MSH4

Fundamentals of Statistical Consulting

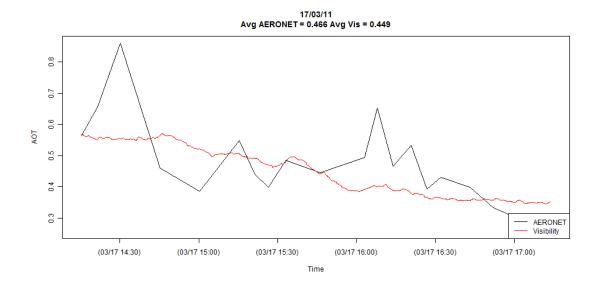
Week 10 Comparison of two time series

Jean Yang and Jennifer Chan

Important points

1. Difference in sampling frequencies.

Erase the connecting lines and display only the points corresponding to actual data.



2. Difference in length.

3. What to compare?

Process or model (time series generator)?

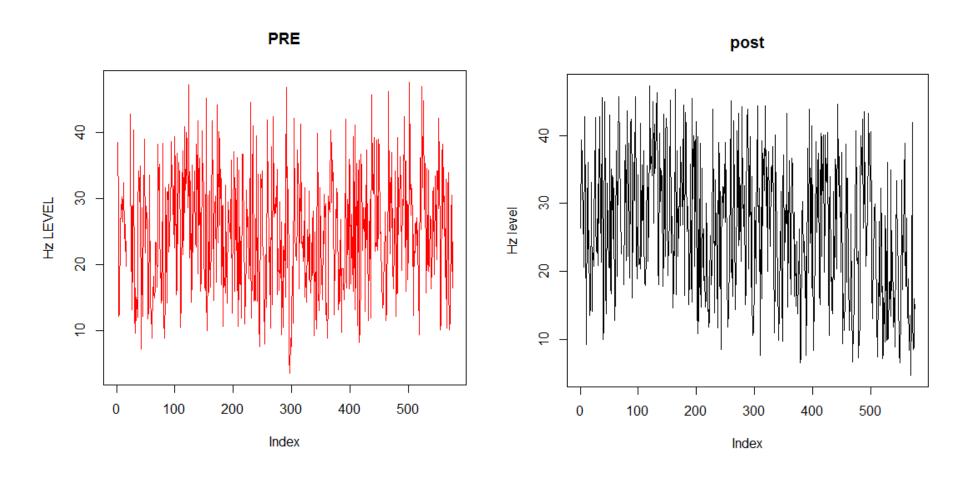
Values, trends, patterns or periodicity?

Observed or forecast?

