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Example: the matching of absence or presence of a dominant genetic marker  
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Why the association is NOT significant given a high proportion of agreement? 
  Y  
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Measures that include d 

For nominal variables that are mutually exclusive, e.g. true or false, male or 
female, a and d should be equally weighted. 

Yule, 1912:           
     

                     
 

Equivalent to Pearson’s correlation applied to binary data and the numerator is 
covariance. 

Sokal and Michener, 1958:          
   

       
 

Rogers and Tanimoto, 1960:          
   

          
 

Cohen, 1960:             
        

                     
 

Sokal and Sneath, 1963:           
      

          
 

Sokal and Sneath, 1963:           
 

  
 

 

   
 

 

   
 

 

   
 

 

   
  

Sokal and Sneath, 1963:           
  

                     
 



Measures that do not include d 

However in some cases, the negative match d may dominate and should not 
contribute to similarity. 

 
Similarity measures: 

Jaccard, 1912:           
 

     
 (no. of shared 1 to total no that contain 1)  

Gleason, 1920:             
  

      
 (twice the wt, a few match relative to mismatch) 

Kulczynski, 1927:           
 

 
 

 

   
 

 

   
  

 

Driver and Kroeber, 1932:          
 

           
 

Sokal and Sneath, 1963:           
 

        
 

 

Dissimilarity measures are defined the other way round. 

  



Properties 

Let        be the similarity coefficient between   and  . 

Basic:                 and              .  

Symmetric:                   

E.g.         
     

                     
    and         

 

     
 

Complete:              E.g.       ,       
 

Independence:   odds ratio (OR)  
   

   
 

  

  
           

If OR   , equal likely in 0 and 1 groups. If OR > 1, more likely in the first group. 

Transformed OR to within (-1,1): 

Yule, 1900:             
     

     
 

Yule, 1912:             
       

       
 

 



Example  
(x, y) 
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  Y  
  1 0  

X 
1                   

0                 

      10 

 

Different coefficients give the following results: 

Use d: 

Phi=(ad-bc)/ √(a+b)(a+c)(b+d)(c+d)=(8x0-1x1)/ √(9x1x9x1)= -0.11 



SM= (a+d)/(a+b+c+d) = 8/(8+1+1+0)= 0.8 
RT=(a+d)/(a+2(b+c)+d) = 8/(8+2+2+0)= 0.67 

Cohen=2(ad-bc)/((a+b)(b+d)+(a+c)(b+d))=2(8x0-1x1)/(9x1+9x1)= -0.11 

SS2=2(a+d)/(2a+b+c+2d)=2(8+0)/(2x8+1+1+2x0)= 0.89 

SS3=(a/(a+b)+a/(a+c)+d/(c+d)+d/(b+d))/4=(8/9+8/9+0/1+0/1)/4= 0.44 

SS4=ad/√(a+b)(a+c)(b+d)(c+d)= 0 

Not use d: 

Jac=a/(a+b+c)=8/(8+1+1)= 0.8 

Gleas=2a/(2a+b+c)=2x8/(2x8+1+1)= 0.89 

Kul=(a/(a+b)+a/(a+c))/2=(8/9+8/9)/2= 0.89 

DK=8/    = 0.89 

OR and its transformation 

OR=ad/bc=8x0/1x1= 0 

Yule1=(ad-bc)/(ad+bc)=(0-1)/(0+1)= -1 

Yule2=(                 = -1 

Values differ widely. No test of significant!  



Test for independence 

Pearson's chi-squared test for independence (larger sample size) 

Same as between-subjects z-test for 2 proportions     

   
   

 
   
   

 
   
 

 
   
 

 
 

   
 

 

   
 
   (1) 

Consider a 2x2 contingency table. Under                , 

  Y  
  1 0  

X 
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          1 

the    statistic for the 2x2 contingency table using (1) is 

  
  

         

                    
    

  

where each cell has expected count of at least 5. Note the relationship: 

      
  

 
 

     

                     
 

Yates' correction for continuity:         
  

               

                    
 but mostly not needed. 



Fisher exact test for independent binary data (smaller sample size) 

Let the cell frequencies be represented by a, b, c, d, and the marginal totals represented 
by a+b, c+d, a+c, b+d, and n. 

