
MATH1015 Biostatistics Week 7

7 Estimation

7.1 Population and Sample (P.91-92)

Suppose that we wish to study a particular health problem in
Australia, for example, the average serum cholesterol level for all
40 to 60 year old males in Australia.

In this case the entire collection of all males ages 40-60 in Aus-
tralia is called the target population or simply the population. In
other words a population is the group we wish to study.

Definition: A parameter is a numerical feature of a population.
Two important parameters of a population are the mean µ and
variance, σ2 or sd, σ.

Q: How can we find the population mean serum cholesterol level
of all males ages 40-60 in Australia?

A difficult (but possible) approach is to take the serum choles-
terol levels of all males ages 40 to 60 in Australia. This is called
a census. This gives the true or exact value of this mean (pa-
rameter) cholesterol level of all males ages 40 to 60 in Australia.

As this is not always possible, statisticians can get a reasonable
estimate (NOT the true or exact value) by taking a sample of
males ages 40 to 60. However, this selection must be random in
order to reduce extra errors such as bias.

Definition: A random sample from a population is a set of mea-
surements selected such that each member has the same chance
of being selected.

In this week, we study the problem of parameter estimation. The
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estimated parameters are then used in statistical inference which
refers to the process of drawing conclusions from data that are
subject to random variation.

Note: The population mean and variance are considered to be
two important parameters in many statistical analysis. The fol-
lowing notation is used in practice:

• The population mean is denoted by µ.

• The population variance is denoted by σ2. The population
standard deviation (SD) is, therefore, σ.

7.2 Estimation the population mean, µ of a
distribution (P.92-94)

Suppose that we have a random sample of size n from the popula-
tion of interest. That is, we have n numerical values x1, x2, . . . , xn

from n random variables X1, X2, . . . , Xn.

A natural estimator for the mean µ is

X̄ =
1

n

n∑
i=1

Xi.

This X̄ is known as an estimator for µ and we write µ̂ = X̄.

Note:

1. A sample is only a part of the population. Therefore, the

sample mean x̄ =
1

n

n∑
i=1

xi calculated from n observed data

cannot be expected to give the exact value for the param-
eter µ.
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2. The observed value of x̄ depends on the particular sample
to be selected and it varies from sample to sample.

3. As there is variability in the value of sample mean over dif-
ferent samples, the behaviour of all possible sample means
is called the sampling distribution of the mean.

The following example illustrates the idea of sampling distribu-
tion and the variability of sample mean across samples.

Consider the outcomes of throwing a dice: {1, 2, 3, 4, 5, 6}.
Example: Write down the probability distribution of the av-
erage of two independent drawings with replacement from the
above set.

There are 62 = 36 possible samples drawing with replacement
from the population as shown below:

xi 1 2 3 4 5 6
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 2,4 2,5 2,6
3 3,1 3,2 3,3 3,4 3,5 3,6
4 4,1 4,2 4,3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6.1 6,2 6,3 6,4 6,5 6,6

The means of the above samples are given in the following table:
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x 1 2 3 4 5 6
1 1.0 1.5 2.0 2.5 3.0 3.5
2 1.5 2.0 2.5 3.0 3.5 4.0
3 2.0 2.5 3.0 3.5 4.0 4.5
4 2.5 3.0 3.5 4.0 4.5 5.0
5 3.0 3.5 4.0 4.5 5.0 5.5
6 3.5 4.0 4.5 5.0 5.5 6.0

This gives the sampling distribution of X̄ as below:

X̄ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

p(X̄ = x̄) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

This table shows that the probability distribution of X̄ is sym-
metric. The next section considers the sampling distribution of
X̄.
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7.3 Sampling distribution of X̄ (P.94-96)

The probability distribution of all possible values of x̄ is called
the sampling distribution of X̄. It can be seen that for large n
(or samples), the sampling distribution of X̄ is approximately
symmetric and approaches the normal distribution regardless of
the shape of data distribution.

