Semester 1	Solution to Problem Set 1	2013

1. The frequency table:

x	0	1	2	3	4	5	6	7	8	Total
freq	9	8	4	4	2	1	1	1	1	31

2. B Node is the observation with highest frequency. From the frequency table above, "0" has the highest frequency of " 9 " and hence is the node of the data.
3. B Since there are $n=31$ observations, the median is located at the $\frac{31+1}{2}=16$-th observation in ascending order. The cumulated frequencies of the table in Q1 are $9,17,21,25,27,28,29,30,31$. Hence the median lies in the 2 nd class $(16<17)$ and so takes the value of 1 .
4. D The mean is $\frac{1}{31} \sum_{i=1}^{31} x_{i}=\frac{1(8)+2(4)+3(4)+4(2)+5+6+7+8}{31}=2$.

In R
$>\mathrm{x}=\mathrm{c}(2,0,0,1,1,0,2,1,3,3,6,7,0,4,1,0,1,1,3,2,1,0,8,0,0,4,5,1,0,2,3)$
$>$ table(x)
x
012345678
984421111
$>$ median(x)
[1] 1
$>$ mean (x)
[1] 2
5. Mean $=18.79167 . n=24$.

The no. of class $=k=1+3.322 \times \log (24) / \log (10)=5.59$. Take $k=6$
The class width $=w=(31-10) / 6=3.5$. Take $w=4$.
Hence the class intervals are (9,13],(13,17],(17,21],(21,25],(25,29],(29,33].
The frequency table is
CLASS INTERVAL CLASS CENTER FREQUENCY

$9-13$	11	4
$13-17$	15	8
$17-21$	19	6
$21-25$	23	2
$25-29$	27	1
$29-33$	31	3
TOTAL		24

Histogram of x

6. $0.1,0.2,0.7,0.7,0.9,1.1,1.6,4.0,6.5,9.2,11.9,29.1$.

The stem-and-leaf plot for the data is
The decimal point is 1 digit(s) to the right of the \mid
0 | 0011112479
1 | 2
$2 \mid 9$
7. R exercise:

```
> x=c(0.7,1.1,0.7,0.9,6.5,1.6,4.0,29.1,0.2,0.1,9.2,11.9)
> mean(x)
[1] 5.5
> sort(x)
    [1] 0.1 0.2 0.7 0.7 0.9 1.1 1.6 4.0
> length(x)
[1] 12
> median(x)
[1] 1.35
> summary(x)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
```



```
>y=1:12
> plot(x,y)
> plot(y,x)
```