 
1 0 Totals 

1 a b a+b 

0 c d c+d 

Totals  a+c   b+d  n 

 
If there are no systematic association between the variables X and Y, the probability of 
cell frequencies, a, b, c, d, given fixed marginal totals a+b, c+d, etc., are given by the 
hypergeometric rule: 

      

    
 

      

    
  

            

   which is the same as 
                        

          
 

The degree of association between variables X and Y can be measured by the absolute 
difference 

 
 

   
 

 

   
  

    
We calculate the probability of that particular array plus the probabilities of all other 



possible arrays whose degree of disproportion is equal to or greater than that of the 
observed array. Thus, for the observed array 

2 7 9 

8 2 10 

10 9 19 

 
the one-tailed probability would be the sum of the separate probabilities for the arrays  
 

   
probabilit

y 

2 7 
  

8 2 
 

0.01754 

1 8 
  

9 1 
 

0.00097 

0 9 
  

10 0 
 

0.00001 

sum = 0.01852 (one-tailed probability) 



 
And the two-tailed probability would be that sum plus the sum of the separate 
probabilities for the arrays of equal or greater disproportion at the other extreme: 
 

   
probability 

8 1 
  

2 8 
 

0.00438 

9 0 
  

1 9 
 

0.00011 

sum = 0.00449 

 
The two-tailed probability = 0.01852 + 0.00449 = 0.02301 

  



McNemar test for paired dependent binary data:  

Same as within-subjects z-test for equality of 2 proportions.  

Test if the before and after (from same person) marginal proportions are equal, 
i.e. pa + pb = pa + pc  and  pc + pd = pb + pd  implies pb  = pc .  

Condition on b and c only, the hypotheses are               vs            

where       are conditional probabilities. Under   , 

Observed Expected O-E (O-E)2/E 

b 0.5(b+c) 0.5(b-c) 0.25(b-c)2/(0.5(b+c)) 

c 0.5(b+c) 0.5(c-b) 0.25(b-c)2/(0.5(b+c)) 

b+c b+c 0  (b-c)2/(b+c) 

 
The test statistic is 

   
  

      

     
    

  

Note  a and d do not contribute to the decision though the number a + b + c + d can be 

large. The exact test is the binomial sign test and Liddell’s exact test. 

  

https://en.wikipedia.org/wiki/Sign_test


Difference between Chi-square test and McNemar test 

1. The subjects are tested for infections from X at different times. Want to know if  
the proportions of positive for X after is related to the proportion of positive for X 
before: 

             After    
           |no  |yes| 
Before|No  |1157|35 | 
      |Yes |220 |13 | 
 
results of chi-squared test:  
Chi^2 =  4.183     d.f. =  1     p =  0.04082  
 
results of McNemar's test:  
Chi^2 =  134.2     d.f. =  1     p =  4.901e-31 
 

2. Instead of before and after, measure two different infections, X & Y at one time 
point (Before → X; After → Y).  
Does higher proportions of one infections relate to higher proportions of Y" 

 
Which test? 
 



Q1: Chi-squared test assesses whether Before and After are independent. That is, are 
people who were sick beforehand more likely to be sick afterwards than people who 
have never been sick. Instead of whether Before and After are independent, one 
certainly wants to know if the treatment works (a question chi-squared does not 
answer). Specifically, one wants to run a within-subjects z-test of equality of proportions. 
That is what McNemar's test is. 
 

  After  
  No Yes  

Before 
No 1157         35 1192 

Yes 220       13 233 

  1377 48 1425 
 

The proportion of yes before   
      

    
    The proportion of yes after   

     

    
  

The 13 observations of yes to both before and after add no distinct information about 
the change in the proportion of yes. The only distinct information about the before and 
after proportions of yes is the numbers 220 and 35.  
This is a binomial signtest of 220/(220+35) against a null proportion of 0.5. 
 