Taking our previous example of throwing a dice, the data distri-
bution is uniform with

P (x = i) =
1

6
, i = 1, . . . , 6.

The sampling distribution of X̄ for n = 2 independent draws
is given in the table above. As the sample size n increases,
the distribution of X̄ gradually approaches normal as illustrated
below:
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This remarkable result as illustrated from the dice example is
known as The Central Limit Theorem (CLT) and plays a main
role in statistics.
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The Central Limit Theorem (CLT): Let X1, X2, . . . , Xn be
a random sample of size n from any population with mean µ and
variance σ2. Then for large n, the distribution of X̄ is approxi-
mately normal such that

X̄ ∼ N

(
µ,

σ2

n

)
.

Note:

1. As a rough guide in practice, any n ≥ 30 is considered as
large.

2. From the CLT we have,

Z =
X̄ − µ

σ√
n

∼ N(0, 1),

that is, Z is a standard normal random variable.

3.

√
σ2

n
=

σ√
n

is known as the standard error (se) of X̄.

With increasing sample size n or sample information, the se
decreases as the sample distribution is more concentrated
within the center. Hence the sample mean is a more precise
estimate of the true mean µ.

4. The idea of CLT as illustrated in the dice example shows
that even though the data distribution is uniform, the dis-
tribution of X̄ gradually approximates normal as the sam-
ple size n increases.

Read P.96 to 98.
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Example: Suppose that a random sample of size 64 was taken
from a population with mean µ = 82 and variance, σ2 = 144.

(a) What is the sampling distribution of X̄, the sample mean?
(b) Find the probability that the sample mean will lie between
80.8 and 83.2?

Solution: We have, µ = 82, σ2 = 144 and n = 64. Since n = 64
is large, the CLT can be applied. We have

(a) X̄ ∼ N
(
82, 144

64

)
or Z =

X̄ − µ√
σ2

n

=
X̄ − 82√
144/64

=
X̄ − 82

3/2
∼ N(0, 1).

(b) P (80.8 < X̄ < 83.2)

= P
(

80.8−82
3/2

< Z < 83.2−82
3/2

)
= P (−0.8 < Z < 0.8)

= 2P (0 < Z < 0.8)

= 2(0.7881− 0.5) = 0.5762.
z

−3 −2 −0.8 0.8 2 3

.288 .288

N(0, 1)

77.5 79 80.5 82 83.5 85 86.5

Original scale
80.8 83.2

Exercise: Find P (80.8 < X̄ < 83.2) when the sample size is
100.
Ans: 0.6826

Exercise: Book P.109 Q1 and Q3
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7.4 An application of the CLT

Example: The weights of pears in an orchard are normally
distributed with mean, µ = 120g and sd, σ = 32g.

(a) If one pear is selected at random, what is the probability
that its weight will be between 88g and 144g?
(b) If X̄ denotes the average weight of a random sample of 4
pears,

(i) write down the distribution of X̄.
(ii) give the se of X̄.
(iii) find the probability that X̄ will be between 88g and 144g.

Solution: (a) Let X be the weight of a randomly selected pear.
Therefore, X ∼ N(120, 322).

P (88 < X < 144)

= P

(
88− 120

32
< Z <

144− 120

32

)
= P (−1 < Z < 0.75)

= (0.8413− 0.5) + (0.7734− 0.5) = 0.6147.
z

−3 −2 −1 0 0.75 2 3

.341 .273

N(0, 1)

(b)(i) X̄ ∼ N(µ, σ2/n) or N(120, 322/4) or N(120, 162).

(ii) se(X̄) =
√
s2/n =

√
322/4 = 16.

(iii) P (88 < X̄ < 144)

= P
(
88−120

16
< Z < 144−120

16

)
= P (−2 < Z < 1.50)

= (0.9772− 0.5) + (0.9332− 0.5)

= 0.9104. z

−3 −2 −1 0 1.5 3

0.4773 0.4332

N(0, 1)
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7.5 Small samples from normal population (P.99-
101)

Let X1, X2, ..., Xn be a random sample from any population (not
necessarily normal) with mean µ and variance σ2. By the CLT
we know that if n is large, then

X̄ − µ

σ/
√
n

∼ N(0, 1).

