THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Semester $1 \quad$ MATH1015 (Biostatistics) QUIZ 2 - PRACTICE PROBLEMS 2013

NOTE: Quiz 2 will be in week 11 (ie. week beginning 21 May) in your tutorial class and worth 15% of your final mark. This is a closed book test but you can access the formulae sheet, binomial and normal tables, t-table, basic R commands and other information from the course website. There will be some questions related to use of the statistical package R.
Required knowledge: Material from week 1 to week 10 (both inclusive). However, more weights will be given to the material from week 7 to week 10. A practical knowledge of R is required to answer some questions.
Time allowed: 40 mins.
Instructions: There are five possible answers to each question and only one of them is correct. Mark the answer to each question which you think is correct, in pen.

PRACTICE QUIZ 2

1. A 95% confidence interval for the population mean is (51.2, 62.4). If a 5% level of significance is used in testing the hypotheses $H_{0}: \mu=50$ against $H_{1}: \mu \neq 50$, the appropriate conclusion would be that the data are:
(a) against H_{0}
(b) consistent with H_{0}
(c) against H_{1}
(d) inconclusive evidence
(e) not enough information is given
2. A random sample of size n has been selected from a population with standard deviation σ. To test a null hypothesis on the population mean, a t-test is appropriate if the population is:
(a) normal with σ known
(b) normal with σ unknown
(c) any distribution with σ known
(d) any distribution with σ unknown
(e) none of the above
3. In constructing an interval estimate for a population mean, a sample of 100 observations was used. The interval estimate was 19.76 ∓ 1.32. Had the sample size been 400 instead of 100 , the interval estimate would have been:
(a) 19.76 ∓ 0.33
(b) 19.76 ∓ 0.66
(c) 19.76 ∓ 2.64
(d) 9.88 ∓ 0.66
(e) 4.94 ∓ 0.33
4. The following data were drawn from a normal population.

$$
\begin{array}{llllllllll}
15 & 4 & 24 & 8 & 16 & 13 & 9 & 15 & 7 & 22
\end{array}
$$

A 90% confidence interval for the population mean is closest to:
(a) 13.3 ∓ 3.75
(b) 13.3 ∓ 2.82
(c) 13.3 ∓ 3.95
(d) 13.3 ∓ 7.66
(e) 13.3 ∓ 2.80
5. A random sample of size 10 is selected from a normal population. The population standard deviation is unknown. If a two-sided test on the population mean is applied with $\alpha=0.05$, the conclusion that the data are consistent with H_{0} can be drawn if the test statistic lies:
(a) inside $(-1.96,1.96)$
(b) outside $(1.833, \infty)$
(c) inside ($-2.262,2.262$)
(d) inside $(-1.813,1.813)$
(e) outside ($-2.228,2.228$)
6. Which of the following is true about Type I error?
(a) It is more likely to happen when $\alpha=0.01$ rather than $\alpha=0.05$.
(b) It equals to one minus the level of significance.
(c) It equals to the power of the test.
(d) It occurs when the conclusion of sufficient evidence against H_{0} is drawn but H_{0} is true.
(e) It occurs when the conclusion of consistency with H_{0} is drawn but H_{0} is false.
7. Samples of size 2 are drawn from a population with the following probability mass function:

$$
\begin{array}{c|cc}
x & 3 & 5 \\
\hline p(x) & 0.6 & 0.4
\end{array}
$$

The sampling distribution of the sample mean \bar{x} is:

(a) | \bar{x} | 3 | 5 |
| :---: | :---: | :---: |
| $p(\bar{x})$ | 0.36 | 0.16 |

(b) | \bar{x} | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: |
| $p(\bar{x})$ | 0.36 | 0.24 | 0.16 |

(c) | \bar{x} | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: |
| $p(\bar{x})$ | 0.36 | 0.48 | 0.16 |

(d) | \bar{x} | 3 | 5 |
| :---: | :---: | :---: |
| $p(\bar{x})$ | 0.16 | 0.36 |

(e) | \bar{x} | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: |
| $p(\bar{x})$ | 0.16 | 0.48 | 0.36 |

8. Summary statistics for two random samples from two independent normal populations are reported below:

$$
\begin{array}{cccc}
\text { Sample 1: } & n_{1}=9 & \bar{x}_{1}=10 & s_{1}=5 \\
\text { Sample 2: } & n_{2}=11 & \bar{x}_{2}=12 & s_{2}=3
\end{array}
$$

Estimates of mean and standard error for the sample mean difference $\bar{X}_{1}-\bar{X}_{2}$ are closest to:
(a) -2 and 0.8864
(b) 2 and 0.9354
(c) -2 and 1.9039
(d) -2 and 0.9354
(e) -2 and 1.8041
9. To test if the left-handed gripping strengths is stronger than the right-handed gripping strengths, a random sample of 10 left-handed persons is selected and the measurements are shown in the following table:

Person i	1	2	3	4	5	6	7	8	9	10	\bar{d}	s_{d}
Left hand	140	90	125	130	95	121	85	97	131	110		
Right hand	138	87	110	132	96	120	86	90	129	100		
Difference d_{i}	2	3	15	-2	-1	1	-1	7	2	10	3.60	5.461