mat = as.table(rbind(c(1157,35),c(220,13))) 
colnames(mat) <- rownames(mat) <- c("No", "Yes") 



names(dimnames(mat)) = c("Before", "After") 
mat 
#       After 
# Before   No  Yes 
#    No  1157   35 
#    Yes  220   13 
# 
mcnemar.test(mat, correct=FALSE) 
#  McNemar's Chi-squared test 
#  
# data:  mat 
# McNemar's chi-squared = 134.2157, df = 1, p-value < 2.2e-16 
 
binom.test(c(220, 35), p=0.5)  #exact one proportion sign test 
#  Exact binomial test 
#  
# data:  c(220, 35) 
# number of successes = 220, number of trials = 255, p-value < 2.2e-16 
# alternative hypothesis: true probability of success is not equal to 
0.5 
# 95 percent confidence interval: 
#  0.8143138 0.9024996 
# sample estimates: 
# probability of success  
#              0.8627451  



Q2. If we didn't take the within-subjects nature into account, one would have a slightly less 
powerful test of the equality of two proportions: 

  Y  
  No Yes  

X 
No 1157         35 1192 

Yes 220       13 233 

  1377 48 1425 
 

The proportion of yes to X   
      

    
    The proportion of yes to Y   

     

    
  

But the 13 observations of yes to both X and Y should be included. Hence information 
for the two proportions are (233, 1192) and (48,1377) which are the two marginals. 
Their sum is 2850, twice of 1425! 

matm=as.table(rbind(margin.table(mat, 1),margin.table(mat, 2))) 
colnames(matm) <- rownames(matm) <- c("No", "Yes") 
names(dimnames(matm)) = c("X", "Y") 
matm 
#      Y 
# X       No  Yes 
#   No  1192  233 
#   Yes 1377   48 
# 



chisq.test(matm,correct = F) 
# 
#         Pearson's Chi-squared test 
# 
# data:  matm 
# X-squared = 135.1195, df = 1, p-value < 2.2e-16 
# 
prop.test(rbind(margin.table(mat, 1), margin.table(mat, 2)), 
correct=FALSE) 
# 
#  2-sample test for equality of proportions without continuity 
#  correction 
#  
# data:  rbind(margin.table(mat, 1), margin.table(mat, 2)) 
# X-squared = 135.1195, df = 1, p-value < 2.2e-16 
# alternative hypothesis: two.sided 
# 95 percent confidence interval: 
#  0.1084598 0.1511894 
# sample estimates: 
#    prop 1    prop 2  
# 0.9663158 0.8364912  
 
The difference in chi-square of 135.1195 from 134.2157 is small relative due to the 
minor overlap of 13 but the sample size here is double. 



Calculator 

http://vassarstats.net/tab2x2.html 

 

http://vassarstats.net/tab2x2.html


> mat = as.table(rbind(c(8, 1), c(1, 0) )) 
> colnames(mat) <- rownames(mat) <- c("Yes", "No") 
> names(dimnames(mat)) = c("Before", "After") 
> mat 
      After 
Before Yes No 
   Yes   8  1 
   No    1  0 
> margin.table(mat, 1) 
Before 
Yes  No  
  9   1  
> margin.table(mat, 2) 
After 
Yes  No  
  9   1  
> sum(mat) 
[1] 10 
> mcnemar.test(mat, correct=FALSE) 
 
        McNemar's Chi-squared test 
 



data:  mat 
McNemar's chi-squared = 0, df = 1, p-value = 1 
 

> binom.test(c(1, 1), p=0.5) 
 
        Exact binomial test 
 
data:  c(1, 1) 
number of successes = 1, number of trials = 2, p-value = 1 
alternative hypothesis: true probability of success is not equal to 0.5 
95 percent confidence interval: 
 0.01257912   0.98742088 
sample estimates: 
probability of success  
                   0.5 
> 
> prop.test(rbind(margin.table(mat, 1), margin.table(mat, 2)), correct=FALSE)  #between 
subject 
 
        2-sample test for equality of proportions without continuity 
        correction 
 



data:  rbind(margin.table(mat, 1), margin.table(mat, 2)) 
X-squared = 0, df = 1, p-value = 1 
alternative hypothesis: two.sided 
95 percent confidence interval: 
 -0.2629568    0.2629568 
sample estimates: 
prop 1 prop 2  
   0.9    0.9  
 
Warning message: 
In prop.test(rbind(margin.table(mat, 1), margin.table(mat, 2)),  : 
  Chi-squared approximation may be incorrect 
 
All show insignificant result! 
 
 
 
 
 
 
 
 


