 1 1 −1 1

(1.6)

It follows from (1.6) that s4ixj(a)s−4i = xj(a) for i ∈ {1, 6} and 1 ≤ j ≤ 6, and so s41 = s46 = 1.
For example,

s41x6(t)s
−4
1 = s31x2(−t)s−31 = s21x6(−t)s−21 = s1x2(t)s

−1
1 = x6(t)

(however note that s21x6(t)s
−2
1 = x6(−t) and so s21 6= 1 unless charF = 2).

We record some further formulae for later use. Using the definition of s1(a) and s6(t) we
have (for a ∈ J and t ∈ F)

x1(a) = x7(−a−1)s1(a)x7(−a−1) (1.7)

x6(t) = x12(−t−1)s6(t)x12(−t−1). (1.8)

By [11, (32.12)] we have

[x2(t), x7(a)] = x3(ta)x4(−t2N(a))x5(ta
#)x6(−tN(a))

[x3(b), x7(a)] = x4(−T(a, b#))x5(a× b)x6(−T(a#, b))

[x5(b), x7(a)] = x6(−T(a, b))

[x12(t), x4(u)] = x2(tu)

[x12(t), x5(a)] = x1(−ta)x2(−t2N(a))x3(−ta#)x4(−tN(a))

(1.9)

and [xi(c), x7(a)] = 1 for i ∈ {4, 6}, and [x12(t), xi(c)] = 1 for i ∈ {1, 2, 3}.
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1.4 Parabolic subgroups and coordinatisation

By Convention 1.4, in the Dynkin diagram 1 6• • the points of Γ are the type 6 objects, and
the lines of Γ are the type 1 objects (here S = {1, 6}). Thus the points of Γ are in bijection
with the cosets G/P1, where P1 is the parabolic subgroup P1 = B ∪Bs1B (note: in the general
building setup, the vertices of type j correspond to the cosets of the parabolic subgroup PS\{j},
and in this case S\{6} = {1}). Similarly the lines are in bijection with the cosets G/P6 with
P6 = B ∪Bs6B. Thus the points of Γ are

P1, x6(t)s6P1, x1(a)x2(t)s1s6P1, x6(t)x5(a)x4(t
′)s6s1s6P1,

x1(a)x2(t)x3(a
′)x4(t

′)s1s6s1s6P1, x6(t)x5(a)x4(t
′)x3(a

′)x2(t
′′)s6s1s6s1s6P1

with t, t′, t′′ ∈ F and a, a′ ∈ J, and analogously for lines.
Points gP1 and hP1 are at distance 0, 2, 4, 6 (in the incidence graph) if and only if

P1g
−1hP1 = P1, P1s6P1, P1s616P1, P1s61616P1, (1.10)

respectively (where, for example, s616 = s6s1s6). Dual statements apply for lines. The point
gP1 and the line hP6 are incident if and only if gP1 ∩ hP6 6= ∅.

Abbreviating notation in the obvious way, the points of Γ are given by all n-tuples (1 ≤ n ≤ 5)
in the sets F, J× F, F× J× F, J× F× J× F, F× J× F× J× F together with a point labelled
(∞) (corresponding to P1). The lines are given by the n-tuples (1 ≤ n ≤ 5) in the sets J, F× J,
J × F × J, F × J × F × J, J × F × J × F × J, denoted with square brackets to distinguish from
points, together with a line labelled [∞] (corresponding to P6). This notation, along with the
equations below determining the incidence relation, is called a coordinatisation of Γ. The split
Cayley hexagons and the triality hexagons are coordinatised in [12, Chapter 3], and we extend
this coordinatisation to general Moufang hexagons in the following theorem.

Theorem 1.5. Let t, t′, t′′, u, u′ ∈ F and a, a′, b, b′, b′′ ∈ J. The incidence relation ∗ between
points and lines is given by

(t, a, t′, a′, t′′) ∗ [t, a, t′, a′] ∗ (t, a, t′) ∗ [t, a] ∗ (t) ∗ [∞]∗
(∞) ∗ [b] ∗ (b, u) ∗ [b, u, b′] ∗ (b, u, b′, u′) ∗ [b, u, b′, u′, b′′],

and (t, a, t′, a′, t′′) ∗ [b, u, b′, u′, b′′] if and only if

u = t′′ + tN(b)− T(a′, b) + T(a, b#) (1.11)

b′ = a′ − (a× b)− tb# (1.12)

u′ = t′ + t2N(b)− tt′′ + tT(a, b#) + T(a#, b)− T(a, a′) (1.13)

b′′ = a+ tb. (1.14)

if and only if

a = b′′ − tb (1.15)

t′ = u′ + t2N(b) + ut− tT(b′′, b#) + T(b′, b′′) + T(b′′#, b) (1.16)

a′ = b′ + b× b′′ − tb# (1.17)

t′′ = u− tN(b) + T(b, b′) + T(b′′, b#). (1.18)
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Proof. All relations are clear with the exception of the relation (t, a, t′, a′, t′′) ∗ [b, u, b′, u′, b′′].
Writing g1 = x6(t)x5(a)x4(t

′)x3(a
′)x2(t

′′) and g2 = x1(b)x2(u)x3(b
′)x4(u

′)x5(b
′′), the point

(t, a, t′, a′, t′′) = g1w0P1 is on the line [b, u, b′, u′, b′′] = g2w0P6 if and only if

w−10 g−12 g1w0P1 ∩ P6 6= ∅.

Thus if g−12 g1 = u6u5u4u3u2u1 with ui ∈ Ui it follows that (t, a, t′, a′, t′′) ∗ [b, u, b′, u′, b′′] if and
only if u5 = u4 = u3 = u2 = 1.

We have g−12 g1 = x5(−b′′)x4(−u′)x3(−b′)x2(−u)x1(−b)x6(t)x5(a)x4(t
′)x3(a

′)x2(t
′′), and we

use the commutator relations to write this element in U6U5U4U3U2U1 form. Noting that U4 is
central in U , we shall, for convenience, move all U4 terms temporarily to the far right during
the working. Moving the x6(t) term to the left requires commutator relations (1.5) and (1.4) to
move the term past x1(−b) and x2(−u), and we obtain

g−12 g1 = x6(t)x5(−b′′)x3(−b′)x2(−u)x1(−b)x2(tN(b))x3(tb
#)x5(a+ tb)x3(a

′)x2(t
′′)x4(z1)

with z1 = t′ − u′ − t2N(b)− tu. Now, since U2 commutes with all root subgroups Ui with i 6= 6,
we shall temporarily move all U2 terms to the right, and record them next to the U4 term, giving

g−12 g1 = x6(t)x5(−b′′)x3(−b′)x1(−b)x3(tb#)x5(a+ tb)x3(a
′)x2(y1)x4(z1)

where y1 = t′′ − u+ tN(b). We now move the term x5(a+ tb) to the left. Invoking commutator
relation (1.2), followed by (1.3), and then (1.2) again, we obtain

g−12 g1 = x6(t)x5(−b′′)x3(−b′)x1(−b)x5(a+ tb)x3(tb
#)x3(a

′)x2(y1)x4(z2)