When n is large, the sample sd s approximates well the popula-
tion sd σ. Therefore

X̄ − µ

s/
√
n

→ X̄ − µ

σ/
√
n
.

However, in many practical situations, we can only draw small
samples of sizes n less than 30 (n < 30).

What if n is small and we don’t know the value of the population
sd σ?

Then the corresponding sample sd, s is not a good approximation
to the population sd, σ. Therefore the above approximation does
not provide satisfactory results.

With the extra assumption that the sample is drawn from a
normal population, one can modify the above approach using
a slightly different distribution called the t distribution or Stu-
dent’s t distribution. This kind of inference based on small sam-
ple is known as the inference for small samples.
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7.6 The t distribution

Suppose that we draw a small sample (ie n < 30) from a normal
population with unknown sd. It can be shown that the distribu-
tion of

Tn =
X̄ − µ

S/
√
n

is t with n − 1 degrees of freedom (df). This is denoted by
Tn ∼ tn−1.

Remember: The df is always n − 1 or 1 less than the sample
size. That is, df = n− 1.

Shape of a t distribution

1. The curve is symmetric about zero with fat tails.
2. The larger the df (sample size), the thinner is the tail.
3. The total area under this curve is also one.

x

−3 −2 −1 0 1 2 3

Student t with 10 df

Note: The t distribution approaches normal if the df approaches
infinity.
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The following graph shows the shapes of different t distributions.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

t

−5 −4 −3 −2 −1 0 1 2 3 4 5

df=inf
df=10
df=5
df=2
df=1

The t-table
For our convenience, similar to that of standard normal tables,
the probabilities under a t curve for various df are tabulated.
However, the shaded area is given under the t curve is the right
tail.

Notes:

1. The t distribution is very useful for many problems with small
samples, especially when n < 30.

2. To obtain p = P (td < k), use the R command pt(k,d)

3. To find a percentile value k for a given probability p use the
command qt(p,d).
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−3 −2 −1 0 1 2 3t

Table 3: Student’s t Distribution Table
Percentile P (tν > t) = p for Student’s t-distributions with ν d.f.

ν,p 0.25 0.1 0.05 0.025 0.01 0.005 0.001
1 1.000 3.078 6.314 12.706 31.821 63.656 318.289
2 0.816 1.886 2.920 4.303 6.965 9.925 22.328
3 0.765 1.638 2.353 3.182 4.541 5.841 10.214
4 0.741 1.533 2.132 2.776 3.747 4.604 7.173
5 0.727 1.476 2.015 2.571 3.365 4.032 5.894

6 0.718 1.440 1.943 2.447 3.143 3.707 5.208
7 0.711 1.415 1.895 2.365 2.998 3.499 4.785
8 0.706 1.397 1.860 2.306 2.896 3.355 4.501
9 0.703 1.383 1.833 2.262 2.821 3.250 4.297
10 0.700 1.372 1.812 2.228 2.764 3.169 4.144

11 0.697 1.363 1.796 2.201 2.718 3.106 4.025
12 0.695 1.356 1.782 2.179 2.681 3.055 3.930
13 0.694 1.350 1.771 2.160 2.650 3.012 3.852
14 0.692 1.345 1.761 2.145 2.624 2.977 3.787
15 0.691 1.341 1.753 2.131 2.602 2.947 3.733

16 0.690 1.337 1.746 2.120 2.583 2.921 3.686
17 0.689 1.333 1.740 2.110 2.567 2.898 3.646
18 0.688 1.330 1.734 2.101 2.552 2.878 3.610
19 0.688 1.328 1.729 2.093 2.539 2.861 3.579
20 0.687 1.325 1.725 2.086 2.528 2.845 3.552