The test statistic t is closest to:
(a) 2.0846
(b) 1.9777
(c) 1.2072
(d) 0.4092
(e) 0.3883
10. Refer to the previous question, if the test statistic is $t>0$, then the P-value would be:
(a) $2 P\left(T_{9}>t\right)$
(b) $P\left(T_{18}>t\right)$
(c) $P\left(T_{9}<t\right)$
(d) $P\left(T_{9}>t\right)$
(e) $2\left(1-P\left(T_{18}>t\right)\right)$
11. A sample of size 200 will be taken at random from a population with binary outcomes. Given that the population proportion is 0.60 , the approximate probability that the sample proportion will be greater than 0.58 is closest to:
(a) 0.2810
(b) 0.7190
(c) 0.5163
(d) 0.5900
(e) 0.7167
12. To test if the acceptance rate of production line 1 is higher than the acceptance rate of line 2 , two random samples of 100 products each are selected from the two lines and the numbers of acceptable products are 76 and 68 respectively. The test statistic is closest to:
(a) 0.3984
(b) 0.8909
(c) 2.5198
(d) 0.7869
(e) 1.2599

Refer to the following information to answer questions 13-15 using R:
The data in the file be23-ty378. txt consists of two columns. The first and second column store the weights of eggs (in g) from manufacturers A and B respectively. The symbol ' $N A$ ' in the second column denotes missing observations.

Hint: You can read the data in R with $x=$ read.table(file='be23-ty378.txt') or
$\mathrm{x}=$ read.table(file=url('http://www.maths.usyd.edu.au/math1015/r/be23-ty378.txt')) To access the numerical data in column i, you may use the expression $\mathrm{x}[$, i$]$ where i can be 1 or 2 .
13. To test if the mean weight of eggs from the two manufacturers are different using t.test with equal variance assumption, i.e. var.equal $=T$, the test statistic is closest to:
(a) -1.8472
(b) -1.6876
(c) -9.0717
(d) 0.8065
(e) -1.6863
14. At 0.05 level of significance, the P-value and conclusion of the test are respectively:
(a) 0.0494 ; against H_{0}
(b) 0.0988 ; consistent with H_{0}
(d) 0.0494 ; consistent with H_{0}
(e) 0.0988 ; against H_{1}
(c) 0.0988 ; against H_{0}
15. The assumptions for the test are:
I. The 2 populations are normal;
III. The 2 sample sizes are large;
(a) I and II
(b) I and III
II. The 2 variances are unknown;
IV. The 2 variances are equal.
(c) I, II and III
(d) I, II and IV
(e) All

Solution:

1. (a)
2. (b)
3. (b) $\mathrm{me}=1.32 \times \sqrt{100} / \sqrt{400}=0.66$ while sample mean remains unchanged.
4. (a) $\bar{X}=13.3, s=6.4644$ and $t_{9, .05}=1.833$. The 90% CI for $\mu=(13.3-1.833 \times 6.4644 / \sqrt{10}, 13.3+1.833 \times$ $6.4644 / \sqrt{10})=13.3 \mp 3.75$.
5. (c)
6. (d)
7. (c) | \bar{x} | $(3+3) / 2=3$ | $(3+5) / 2=4$ | $(5+5) / 2=5$ |
| :---: | :---: | :---: | :---: |
| $p(\bar{x})$ | $0.6^{2}=0.36$ | $2 \times 0.6 \times 0.4=0.48$ | $0.4^{2}=0.16$ |
8. (e) Mean $=10-12=-2$. $\mathrm{SE}=4.0139 \times \sqrt{\frac{1}{9}+\frac{1}{11}}=1.8041$ where $s_{p}=\sqrt{\frac{8\left(5^{2}\right)+10\left(3^{2}\right)}{8+10}}=4.0139$.
9. (a) $d_{i}=2,3,15,-2,-1,1,-1,7,2,10 . t_{\mathrm{obs}}=\frac{\bar{d}}{s_{d} / \sqrt{n}}=\frac{3.60-0}{5.461 / \sqrt{10}}=2.0846$
10. (d)
11. (b) Since n is large, $\hat{p} \sim N(0.6,0.6(1-0.6) / 200)$ by CLT. $P(\hat{p}>0.58)=P\left(Z>\frac{0.58-0.6}{\sqrt{0.6 \times 0.4 / 200}}\right)=P(Z>$ $-0.58)=P(Z<0.58)=0.7190$
12. (e) $Z=\frac{0.76-0.68}{\sqrt{0.72(1-0.72)\left(\frac{1}{100}+\frac{1}{100}\right)}}=1.2599$ where $\hat{p}=(76+68) / 200=0.72$.
13. (e)
```
> t.test(x[,1],x[,2],var.equal=T,paired=F)
```


Two Sample t-test

data: $x[, 1]$ and $x[, 2]$
$\mathrm{t}=-1.6863, \mathrm{df}=44, \mathrm{p}$-value $=0.09882$
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-9.0716538 0.8065022
sample estimates:
mean of x mean of y
58.4583362 .59091
14. (b)
15. (d)