= x6(t)x5(−b′′)x3(−b′)x5(a+ tb)x1(−b)x3(−b× (a+ tb))x3(tb
# + a′)x2(y2)x4(z3)

= x6(t)x5(a− b′′ + tb)x3(−b′)x1(−b)x3(tb# + a′ − a× b− t(b× b))x2(y2)x4(z4)

where z2 = z1 + tT(a, b#) + t2T(b, b#), z3 = z2 − T(b, (a + tb)#), y2 = y1 − T(b#, a + tb),
and z4 = z3 + T(a + tb,−b′). Since b × b = 2b# the second coefficient of x3(·) simplifies to
a′− a× b− tb#, and we then move the x3(a

′− a× b− tb#) term past x1(−b), using (1.1), giving

g−12 g1 = x6(t)x5(a− b′′ + tb)x3(−b′)x3(a′ − a× b− tb#)x1(−b)x2(y3)x4(z4)
= x6(t)x5(a− b′′ + tb)x4(z4)x3(a

′ − b′ − a× b− tb#)x2(y3)x1(−b)

with y3 = y2−T(b, a′−a×b− tb#). This is now in U6U5U4U3U2U1 form, and after simplification
we obtain y3 = t′′ − u+ tN(b) + T(a, b#)− T(a′, b) and

z4 = t′ − u′ − t2N(b)− tu− tT(a, b#)− T(a#, b)− T(a, b′)− tT(b, b′).

Equations (1.11), (1.12), and (1.14) now follow (from the conditions u2 = u3 = u5 = 1), and
moreover z4 = 0 (since u4 = 1). Using (1.11) and (1.12) to eliminate u and b′ from the equation
z4 = 0 yields (1.13).

To derive the equations (1.15)–(1.18), reverse the order of the first set of equations and
rearrange the expressions to give expressions for a, t′, a′, t′′. Now substitute to find expressions
for a, t′, a′, t′′ in terms of t, b, u′, b′, u′, b′′.

Commutator relations are used extensively in this paper (in particular in Section 2.3), and
we shall often give less details than in the above proof.
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2 Domestic collineations of Moufang Hexagons

Recall from Theorem 1.3 that a collineation of a thick hexagon is point-domestic if and only
if the fixed element structure of is either a ball of radius 3 in the incidence graph centred at
a line, a large full subhexagon, or an ovoid (and dually for line-domestic collineations). We
consider each case in turn in Sections 2.1, 2.2, and 2.3, culminating in the proof of Theorem 1
in Section 2.4.

2.1 Balls of radius three in the incidence graph

Let Γ be a Moufang hexagon, with Convention 1.4 in force.

Lemma 2.1. A collineation θ of a Moufang hexagon fixes precisely a ball of radius 3 in the
incidence graph centred at a point if and only if θ is conjugate to x4(1).

Proof. Suppose that θ fixes a ball of radius 3 centred at a point. After conjugating, we may
assume that the centre of the fixed ball is the point P1 (in the notation of Section 1.4). In
the BN -pair language, the hypothesis of the lemma gives that θ fixes each chamber gB with
g ∈ B∪Bs1B∪Bs6B∪Bs1s6B∪Bs6s1B∪Bs1s6s1B. In particular, θB = B, giving θ ∈ B. Thus
θ = hu with h ∈ H and u ∈ U . Write u = x1(a)x2(t)x3(a

′)x4(t
′)x5(a

′′)x6(t
′′) with a, a′, a′′ ∈ J

and t, t′, t′′ ∈ F. For each z ∈ J the chamber x1(z)s1B is fixed, and so by commutator relations
x1(z)s1B = θx1(z)s1B = hx1(a + z)s1B, giving hx1(a + z)h−1 = x1(z) for all z ∈ J. Taking
z = 0 gives x1(a) = h−1x1(0)h = 1 and so a = 0, and then hx1(z)h

−1 = x1(z) for all z ∈ J gives
h ∈ C(U1) (the centraliser of U1).

Similarly we have x6(u)s6B = θx6(u)s6B = hx6(t
′′ + u)s6B for all u ∈ F, and as above

this implies that t′′ = 0 and that h ∈ C(U6). Since h fixes a subhexagon (as it fixes an
apartment) and h ∈ C(U1) ∩ C(U6) it follows from [12, Corollary 1.8.5] that h is the identity.
Thus θ = x2(t)x3(a

′)x4(t
′)x5(a

′′). Continuing in this way, since the chamber x1(0)x2(u)s1s6B
(u ∈ F) is fixed by θ, we have t = 0. Similarly since the chamber x6(0)x5(z)s6s1B (z ∈ J) is
fixed by θ we have a′′ = 0. So θ = x3(a

′)x4(t
′), and since the chamber x1(0)x2(0)x3(z)s1s6s1B

(z ∈ J) is fixed we have a′ = 0. Thus θ = x4(t
′), and this is conjugate to x4(1) by an element

of H.
Conversely, it is easy to check that x4(1) fixes precisely a ball of radius 3 in the incidence

graph centred at a point.

Lemma 2.2. There exists a collineation of a Moufang hexagon Γ fixing precisely a ball of
radius 3 in the incidence graph centred at a line if and only if Γ is in class (H4), and in this
case all such collineations are conjugate to x3(1).

Proof. After conjugating we may assume that θ fixes a ball of radius 3 centred at the line P6.
Thus θ fixes each chamber gB with g ∈ B ∪ Bs1B ∪ Bs6B ∪ Bs1s6B ∪ Bs6s1B ∪ Bs6s1s6B.
As in Lemma 2.1 we see that θ = x3(a)x4(t) for some a ∈ J and t ∈ F. Since the chamber
x6(0)x5(0)x4(u)s6s1s6B (u ∈ F) is fixed we see that θ = x3(a). Moreover, since the chamber
x6(0)x5(z)x4(0)s6s1s6B (z ∈ J) is fixed by θ, the commutator relations give

x5(z)s6s1s6B = x3(a)x5(z)s6s1s6B = x5(z)x4(T(a, z))s6s1s6B.

Thus T(a, z) = 0 for all z ∈ J, and so T(·, ·) is degenerate (as a 6= 0, otherwise θ = 1). By [11,
(30.5)] this forces Γ to be in class (H4). Then θ = x3(a) with T(a, z) = 0 for all z ∈ J. This
element fixes the ball B ∪Bs1B ∪Bs6B ∪Bs1s6B ∪Bs6s1B ∪Bs6s1s6B. By the commutator
relations θ is central in U , and θ is conjugate to x3(1).

9



Thus we have determined all (necessarily domestic) collineations fixing preciesly a ball of
radius 3 in the incidence graph.

2.2 Large full or ideal subhexagons

We now turn to the possibility of collineations fixing large full (or ideal) subhexagons. We first
recall the definition of regularity in hexagons (c.f. [12, §1.9]). Let x, y ∈ P ∪ L be opposite
elements of the hexagon Γ (so x, y are either both points, or both lines). For i = 2, 3 the
distance-i-trace associated to {x, y} is Γi(x) ∩ Γ6−i(y) (where Γi(x) denotes the set of objects
at distance i from x in the incidence graph of Γ). The element x is called distance-i-regular if
distinct distance-i-traces Γi(x)∩Γ6−i(y) and Γi(x)∩Γ6−i(y

′) (with y, y′ opposite x) have at most
one element in common. The element x is regular if it is distance-i-regular for i = 2, 3. If all
points of Γ are distance-i-regular (respectively, regular) then we say that Γ is point-distance-i-
regular (respectively, point-regular). Dually, if all lines of Γ are distance-i-regular (respectively,
regular) then we say that Γ is line-distance-i-regular (respectively, line-regular).