21 0.686 1.323 1.721 2.080 2.518 2.831 3.527
22 0.686 1.321 1.717 2.074 2.508 2.819 3.505
23 0.685 1.319 1.714 2.069 2.500 2.807 3.485
24 0.685 1.318 1.711 2.064 2.492 2.797 3.467
25 0.684 1.316 1.708 2.060 2.485 2.787 3.450

26 0.684 1.315 1.706 2.056 2.479 2.779 3.435
27 0.684 1.314 1.703 2.052 2.473 2.771 3.421
28 0.683 1.313 1.701 2.048 2.467 2.763 3.408
29 0.683 1.311 1.699 2.045 2.462 2.756 3.396
30 0.683 1.310 1.697 2.042 2.457 2.750 3.385

35 0.682 1.306 1.690 2.030 2.438 2.724 3.340
40 0.681 1.303 1.684 2.021 2.423 2.704 3.307
45 0.680 1.301 1.679 2.014 2.412 2.690 3.281
50 0.679 1.299 1.676 2.009 2.403 2.678 3.261
120 0.677 1.289 1.658 1.980 2.358 2.617 3.160
∞ 0.674 1.282 1.645 1.960 2.326 2.576 3.090
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Example: Find the 95th percentile (or the upper 5th percentile)
of a t distribution with 10 df.

Solution: From the t-table, the value with 10 df and 95th per-
centile or upper 5th percentile is 1.812. Hence

P (t10 < 1.812) = 0.95

−3 −2 −1 0 1.812 3

t10

0.95

0.05

Exercises:
1. Find the 1st percentile of t22 using table 3.
Answer: 2.508.

2. Find k such that
(i) P (t15 < k) = 0.90 and
(ii) P (t25 > k) = 0.01 using table 3.
Answers: (i) 1.341; (ii) 2.485
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7.7 Confidence interval for µ on small samples
(P.101-105)

A point estimate of µ can be obtained by the sample mean x̄. As
different samples provide different x̄, we do not know whether
our sample estimate is good enough to represent the population
mean µ. Further, it does not show the variability of x̄ across all
possible samples. Moreover, the chance that it equals exactly to
the true mean µ is (almost) zero.

To avoid this uncertainty, statisticians calculate an interval con-
taining the true parameter with a given high probability. This
is called an interval estimate or confidence interval (CI).

That is, an interval estimate, shows with a high level of proba-
bility (confidence) that it includes the true parameter.

We first look at the problem of constructing CI for the population
mean µ based on a small sample from a normal population.

The key result we use in small sample inference is

Tn−1 =
X̄ − µ

S/
√
n

∼ tn−1,

where X1, X2, . . . , Xn is a random sample of size n (n is small
or less than 30) from N(µ, σ2) and σ2 is unknown.

From the t table, we can find the value k such that

P (−k < tn−1 < k) = 1− α

equals a given (or known) probability. Note that α is the sum of
area on two sides and α/2 is the area on each side.
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x

−3 −k −1 0 1 k 3

1 − α

tn−1

α 2α 2

Note: In general a confidence interval (CI) is defined as follows:

Definition: The random interval [θ̂L, θ̂R] is called a 100(1−α)%
confidence interval (CI) for θ if

P (θ̂L ≤ θ ≤ θ̂R) = 1− α,

where θ̂L and θ̂R are two statistics.

Then α is called the significant level of the CI whereas 1 − α
is the confident level. For a 95% CI, say, the significant level
α = 0.05.

Example: Find the value of k such that P (−k < t11 < k) =
0.95.

Solution: From the t table, the value with 11 df and
95th percentile or upper (1− 0.95)/2,
i.e. 0.025 percentile is k = 2.201.

Therefore, P (-2.201 < t11 < 2.201) = 0.95.

x

−3 −2.201 −1 0 1 2.201 3

0.95

t11
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Note: In this example, we allocate 95% of the probability in
the middle (symmetric) of the t11 curve. We use this approach
to find a symmetric confidence interval (CI) for µ.

Example: Heights were measured for 12 plants grown under the
treatment of a particular nutrient. The sample mean, x̄ = 450
cm and the standard deviation, s = 8 cm. Construct a 95% CI
for µ.
Solution: Note that:

t =
X̄ − µ

S/
√
12

∼ t11.