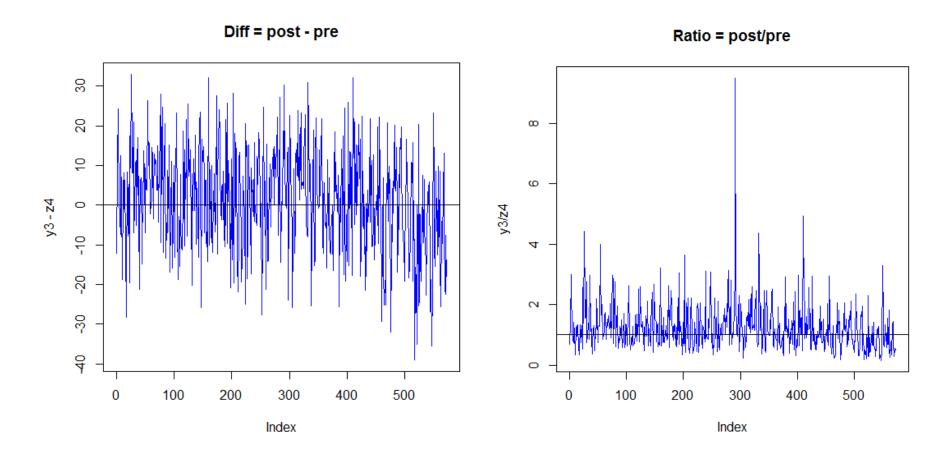
Some basic graphical comparison

Charissia data

Two time series: pre and post



Compare differences and ratios

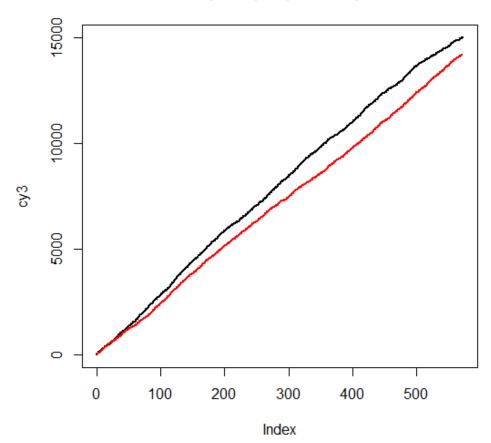


More positive than negative differences in the first graph.

Ratios are much higher above 1.

Compares two cumulative time series.

cum pred (red) & cum post



The post time series has higher values in general.

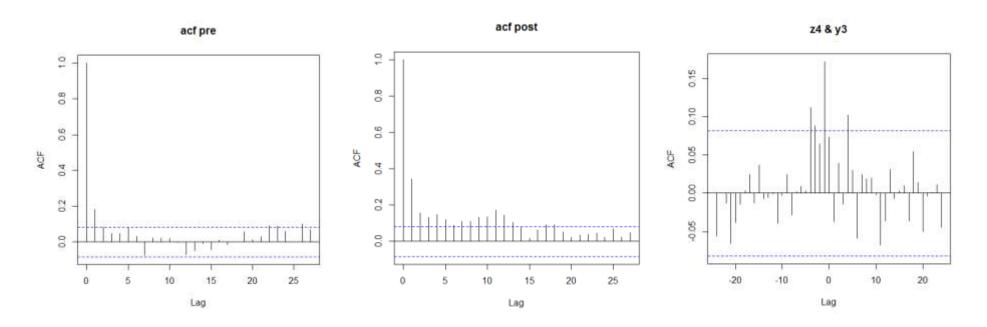
Compare models

Time series models

Fix ARMA or regime switching or other nonlinear models and construct an F test to test the hypothesis of a common set of parameters for a common data set but not here.

These do not compare mean and variance but just the autocorrelation structure, acf.

The noises are smoothed out.



The three plots are acfs and *cross correlation*. These may not be the comparison Charissia wants!

Running ARMA models

```
arima(x = z4, order = c(1, 0, 1)) #pre
```

Coefficients:

```
ar1 ma1 intercept
0.5545 -0.3909 24.8376
s.e. 0.2109 0.2356 0.5058
```

sigma² estimated as 78.2: $\log likelihood = -2051.22$, aic = 4110.43

arima(x = y3, order = c(1, 0, 1)) #post

Coefficients:

ar1 ma1 intercept 0.5976 -0.2983 26.1752 s.e. 0.1648 0.2059 0.6783

sigma^2 estimated as 86.87: log likelihood = -2088.53, aic = 4185.07

The parameter estimates are similar but there is no test of significance of the difference

on two different data!!

Compare forecast

Granger test is usually used to see if the values of one series at time t can predict the values of the other series at time t+1, that is, to test if one time series is useful in forecasting another.

The R code is grangertest() in the Imtest library.