We record the following facts.

Proposition 2.3. Let Γ be a Moufang hexagon, with Convention 1.4 in force.
(1) If Γ is in class (H1), (H2) or (H3) then Γ is line-regular but not point-regular.
(2) If Γ is in class (H4) then Γ is both point-regular and line-regular.

Proof. By [9] (see also [12, Theorem 6.3.2]) in any Moufang hexagon either all points are reg-
ular, or all lines are regular (or both). Moreover, since the regularity property is preserved on
restriction to subhexagons, it follows from [12, Corollary 3.5.11] that for the hexagons in classes
(H1), (H2), and (H3) (with Convention 1.4 in force) the lines are regular and the points are not
regular, hence (1). Then (2) follows from [12, Corollary 5.5.15].

We now return to the possibility of collineations fixing large full (or ideal) subhexagons. We
first consider the mixed hexagons, class (H4).

Lemma 2.4. A full or ideal subhexagon of a mixed Moufang hexagon Γ is never the fixed point
structure of an automorphism of Γ.

Proof. Let Γ′ be a full suhexagon of a mixed hexagon Γ with hexagonal system (E,F,#). Then
either Γ′ is nonthick, or it is isomorphic to a mixed hexagon with hexagonal system (E′,F,#)
for some field E′ ≤ E. We claim that if Γ′ is fixed by θ then θ is the identity. Clearly it
suffices to prove the result for the case that Γ′ is nonthick (for this is a subhexagon of the thick
subhexagons). Let θ be a collineation of Γ pointwise fixing Γ′. Let p be an arbitrary point of Γ′

and x ⊥ p an arbitrary point of Γ collinear to p not belonging to Γ′. Pick two points z1 and z2
opposite p but not opposite x and such that z⊥⊥1 ∩ p⊥ 6= z⊥⊥2 ∩ p⊥ (it does not matter whether
one reads this inside Γ or Γ′). The point-distance-2 regularity of Γ (see Proposition 2.3) implies
that z⊥⊥1 ∩ p⊥ ∩ z⊥⊥2 ∩ p⊥ = {x}. On the other hand it also implies that z⊥⊥i ∩ p⊥ = (zθi )

⊥⊥ ∩ p⊥ for
i = 1, 2 (since θ fixes the two points of z⊥⊥i ∩ p⊥ in Γ′). It follows that xθ = x and so every point
collinear to p is fixed, implying that the fixed point structure of θ is a full and ideal subhexagon,
and hence has to coincide with Γ by [12, Proposition 1.8.2]. Hence θ is the identity. The dual
argument applies due to line-distance-2-regularity of Γ (see Proposition 2.3).

Now we consider the situation where Γ is a D4-hexagon or a type E-hexagon (classes (H2)
and (H3)). Let F be the underlying field and (J,F,#) the corresponding hexagonal system. Let
Γ′ be a full subhexagon. Since every subhexagon of a Moufang hexagon is again Moufang (see,
for example, [12, Lemma 5.2.2]) the hexagon Γ′ corresponds to an hexagonal system (J′,F,#),
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with J′ a subspace of J. Since J and J′ are vector spaces over F, they need to have a different
dimension if Γ′ 6= Γ. We first determine the pairs (J, J′) for which Γ′ is large in Γ.

Proposition 2.5. Let Γ be a Moufang hexagon in class (H2) or (H3) with hexagonal system
(J,F,#). Let Γ′ be a full subhexagon of Γ and let (J′,F,#) be the associated hexagonal system
with J′ ⊆ J (here we shall allow dim J′ = 0 if Γ′ is non-thick). Then Γ′ is large in Γ if and only
if dim J = 3 and J′ = F.

Proof. The dimension of Γ as an algebraic variety over F is equal to dim Γ = 3 + 2 dim J.
The dimension of Γ′ is dim Γ′ = 3 + 2 dim J′, whereas the dimension of a point perp equals
dim p⊥ = 1 + dim J. If Γ′ is large in Γ, then every point of Γ is in the perp of some point of Γ′

and so dim Γ ≤ dim Γ′ + dim p⊥, yielding dim J ≤ 1 + 2 dim J′. Since the possible dimensions of
J and J′ are 0, 1, 3, 9 and 27, and dim J ≥ 3, this implies (dim J,dim J′) = (3, 1). We now show
that this condition is also sufficient.

We use the coordinatisation of Γ given in Theorem 1.5. For now we do not place any
restrictions on J and J′. The subhexagon Γ′ is given by restricting J to J′ in each of the
coordinates associated to the short roots. A generic point outside Γ′ is given by (t, a, t′, a′, t′′),
but by applying appropriate long root elations inside Γ′ we can assume that t = t′ = t′′ = 0.
Hence Γ′ is large in Γ if and only if, for all (a, a′) ∈ (J × J) \ (J′ × J′), there is some point q of
Γ′ collinear to the point p := (0, a, 0, a′, 0).

If a ∈ J′, then (0, a, 0) ∈ p⊥∩Γ′, and so we may assume that a ∈ J\J′. By equations (1.11)–
(1.14) the lines incident with p are the lines

L(b) = [b,−T(a′, b) + T(a, b#), a′ − (a× b),−T(a#, b)− T(a, b′), a]

with b ∈ J. Thus we must find a point q of Γ′ on such a line L(b). There are two scenarios.

Scenario 1: Suppose there is b ∈ J′ such that a′ − (a× b) ∈ J′. Then we may take

q = (b,−T(a′, b) + T(a, b#), a′ − (a× b),−T(a#, b)− T(a, b′)).

The point q is in Γ′ and lies on L(b) as required.

Scenario 2: Suppose there is b ∈ J′ and u ∈ F such that a − ub ∈ J′ and a′ − ub# ∈ J′. Then
by (1.15)–(1.18) the point

q = (u, a− ub, u′, a′ − ub#, u′′)

(for any u′, u′′ ∈ F) is in Γ′ and lies on L(b) as required.