From the t table, the value of k such that P (−k < t11 < k) =
0.95 is k = 2.201. Now we have,

−2.201 < 450−µ

8/
√
12

< 2.201

or −2.201× 8/
√
12 < 450− µ < 2.201× 8/

√
12.

or −2.201× 8/
√
12 < µ− 450 < 2.201× 8/

√
12.

x

443.1 444.9 447.7 450 452.3 455.1 456.9

0.95

t11(450, 2.312)

This gives a 95% CI for µ as

450− 2.201× 8/
√
12 < µ < 450 + 2.201× 8/

√
12

or 444.917 < µ < 455.083.

Since

−tn−1,α/2 <
X̄ − µ

S/
√
n

< tn−1,α/2 ⇔ X̄− tn−1,α/2
S√
n
< µ < X̄+ tn−1,α/2

S√
n
,

where tn−1,α/2 is the value of the t distribution with n−1 df and
the middle area of (1−α) or equivalently the upper area of α/2.

Hence the (1− α)% CI for µ is(
X̄ − tn−1,α/2

S√
n
, X̄ + tn−1,α/2

S√
n

)
.
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Example: A random sample of n = 15 from a normal popula-
tion gave x̄ = 39.3 and s = 2.6. Find a 90% CI for µ.

Solution: We have df=15 − 1 = 14 and upper percentile is
(1− 0.90)/2 = 0.05. The t table gives, t14 = 1.761. Therefore, a
90% CI for µ is:(

X̄ − tn−1 × S/
√
n, X̄ + tn−1 × S/

√
n
)

=
(
39.3− 1.761× 2.6/

√
15, 39.3 + 1.761× 2.6/

√
15
)

= (38.12, 40.48)

x

−3 −1.761 −1 0 1 1.761 3

0.90

t14(0, 1)

x

37.3 38.1 38.6 39.3 40 40.5 41.3

0.90

t14(39.3, 0.672)

7.8 Interpretation of a CI

Over the collection of all CIs (at a given sig. level, say 95%) that
could be constructed from repeated random samples of size n,
95% will contain the true parameter µ. It does not mean that
P (a < µ < b) = 0.95 since the population mean µ is fixed and
hence the probability about a fixed value does not make sense.
The following example demonstrates the meaning of CI.

Example: In a population with µ = 52.575 and σ2 = 886.847,
50 random samples of size n = 20 are drawn. The 50 CIs and
their coverage of the true mean µ are shown below.
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56.020 1047.629 (43.332, 68.708) q
53.650 973.679 (41.418, 65.882) q
60.052 1044.769 (47.381, 72.722) q
49.350 606.324 (39.697, 59.002) q
49.082 994.433 (36.721, 61.444) q
49.038 1058.878 (36.282, 61.794) q
42.857 937.009 (30.858, 54.856) q
46.682 901.619 (34.911, 58.453) q
42.694 677.978 (32.487, 52.901) q
52.922 1086.781 (39.999, 65.844) q
47.778 926.727 (35.845, 59.712) q
48.950 705.443 (38.539, 59.362) q
52.200 1227.258 (38.467, 65.933) q
50.395 714.205 (39.919, 60.871) q
54.384 845.914 (42.982, 65.785) q
49.296 968.221 (37.099, 61.494) q
50.167 957.080 (38.040, 62.295) q
50.082 948.243 (38.010, 62.153) q
58.146 840.061 (46.785, 69.508) q
51.010 1144.449 (37.749, 64.271) q
54.947 1021.469 (42.418, 67.476) q
51.596 907.564 (39.787, 63.405) q
60.053 612.693 (50.350, 69.756) q
61.360 730.304 (50.767, 71.954) q
37.612 642.730 (27.674, 47.550) r
45.641 788.646 (34.632, 56.640) q
47.266 678.076 (37.059, 57.474) q
51.645 815.394 (40.452, 62.839) q
48.601 760.584 (37.790, 59.412) q
49.368 1003.110 (36.953, 61.784) q
52.723 874.174 (41.133, 64.313) q
43.005 622.081 (33.228, 52.782) q
33.760 586.996 (24.262, 43.257) r
57.683 656.446 (47.639, 67.726) q
68.100 750.229 (57.363, 78.837) r
59.298 695.199 (48.962, 69.634) q
47.474 1021.986 (34.942, 60.006) q
47.749 962.295 (35.588, 59.909) q
50.098 785.590 (39.111, 61.085) q
51.697 893.741 (39.978, 63.416) q
45.989 731.062 (35.390, 56.588) q
54.382 735.614 (42.392, 66.373) q
56.294 898.002 (44.547, 68.041) q
52.548 1333.015 (38.236, 66.860) q
53.236 1147.398 (39.958, 66.514) q
57.694 766.730 (46.840, 68.548) q
63.771 860.750 (52.270, 75.271) q
48.835 875.848 (37.234, 60.437) q
66.575 645.377 (56.416, 76.333) r
56.731 1070.385 (43.906, 69.556) q