> grangertest(z4,y3[1:570],1) #make two data the same length

```
Granger causality test
```

```
Model 1: y3[1:570] ~ Lags(y3[1:570], 1:1) + Lags(z4, 1:1)

Model 2: y3[1:570] ~ Lags(y3[1:570], 1:1)

Res.Df Df F Pr(>F)

1 566

2 567 -1 14.377 0.0001657 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Significant! But again, it may not be suitable as the time (hence **lag**) pair may differ. We have removed repeats and NA!!!

Compare process in data mining

Distance function is suggested to compare two series in signal processing.

Distance functions:

L-p distance function $D(x,y) = (\sum |x_i - y_i|^p)^{1/p}$

L-2 distance function $D(x,y) = (\sum (x_i - y_i)^2)^{1/2}$ (Most popular and efficient)

Why prefer L2 distance?

- L2 distance is preserved under "orthonormal transforms" For L-p norm, only p=2 satisfy this property.
- Optimal distance measure for estimation if signals are corrupted by Gaussian, additive noise
- Widely used
- Euclidean distance

Other distance measures

Manhattan distance: $\Sigma_i / x_i - y_i /$

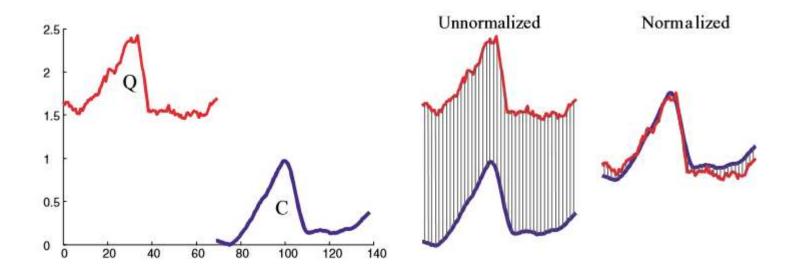
Infinite norm distance: $\max_i |x_i - y_i|$

Charissia data

> sqrt(sum((z4-y3)^2)) [1] 311.456

Again there is no test of significance. It is useful if we have several time series to compare but it depends on the pairing of data.

What constitutes differences?



Difference in time in the first graph?

Align the time series with the same starting point.

Difference in levels in the second graph?

Normalized or standardized the time series.

There are not the issues as the levels of pre and post are similar. The difference in levels is what we want to study.

Elastic dissimilarity measure

What if the time series differ in length? With different sizes M and N!

Dynamic time warping (DTW) $D(x_i, y_j) = \delta(x_i, y_j) + \min\{D_{i,j-1}, D_{i-1,j}, D_{i-1,j-1}\}$ where $\delta(x_i, y_j)$ can be $(\sum (x_i - y_i)^2)^{1/2}$.

The unit window can change to any ω in general,

$$j = \max\{1, i' - \omega\}, \dots, \min\{N, i' + \omega\},$$

where $i' = \left[\frac{iN}{M}\right]$ and $[\cdot]$ is to round to the nearest integer.

If $\omega = 0$ and M = N, D(x, y) corresponds to the Euclidean distance. The window ω allows reduction in computational cost.

Minimum jump costs (MJC)

$$D(x,y) = \sum_{i} c_{\min}^{(i)}$$

where
$$c_{\min}^{(i)} = \min\left\{c_{t_x}^{t_y}, c_{t_x}^{t_y+1}, c_{t_x}^{t_y+2}, ...\right\}$$
 and $c_{t_x}^{t_y+\Delta} = (\emptyset \Delta)^2 + \delta\left(x_{t_x}, y_{t_{y+\Delta}}\right)$

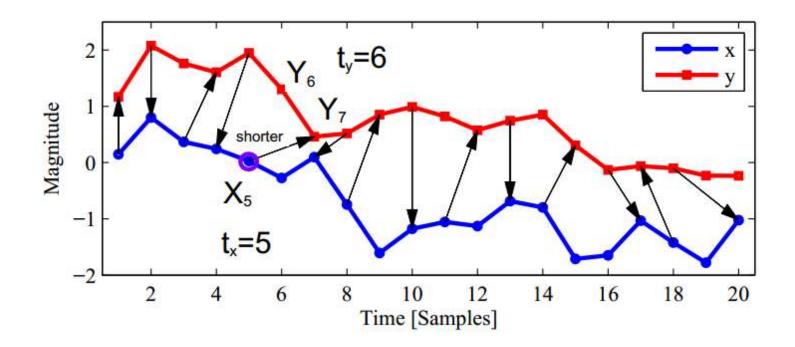


Fig. 1. Example of the recursive jumps performed between time series \mathbf{x} and \mathbf{y} . The algorithm starts with time series \mathbf{x} at $t_x = 1$ (x_1) and ends when $t_x = M$ or $t_y = N$ $(x_{20}$ in the example).

Have jump from y₅ to x₄ (hence t_x = 5 and t_y = 6) and jump back to y again at minimal cost. Evaluate all possible t_y + Δ , for Δ = 0,1,...,14 (time 6 to 20) and the best jump is y₇.

There are many different distance measures but a paper said the most efficient one is L2, DTW and MJC. However to calculate such distance measures, there is no package or packages are not working.