Thus it suffices to show that in the case dim J = 3 and J′ = F at least one of the above
scenarios always occurs (given any a ∈ J\J′ and a′ ∈ J). Assume first that 1, a, a′ are linearly
dependent, and so a′ = λa+ µ with λ, µ ∈ F. In this case, taking b = −λ we have

a′ − (a× b) = λa+ µ+ a× λ = λa+ µ+ λ(aσ + aσ
2
) = λT(a) + µ ∈ F,

and so we are in the first scenario.
Assume now that 1, a, a′ are linearly independent. Since dim J = 3 there exist α, β, γ ∈ F with

aσaσ
2

= αa′ + βa+ γ. We have α 6= 0 (for otherwise aσaσ
2

= βa+ γ implies that βa2 + γa ∈ F,
and so a lies in a quadratic extension of F, a contradiction). Choose b = α−1(a+ β) and u = α.
Then a− ub = −β ∈ F, and we compute

a′ − ub# = −α−1βT(a)− α−1γ − α−1β2 ∈ F,

and so we are in scenario 2, completing the proof.
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Theorem 2.6. Let Γ be a Moufang hexagon, with Convention 1.4 in force.
(1) Γ does not admit a domestic collineation pointwise fixing precisely a large ideal subhexagon.
(2) Γ admits a collineation θ pointwise fixing precisely a large full subhexagon if and only if Γ

is either:
(a) a dual split Cayley hexagon over a field F with charF 6= 3 and X2 +X + 1 reducible

over F. In this case there is a unique class of nontrivial collineations fixing a large
full subhexagon, with each such collineation having order 3.

(b) a triality hexagon of type 3D4 in which case θ is induced by a nontrivial element of
the Galois group, and hence θ has order 3.

Proof. (1) Theorem 5.9.11 of [12] implies that the Moufang hexagons in Classes (H2) and (H3)
have no thick ideal subhexagons, and in particular no large ones. By [7, Theorem 6.10] no
hexagon in class (H1) admits a domestic automorphism fixing a large ideal subhexagon, and
Lemma 2.4 eliminates the possibility for hexagons in class (H4).

(2) The statements for the split Cayley hexagons follow from the classification in [7, The-
orem 6.10]. Thus suppose that Γ is not of class (H1). If Γ admits a collineation pointwise
fixing precisely a large full subhexagon then by Proposition 2.5 Γ belongs to the class (H2). It
is clear that if θ pointwise fixes a dual split Cayley subhexagon Γ′, then the action on a point
row is essentially a field automorphism (since the Moufang set structure of the point row is
preserved by θ, it induces an element of PΓL2(J), with J the cubic extension of F in question;
this follows from a result of Hua [2], see also [12, Lemma 8.5.10]). Since the only subhexagon
strictly containing Γ′ is Γ (in view of the dimension of the corresponding Jordan algebra), θ as
a whole is determined by the field automorphism. Since the Galois group is trivial in the 6D4

case, Γ must be of type 3D4. Since the fixed element set of a nontrivial element θ of the Galois
group is precisely a dual split Cayley hexagon, and since this subhexagon is large and full by
Proposition 2.5, it follows from Theorem 1.3 that θ is domestic.

2.3 Ovoids and spreads

We now turn to the possibility of collineations fixing ovoids or spreads.

Theorem 2.7. If Γ is a Moufang hexagon with regular points, then no nontrivial collineation
fixes an ovoid.

Proof. Let O be an ovoid of Γ fixed by some collineation θ. We show that θ is necessarily
the identity. Indeed, choose p, q ∈ O, p 6= q. There is a unique non-thick ideal subhexagon Γ′

containing p and q (see [12, Lemma 1.9.10]). Let p∗Li∗ri∗Mi∗si∗Ki∗q, i = 1, 2, be two distinct
paths joining p with q. Then we select an arbitrary line M3 through r1, M3 /∈ {L1,M1}. Let s3
be the unique point of Γ′ on M3 distinct from r1. Let r be the unique member of O collinear
to s3. Then r does not belong to Γ′ since it would otherwise not be opposite q (by non-thickness
of Γ′). Hence r⊥⊥ ∩ p⊥ contains r1 but not r2. Since θ fixes p, q, r, it fixes p⊥ ∩ q⊥⊥ ∩ r⊥⊥ = {r1}
(by regularity of points). Hence θ fixes L1. It is now easy to see that there are points of O at
distance 3 from every line meeting L implying that θ pointwise fixes a full and ideal subhexagon,
and hence is the identity by [12, Proposition 1.8.2].

Corollary 2.8. The hexagons in classes (H1), (H2) and (H3) do not admit collineations whose
fixed element set is a spread, and those in class (H4) do not admit collineations whose fixed
element set is either an ovoid or a spread.

Proof. This follows from Proposition 2.3 and Theorem 2.7.
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We must determine whether the hexagons in class (H1), (H2) and (H3) admit collineations
fixing ovoids. In [7, Theorem 6.10] we proved that for class (H1) such an automorphism exists
if and only if X2 + X + 1 is irreducible over F, and so it remains to consider the classes (H2)
and (H3).

An automorphism of an hexagonal system (J,F,#) is a vector space isomorphism h : J→ J
such that h# = #h (see [11, (15.17)]). In particular, if h is an hexagonal system automorphism
then (ta#)h = tah#, T(ah, bh) = T(a, b), N(ah) = N(a), and (a × b)h = ah × bh for all t ∈ F
and a, b ∈ J. Each hexagonal system automorphism h : J → J may also be regarded as an
automorphism h ∈ G of the associated Moufang hexagon in the natural way. Since h fixes the
base apartment we have h ∈ H, and

hxi(c)h
−1 = xi(c

h) (2.1)

for all 1 ≤ i ≤ 12, where c ∈ J for odd i, and c ∈ F for even i.
Theorems 2.9 and 2.10 below give the main tools to complete our analysis of collineations

fixing ovoids. In these theorems we will make repeated use of the formulae listed in Section 1.3.

Theorem 2.9. Let Γ be a Moufang hexagon with hexagonal system (J,F,#). Suppose that there
exists a nontrivial point-domestic collineation θ of Γ fixing an ovoid O. Then θ is conjugate to
an element θ = hx1(1)s1 with h : J→ J an hexagonal system automorphism. Moreover

(1) h3 = 1 and θ has order 3;
(2) T(a) = a+ ah + ah

2
and T(a#) = T(a, ah) for all a ∈ J;

(3) the equation z = 1− z−h has no solution z ∈ J\{0}.

Proof. Let P1 = B∪Bs1B be the parabolic subgroup as in Section 1.4, and so G/P1 is the point
set of Γ. Up to conjugation, we may assume that the points P1 and w0P1 are fixed by θ (as
|O| ≥ 2 and G acts strongly transitively on Γ). Then θP1 = P1 gives θ ∈ P1, and since θ /∈ B (or
else a chamber is fixed) we have θ = b1s1b2 with b1, b2 ∈ B. Conjugating further, we may assume
that θ = bs1. Then write b = hux1(c) with u ∈ U6U5U4U3U2 and h ∈ H with c ∈ J. Conjugating
by an element of H we may assume that c = 0 or c = 1. Now the fact that θ fixes w0P1 gives
w−10 hux1(c)s1w0 ∈ P1, which in turn gives w−10 uw0 ∈ P1. But w−10 uw0 ∈ U−6U−5U−4U−3U−2,
and it follows that u = 1. Thus θ = hx1(c)s1 for some h ∈ H and c ∈ {0, 1}.