x s2 C.I. µ = 52.575

46 CIs cover µ
4 CIs not cover µ
2 on left &

2 on right
Actual coverage

=
46

50
= 0.92

Nominal coverage
= 1− α = 0.95
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Note that the CIs change in both location and length as we move
from sample to sample. Hence CI is also random and in repeated
sampling, roughly 95% of the CIs contain the true mean µ.

7.9 CI for proportion (P.106-108)

The ideas of CLT and CI can be applied to binary variables.
When the outcomes are binary, the sample mean becomes the
sample proportion of “success” for certain event of interest, for
example, the germination of seeds.

Let X1, . . . .Xn be the sample of size n (independent trials) and
Xi = 1 if the i-th observation is a “success” and 0 otherwise.
Then Xi ∼ Bern(p) where p is the true but unknown probability
or population proportion of “success” which is estimated by the
sample proportion X

n
whereX is the sample total. From Chapter

5, we know that

X = X1 + · · ·+Xn ∼ B(n, p).

By CLT, the sample mean of X1, . . . , X2 is

p̂ =
X

n
∼ N

(
µ,

σ2

n

)
when n is large.

What should the mean µ and variance σ2 be?

Answer: They refer to the random variable Yi ∼ Bern(p) such
that

E(Yi) = µ = p and V ar(Yi) = σ2 = p(1− p).
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Hence

p̂ =
X

n
∼ N

(
p,

p(1− p)

n

)
when n is large.

Then the (1− α)% CI for the population proportion p is given
by: (

p̂− Z1−α/2

√
p̂(1− p̂)

n
, p̂+ Z1−α/2

√
p̂(1− p̂)

n

)
.

Example: Find the 95% confidence interval for the germination
rate if 65 out of 100 seeds are germinated in an experiment.

Solution: We haveX = 65, n = 100, α = 0.05 and z0.975 = 1.96.
The sample proportion of germination is

p̂ =
X

n
= 65

100
= 0.65.

Hence the 95% CI for the population proportion p is(
p̂− Zα/2

√
p̂(1− p̂)

n
, p̂+ Zα/2

√
p̂(1− p̂)

n

)

=

(
0.65− 1.96

√
0.65× 0.35

100
, 0.65 + 1.96

√
0.65× 0.35

100

)
= (0.5565, 0.7435)
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x

0.507 0.557 0.602 0.65 0.698 0.743 0.793

0.95

N(0.65, 0.0482)

.025.025

Exercise: The experiment is repeated with another type of
seeds. Find the 90% CI for the germination rate if 105 out of
120 seeds are germinated.

Answer: (0.8253, 0.9247)

Exercises: Book P.109 Q2, Q4-8.

In next week, we will look at the problem of making decisions
about the population parameters, for example, the population
mean µ and population proportion p, based on the sample in-
formation. This problem of statistical inference is known as hy-
pothesis testing.
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