We claim that c = 1. For if c = 0 then θ = hs1. Consider the chamber gB = x6(t)s6s1s6B
with t 6= 0. Then

Bg−1θgB = Bs616x6(−t)hs1x6(t)s616B = Bs616x6(−t)x2(t′)s1616B

for some t′ ∈ F\{0}. Since x6(−t)x2(t′) = x2(t
′)x6(−t)x4(tt′) = x2(t

′)x4(tt
′)x6(−t) we can move

x2(t
′) to the left, and x6(−t) to the right, where they are each absorbed into B. Thus

Bg−1θgB = Bs616x4(tt
′)s1616B = Bx12(±tt′)s16161B = Bw0B,

and so gB is mapped to an opposite chamber, a contradiction. Thus we have shown that, up to
conjugation, θ = hx1(1)s1 for some h ∈ H.

Define h : J→ J by
hx1(a)h−1 = x1(a

h) for a ∈ J.

We will show that h : J→ J is an hexagonal system automorphism, and that (2.1) holds. First
we show that for i ∈ {2, 4, 6} and t ∈ F we have hxi(t)h

−1 = xi(t). Consider the case i = 2. For
t ∈ F write h−1x2(t)h = x2(t

′). Let gP1 = x2(t)s1616P1. Then

P1g
−1θgP1 = P1s6161x2(−t)hx1(1)s1x2(t)s1616P1 = P1s6161x2(−t′)x1(1)x6(t)s616P1.
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One now uses commutator relations to push elements of U5 ∪ U6 to the left (where they move
past s6161, remain positive, and are absorbed into P1), and push elements of U1 ∪ U2 ∪ U3 to
the right (where they move past s616, remain positive, and are absorbed into P1). Using this
strategy, a short calculation gives

P1g
−1θgP1 = P1s6161x4(t(t− t′))s616P1.

If t(t − t′) 6= 0 then since s−1616x4(t(t − t′))s616 ∈ U∗12 we have P1g
−1θgP1 = P1s61616P1, and

so the point gP1 is mapped onto an opposite point, a contradiction. Thus t′ = t as required.
Very similar calculations apply for the cases i = 4, 6 by considering the points x4(t)s616P1 and
x6(t)s616P1, respectively.

We return to the proof that h : J→ J is an hexagonal system automorphism. It is clear from
the definition that h : J→ J is bijective with (a+ b)h = ah + bh, and since 0h = 0 (as h fixes the
base apartment) we have (−a)h = −ah. It follows from the commutator relation [x1(a), x6(t)],
and the fact that hxj(t)h

−1 = xj(t) for j ∈ {2, 4, 6} and t ∈ F, that hxi(a)h−1 = xi(a
h) for

all i ∈ {1, 3, 5} and a ∈ J. Then by equations (1.9) this extends to negative root groups too.
Moreover,

x2(−tN(a))x3((ta
#)h)x4(t

2N(a))x5((−ta)h) = [x1(a), x6(t)]
h

= [x1(a
h), x6(t)]

= x2(−tN(a))x3(ta
h#)x4(t

2N(ah))x5(−tah)

shows that (ta)h = tah for all t ∈ F and a ∈ J, and that a#h = ah# for all a ∈ J. Hence h : J→ J
is an hexagonal system automorphism and (2.1) holds.

Now, by assumption θ = hx1(1)s1 fixes an ovoid O. Since the point (∞) = P1 is fixed, all
other points of O are opposite the point P1. The points opposite P1 are of the form gP1 =
x6(t)x5(a)x4(u)x3(b)x2(v)s61616P1 with t, u, v ∈ F and a, b ∈ J, and a direct calculation with
commutator relations gives

θgP1 = hx1(1)s1x6(t)x5(a)x4(u)x3(b)x2(v)s61616P1

= hx1(1)x2(−t)x3(−a)x4(u)x5(b)x6(v)s61616P1

= x6(v)x5(b
h − v)x4(α)x3(β)x2(γ)s61616P1

where α = u−tv+v2−T(a, b)+T(b#)−vT(b), β = T(b)−v−bh−ah, and γ = −t+T(b)−v−T(a).
It follows from these equations that p = (t, a, u, b, v) is fixed by θ if and only if v = t, a = bh− t,
and

T(b, bh) = T(b#) (2.2)

T(b) = b+ bh + bh
2

(2.3)

T(bh) = T(b). (2.4)

Recall that an ovoid O has the property that each point of Γ is at distance at most 2 (in the
incidence graph) from a point of the ovoid. Consider the points (a1, t1, a2, t2) with a1, a2 ∈ J and
t1, t2 ∈ F. These points are at distance 4 from P1 = (∞), and hence must be at distance exactly
2 from one of the above fixed points of θ. Thus there is a line [a1, t1, a2, t2, a3] (with a3 ∈ J)
containing one of the above fixed points. The equations in Theorem 1.5 then imply that for each
a ∈ J there must be a fixed point (·, a, ·, ·, ·) ∈ O. This in turn implies that equations (2.2)–(2.4)
hold for all b ∈ J. Hence statement (2) of the theorem holds.
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Since T(a) = a+ah+ah
2

and T(ah) = T(a) for all a ∈ J we have a+ah+ah
2

= ah+ah
2
+ah

3
,

from which it follows that h3 = 1 (as an hexagonal system automorphism). Thus h3xi(c)h
−3 =

xi(c) for all i and c, and so h3 = 1 (as an element of G). Then

θ3 = h3x1(1)s1x1(1)s1x1(1)s1 = s1x7(1)x1(1)x7(1)s21 = s41

and so θ3 = 1 (as s41 = 1, as noted in Section 1.3), hence (1).
Finally, since θ fixes no lines it fixes no chambers. Consider the chamber gB = x1(z)s1B.

We have

θgB = hx1(1)s1x1(z)s1B = hx1(1)x7(z)B = hx1(1)x1(−z−1)s1B = x1(1− z−h)s1B.

Thus the equation z = 1− z−h has no solution in J, proving (3).

The following theorem gives a converse to Theorem 2.9.

Theorem 2.10. Let (J,F,#) be an hexagonal system with Moufang hexagon Γ. Suppose there
exists an hexagonal system automorphism h : J→ J of order 1 or 3 such that T(a) = a+ah+ah

2

and T(a#) = T(a, ah) for all a ∈ J. Then the automorphism θ = hx1(1)s1 of Γ is point-domestic.

Proof. Assume first that |F| > 2. By [6, Lemma 4.1] it suffices to show that no point opposite
the base point P1 is mapped onto an opposite point by θ. A generic such point p = (t, a, t′, a′, t′′)
in the BN -pair language is

gP1 = x6(t)x5(a)x4(t
′)x3(a

′)x2(t
′′)w0P1 with t, t′, t′′ ∈ F and a, a′ ∈ J.

By (1.10) point-domesticity is equivalent to the statement that P1g
−1θgP1 6= P1s61616P1.

Note that the formula T(c) = c+ ch + ch
2

and the fact that h has order 1 or 3 implies that
T(ch) = T(c) for all c ∈ J. A lengthy but straightforward calculation with commutator relations,
using the formulae T(c) = c+ ch + ch

2
, T(ch) = T(c), and T(c#) = T(c, ch), shows that

P1g
−1θgP1 = P1w0x6(f)x5(γ)x4(0)x3(γ

h)x2(f + T(γ))w0P1,

where f = t′′ − t and γ = a′h − a− t′′.
Suppose first that f 6= 0. By (1.8) we have

P1g
−1θgP1 = P1w0x12(−f−1)s6(f)x12(−f−1)x5(γ)x4(0)x3(γ

h)x2(f + T(γ))w0P1

= P1w0s6(f)x12(−f−1)x5(γ)x4(0)x3(γ
h)x2(f + T(γ))w0P1.

Note that P1w0s6(f) = P1w0s6 (as H ≤ P1). Using the formulae in (1.9) to push the x12(−f−1)
term to the right (where it is absorbed into P1), we obtain (after some calculation)

P1g
−1θgP1 = P1w0s6x5(γ)x4(f

−1N(γ))x3(f
−1γ# + γh)x2(f1)w0P1

= P1w0x1(−γ)x2(f
−1N(γ))x3(f

−1γ# + γh)x4(−f1)s1616P1,

where f1 = f + T(γ) + f−2N(γ) + f−1T(γ#).
Now suppose further that γ 6= 0. Similarly to the above, by (1.7) we have

P1g
−1θgP1 = P1w0s1x7(γ

−1)x2(f
−1N(γ))x3(f

−1γ# + γh)x4(−f1)s1616P1.
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Using the formulae in (1.9) to push the x7(γ
−1) term to the right (where it is absorbed into P1)

we obtain

P1g
−1θgP1 = P1w0s1x2(f

−1N(γ))x3(γ
h)x4(−f)s1616P1

= P1w0x6(f
−1N(γ))x5(γ

h)x4(−f)s616P1.

Since f−1N(γ) 6= 0 we can use (1.8) again, giving

P1g
−1θgP1 = P1w0s6x12(−fN(γ)−1)x5(γ

h)x4(−f)s616P1

= P1w0s6x5(γ
h)x4(0)s616P1

= P1w0x1(−γh)s16P1,

and using (1.7) gives

P1g
−1θgP1 = P1w0s1x7(γ

−h)s16P1 = P1w0s6P1 = P1s616P1,

showing that the point gP1 is mapped by θ to distance 4 from gP1 (see (1.10)).
Simpler calculations show that

P1g
−1θgP1 =

{
P1 if f = γ = 0

P1s616P1 if either f = 0 and γ 6= 0, of f 6= 0 and γ = 0,

completing the proof for the case |F| > 2.
If |F| = 2 then Γ is either the dual split Cayley hexagon with parameters (2, 2), or is the

triality hexagon with parameters (2, 8). In the first case h is necessarily trivial, and in the second
case h is a nontrivial element of the Galois group of the cubic extension F8/F2. The results are
easily verified in these cases.

Corollary 2.11. No nontrivial collineation of a Moufang hexagon in class (H2) fixes pointwise
an ovoid.

Proof. Let Γ be a Moufang hexagon in class (H2) with hexagonal system (E,F,#). Thus E is a
separable cubic field extension of F (normal in the case 3D4, and not normal in the case 6D4).
Suppose that θ is a nontrivial collineation pointwise fixing an ovoid. Then by Theorem 2.9 we
have, up to conjugation, θ = hx1(1)s1 where h : E → E is an hexagonal system automorphism
of order 1 or 3 with T(a) = a+ ah + ah

2
and T(a#) = T(a, ah) for all a ∈ E. We have h 6= 1 (for

otherwise T(a) = 3a for all a ∈ E), and so h has order 3.
By [3, p.2] the vector space automorphism h : E → E is in fact an element of Gal(E/F).

Since h has order 3 the 6D4 case is eliminated (as the Galois group is trivial in this case). Thus
Γ is of type 3D4. Choose any a ∈ J with ah 6= a (such a exists as h 6= 1), and let b = a − ah.
Then b 6= 0 and T(b) = T(a) − T(ah) = 0. Let z0 = −bh2b−1. Since h is a field automorphism
we have

z0 − 1 + z−h0 = −bh2b−1 − 1− bhb−1 = −(bh
2

+ b+ bh)b−1 = −T(b)b−1 = 0,

contradicting Theorem 2.9(3).

We finally turn our attention to hexagons in class (H3). We first discuss the connection
between hexagonal systems of type 9K/F and those of type 9/K. Let (J,F,#) be an hexagonal
system of type 9K/F. By [11, (15.39), (15.41)] the hexagonal system (J,F,#) embeds into an
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hexagonal system (JK,K,#) of type 9/K, where JK = J ⊗F K and K/F is a quadratic Galois
extension. The extension is determined by first choosing any δ ∈ K\F, and then defining # on
JK by

(a+ bδ)# = a# + (a× b)δ + b#δ2 for a, b ∈ J.

Recall from [11, (15.5),(15.22)] that JK has the algebraic structure of a cyclic division algebra
of degree three with centre K.

Lemma 2.12. Let (J,F,#) be an hexagonal system of type 9K/F and let (JK,K,#) be the
associated hexagonal system of type 9/K described above. Suppose that h : J→ J is an hexagonal
system automorphism of order 3 with T(a) = a + ah + ah

2
and T(a#) = T(a, ah) for all a ∈ J.

Then h extends to an order 3 hexagonal system automorphism h : JK → JK with T(α) =
α+ αh + αh

2
and T(α#) = T(α, αh) for all α ∈ JK.

Proof. Define (a+ bδ)h = ah + bhδ for a, b ∈ J. Let X2 − tX − s be the minimal polynomial of
δ over F. Then

(a+ bδ)#h = ((a# + sb#) + (a× b+ tb#)δ)h = (a# + sb#)h + (a× b+ tb#)hδ,

and since h : J→ J is an hexagonal system automorphism it follows that

(a+ bδ)#h = (ah# + sbh#) + (ah × bh + tbh#)δ = (a+ bδ)h#.

Thus h : JK → JK is an hexagonal system automorphism, and it is clear that it has order 3.
Since T(α) = T(a) + T(b)δ if α = a + bδ we have T(α) = α + αh + αh

2
for all α ∈ JK.

Moreover, since T(α, β) = T(αβ) in systems of type 9/K (see [11, (15.6), (15.22)]) we have

T(α, αh) = T(a+ bδ, ah + bhδ)

= T(aah + (abh + bah)δ + bbhδ2)

= T(a, ah) + T(abh + bah)δ + T(b, bh)δ2

= T(a#) + [T(a, bh) + T(b, ah)]δ + T(b#)δ2.

But since a× b = (a+ b)# − a# − b# (see [11, (15.15)]), we have

T(a× b) = T((a+ b)#)− T(a#)− T(b#)

= T(a+ b, ah + bh)− T(a#)− T(b#)

= T(a, ah) + T(a, bh) + T(b, ah) + T(b, bh)− T(a#)− T(b#)

= T(a, bh) + T(b, ah).

Thus

T(α, αh) = T(a#) + T(a× b)δ + T(b#)δ2 = T(a# + (a× b)δ + b#δ2) = T(α#),

completing the proof.

Recall from [11, (15.5), (15.9), (15.22)] the explicit model of the 9/F hexagonal systems. In
particular there is a cubic Galois extension E/F, a generator σ ∈ Gal(E/F), and an element
γ ∈ F\N(E) such that each element α ∈ J can be written in a unique way as

α = a+ by + cy2 with a, b, c ∈ E
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with multiplication given by the rules

y3 = γ and ya = aσy for all a ∈ E.

We shall record this situation by denoting the division algebra J by J = (E, σ, γ). We have

(a+ by + cy2)# = (a# − γbσcσ2
) + (γcσ# − aσ2

b)y + (bσ
2# − aσc)y2. (2.5)

Lemma 2.13. Let (J,F,#) be an hexagonal system of type 9/F with J = (E, σ, γ). Let e ∈ E\F
and z ∈ J\E. The elements 1, e, e#, z, z#, e× z, e× z#, e# × z, e# × z# form a basis of J.

Proof. Write z = a + by + cy2. Since {1, e, e#} span E (because the span is closed under #,
has dimension at most 3, and strictly contains F) it is clear that we may assume that a = 0.
Moreover, by [11, (15.6)(iv) and (15.15)(xi)] we have z2 = T(z)z− 1× z# = T(z)z−T(z#) + z#

and so z# = z2 − T(z)z + T(z#), and so we may replace each occurrence of z# in the spanning
set by z2 without changing the vector space spanned (recall that u× v = (u+ v)# − u# − v#).
We compute z2 = γ(bcσ+bσc)+γccσ

2
y+bbσy2, and thus we may further replace each occurrence

of z2 in the spanning set with z′ = z2 − γ(bcσ + bσc) = γccσ
2
y + bbσy2 without changing the

space spanned. Thus we must show that J is spanned by the elements 1, e, e#, z, z′, e × z, e ×
z′, e# × z, e# × z′. Let V be the span of these elements. Since z = T(z)− 1× z we have

V 3 λz + µ(e× z) + ν(e# × z) = λT(z) + (−λ+ µe+ νe#)× z,

and since {1, e, e#} is an F-basis of E it follows that f × z ∈ V, and similarly f × z′ ∈ V, for all
f ∈ E. For f ∈ E we have

f × z = −fσ2
by − fσcy2

f × z′ = −γfσ2
ccσ

2
y − fσbbσy2.

Thus it is clear that if either b = 0 or c = 0 then gy, gy2 ∈ V for all g ∈ E, and hence V = J. So
suppose that b, c 6= 0. Let λ = N(b)− γN(c), and note that λ ∈ F with λ 6= 0 (as γ /∈ N(E)). Let
g ∈ E be arbitrary, and let g1 = −λ−1bbσ2

gσ and g2 = −λ−1cσ2
gσ. Then

V 3 g1 × z = λ−1N(b)gy + λ−1bbσcgσ
2
y2

V 3 g2 × z′ = λ−1γN(c)gy + λ−1bbσcgσ
2
y2.

Subtracting gives that λ−1(N(b)− γN(c))gy = gy ∈ V for all g ∈ E. Similarly we have gy2 ∈ V
for all g ∈ E, and hence V = E as required.

Corollary 2.14. No nontrivial collineation of a Moufang hexagon in class (H3) fixes pointwise
an ovoid.

Proof. Let Γ be a Moufang hexagon in class (H3) with hexagonal system (J,F,#). Suppose
that θ is a nontrivial collineation pointwise fixing an ovoid. Then by Theorem 2.9 we have, up
to conjugation, θ = hx1(1)s1 where h : J→ J is an hexagonal system automorphism of order 1
or 3 with T(a) = a+ ah + ah

2
and T(a#) = T(a, ah) for all a ∈ J. We have h 6= 1 (for otherwise

T(a) = 3a for all a ∈ J) and so h has order 3.
By [11, (30.6)] there is J′ ≤ J such that (J′,F,#) is of class (H2). Let a ∈ J′\F, and so

J′ = spanF{1, a, a#}. If ah ∈ J′ then J′ is stable under h (as ah
2

= T(a) − a − ah), and so θ
stabilises the Moufang hexagon Γ′ associated to (J′,F,#) and is point domestic fixing no lines
of this hexagon, contradicting Corollary 2.11. Thus ah /∈ J′. Then by [11, (30.17)] there is a
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subspace J′′ ≤ J with J′ ∪ {ah} ⊆ J′′ such that (J′′,F,#) is an hexagonal system of type 9/F
or 9K/F for some quadratic Galois extension K/F. It follows from Lemma 2.13 (along with the
discussion just before Lemma 2.12 to extend a 9K/F system to a 9/K system) that the elements
1, a, a#, ah, ah#, a× ah, a× ah#, a# × ah, a# × ah# form a basis of J′′. Hence J′′ is stable under
h, and so the Moufang hexagon Γ′′ associated to (J′′,F,#) is stabilised by θ. Moreover, since θ
is point-domestic and fixes no lines of Γ then θ restricted to Γ′′ also has these properties, and
so θ fixes an ovoid of Γ′′.

Thus it is sufficient to eliminate the possibility of a nontrivial collineation θ of a Moufang
hexagon of type 9/F or 9K/F fixing pointwise an ovoid. Consider first the 9/F case. Let
(J,F,#) be of type 9/F, and so J is a noncommutative cyclic division algebra of degree three
with centre F. By [3, p.2] the vector space automorphism h : J → J is either an algebra
automorphism, or an algebra anti-automorphism. The latter case is impossible as h has order 3,
and hence h is an algebra automorphism. Following the argument of Corollary 2.11 there is
b ∈ J\{0} with T(b) = 0. Then z0 = −bh2b−1 satisfies z0−1+z−h0 = −T(b)b−1 = 0, contradicting
Theorem 2.9(3).

We now consider the 9K/F case. We cannot directly use the argument of the previous
paragraph, because hexagonal systems of type 9K/F lack the algebraic structure required to
form the element z0 = −bh2b−1. Instead we argue as follows. Let Γ be a Moufang hexagon with
hexagonal system (J,F,#) of type 9K/F. If Γ admits a point-domestic collineation fixing an
ovoid then by Theorem 2.9 there is an hexagonal system automorphism h : J→ J of order 3 such
that T(a) = a+ah +ah

2
and T(a#) = T(a, ah) for all a ∈ J. By Lemma 2.12 the map h extends

to an automorphism of the hexagonal system (JK,K,#) of type 9/K such that h : JK → JK
has order 3 and satisfies T(α) = α + αh + αh

2
and T(α#) = T(α, αh) for all α ∈ JK. But then

by Theorem 2.10 the extended automorphism θ = hx1(1)s1 of the associated hexagon ΓK of
type 9/K is point-domestic. Since θ does not fix an ovoid of ΓK (by the previous paragraph)
it must fix a large full subhexagon of ΓK (by Theorem 1.3 and Lemma 2.2), contradicting
Proposition 2.5.

2.4 Proof of the main theorem

We now have all ingredients for the proof of Theorem 1.

Proof of Theorem 1. Let Γ be a Moufang hexagon (with Convention 1.4 in force). Suppose that
θ is a nontrivial line-domestic collineation. By Theorem 1.3 the fixed element structure of θ is
either (i) a ball of radius 3 centred at a point, (ii) a large ideal subhexagon, or (iii) a spread. Case
(ii) is eliminated by Theorem 2.6, and case (iii) is eliminated by Corollary 2.8. By Lemma 2.1
there is a unique class of collineations in case (i).

Suppose now that θ is a nontrivial point-domestic collineation. By Theorem 1.3 the fixed
element structure of θ is either (i) a ball of radius 3 centred at a line, (ii) a large full subhexagon,
or (iii) an ovoid. Lemma 2.2 deals with case (i), and Theorem 2.6 deals with case (ii). Case (iii)
is dealt with by Corollaries 2.8, 2.11 and 2.14.

Finally, the statements on exceptional domestic collineations follow from Theorems 1.1
and 1.2.

2.5 Concluding comments

We conclude by providing an independent geometric proof of Corollary 2.11, and a uniform
description of all examples of point-domestic collineations of Moufang hexagons.
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Recall from [9] (see also [12, Theorem 6.3.2]) that all points and all lines of a Moufang
hexagon Γ are distance-3-regular. Suppose that p, q ∈ Γ are opposite points, and consider the
set L(p, q) of all lines that are at distance 3 in the incidence graph from both p and q. The
imaginary line determined by p, q is

I(p, q) = {r ∈ P | d(L, r) = 3 for all L ∈ L(p, q)},

where d(L, r) denotes distance in the incidence graph. By distance-3-regularity the set I(p, q) is
determined by any two lines L,L′ ∈ L(p, q) with L 6= L′.

Proposition 2.15. Let Γ be a Moufang hexagon and suppose θ is a domestic collineation only
fixing points (hence the fixed point structure is an ovoid O). Then

(i) θ has order 3,
(ii) there exists a full dual split Cayley subhexagon stabilised by θ,

(iii) every full subhexagon stabilised under θ contains an ovoid fixed by θ,
(iv) O is closed under taking imaginary lines.

Proof. Let p, q be two points of the ovoid O (the fixed point set of θ). Let p∗Li∗ri∗Mi∗si∗Ki∗q,
i = 1, 2, be two distinct paths joining p with q, with Lθ1 = L2. Select r′1 ∈ L1 \ {p, r1} and let
s′1 be the unique point collinear to r′1 and at distance 3 from K2. Then s′1 is contained in the
unique full nonthick subhexagon Γ′′ defined by L1 and K2. Let r ∈ O be collinear to s′1. Then
r /∈ Γ′′ since r is opposite p and q. So rs′1 does not belong to Γ′′ and hence the unique line M ′2
through r2 at distance 4 from rs′1 is distinct from M2 and from L2. Hence r2, s1, M2,M

′
2, L2

are contained in a unique full dual split Cayley subhexagon Γ′. The latter contains r′1 hence s′1
hence rs′1 hence r. Now the lines L2,M2 and K2 are contained in Γ′ ∩Γ′θ, and so is the point r.
It follows that the shortest path from r to K2 is contained in Γ′ ∩ Γ′θ, and hence s′1 is also
contained in it. Then also r′1, L1,M1,K1,M

′
2 ∈ Γ′ ∩ Γ′θ. Hence Γ′ ⊆ Γ′ ∩ Γ′θ, and we conclude

that Γ′θ = Γ′. This shows (ii).
Now, by [7, Theorem 6.10] we know that θ3 fixes Γ′ pointwise. As in the last line of the

proof of Theorem 2.7, we conclude that θ3 is the identity, proving (i).
Now let Γ′ be any full subhexagon and let x be any point in it, not contained in O. Let

a ∈ O be collinear to x. Then xθ is collinear to a, and it readily follows that a ∈ Γ′ (since either
xθ lies on xa, and then by fullness, a ∈ xxθ ⊆ Γ′, or not, and then a is the unique point collinear
to both x and xθ). Hence O ∩ Γ′ is an ovoid of Γ′. This proves (iii).

Now (iv) follows from the fact that every ovoid in a dual split Cayley hexagon fixed by a
domestic collineation is a Hermitian ovoid and hence closed under taking imaginary lines.

Geometric proof of Corollary 2.11. Let Γ be of class (H2). Suppose that θ is a collineation of
Γ fixing precisely an ovoid O. By Proposition 2.15(ii) and (iii), there exists a full proper dual
split Cayley subhexagon Γ′ stabilised by θ and such that O′ = Γ′ ∩ O is an ovoid of Γ′. Let
p ∈ O \ O′. Then, by Proposition 2.5 there is a unique point t ∈ Γ collinear to p. Since both p
and Γ′ are stabilised by θ, so too is t, a contradiction.

The following Corollary shows that all point-domestic collineations can be uniformly de-
scribed using the setup of Theorem 2.10.

Corollary 2.16. Let Γ be a Moufang hexagon with hexagonal system (J,F,#). Let θ = hx1(1)s1
with h an automorphism of (J,F,#).

(1) If Γ is of class (H1) and h = 1 then θ is point-domestic. Moreover
(a) if X2 +X + 1 is irreducible over F then θ fixes an ovoid;
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(b) if X2 +X + 1 is not irreducible over F then θ fixes a large full subhexagon.
(2) If Γ is of class (H4) and h = 1 then θ is point-domestic and fixes a ball of radius 3 in the

incidence graph centred at a line.
(3) If Γ is a triality hexagon of type 3D4 and h = σ is a nontrivial element of the Galois group

then θ is point-domestic and fixes a large full subhexagon.
This gives the complete list of point-domestic collineations of Moufang hexagons.

Proof. In each case the given element h satisfies the conditions of Theorem 2.10, and hence
θ = hx1(1)s1 is point-domestic. Claim (1) follows from [7, Theorem 6.10] (it is also easy to
check directly because θ fixes a chamber if and only if X2 + X + 1 is not irreducible over F).
Claim (2) follows because we have already shown that for hexagons in class (H4) it is impossible
to fix an ovoid or a large full subhexagon, leaving only a ball of radius 3 centred at a line
remaining. For claim (3), the case of a ball of radius 3 centred at a line has already been
eliminated, and so it suffices to show that there is a chamber fixed. Let gB = x1(z)s1B with
z 6= 0. We have (as in Corollary 2.11)

θgB = σx1(1)s1x1(z)s1B = σx1(1)x7(z)B = σx1(1)x1(−z−1)s1B = x1(1− z−σ)s1B.

Thus the chamber gB is fixed if and only if z = 1−z−σ, or equivalently zzσ−zσ+1 = 0. Choose
any a ∈ J (a cubic Galois extension of F) with aσ 6= a and let b = a − aσ. Then b 6= 0 with
T(b) = 0. Then the element z = −bσ2

b−1 satisfies zzσ−zσ+1 = bσ
2
b−σ+bb−σ+1 = T(b)b−σ = 0.

The fact that the list of examples is complete is a consequence of Theorem 1.

Remark 2.17. In case (3) of Corollary 2.16 it is easy to see that the element θ = σx1(1)s1 is
conjugate to σ (as expected by Theorem 2.6). Since the fixed element set of σ is clearly the
dual split Cayley subhexagon, and since Theorem 2.10 implies σ is domestic, it follows from
Theorem 1.3 that the dual split Cayley hexagon is large in the 3D4 triality hexagon (giving an
independent proof of the “if” direction of Proposition 2.5).
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