1. Answer: (b) Use t-table with $\mathrm{df}=27-1=26$ and upper area $=0.05$.
2. Answer: (c) The pooled variance is $s_{p}^{2}=\frac{(12-1) 8.75^{2}+(15-1) 10^{2}}{12+15-2}=\frac{2242.188}{25}=89.6875$. Therefore, $s_{p}=\sqrt{89.6875}=9.47$.
3. Answer: (d) Reason: $\mathrm{df}=n_{1}+n_{2}-2=12+15-2=25$.
4. Answer: The test statistic is $t_{\mathrm{obs}}=\frac{\bar{x}-\bar{y}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{119.4-116.25}{9.47 \sqrt{\frac{1}{12}+\frac{1}{15}}}=0.86$. The P-value $=2 \mathrm{P}\left(T_{25}>|0.86|\right)>0.05$. Since this is large, we have evidence consistent with H_{0}.

Assumptions : Each sample is from a normal population. The variances of the two populations are equal. The two samples are distributed independently of each other.
5. Let $\mu_{1}=$ mean wear with sandpaper A and $\mu_{2}=$ mean wear with sandpaper B .

1. The hypotheses: $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{1}: \mu_{1} \neq \mu_{2}$.
2. Test statistic:

$$
t_{\mathrm{obs}}=\frac{\bar{x}-\bar{y}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{27.4-24.1}{2.75 \sqrt{\frac{1}{10}+\frac{1}{11}}}=2.74,
$$

where $s_{p}^{2}=\frac{9(2.3)^{2}+10(3.1)^{2}}{10+11-2}=2.75^{2}$.
3. The P-value: $2 \mathrm{P}\left(T_{19}>|2.74|\right) \in(0.01,0.02)$.
4. Conclusion: Since P-value <0.05, we have strong evidence against H_{0}. That is, the mean abrasive wear is different for the two sandpapers.
6. Let $p_{1}=$ proportion of women who caught the flu and $p_{2}=$ proportion of men who caught the flu.

1. Hypotheses: $H_{0}: p_{1}=p_{2}$ vs. $H_{1}: p_{1} \neq p_{2}$.
2. Test statistic:

$$
z_{0}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{0.38-0.51}{\sqrt{0.47(0.53)\left(\frac{1}{100}+\frac{1}{200}\right)}}=-2.13,
$$

where $\hat{p}=\frac{100(0.38)+200(0.51)}{100+200}=0.47$.
3. The P-value: $2 \mathrm{P}(Z>|-2.13|)=2(1-0.9834)=0.0332$.
4. Conclusion: Since P-value <0.05, we have strong evidence against H_{0}. That is, the percent of people with the flu differs between the genders.
7. Let $p_{1}=$ proportion of patients with reduced iron among the treated and $p_{2}=$ proportion of patients with reduced iron among the placebo group.

1. Hypotheses: $H_{0}: p_{1}=p_{2}$ vs. $H_{1}: p_{1}>p_{2}$.
2. Test statistic:

$$
z_{0}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{\frac{35}{120}-\frac{19}{120}}{\sqrt{0.225(1-0.225)\left(\frac{1}{120}+\frac{1}{120}\right)}}=2.47
$$

where $\hat{p}=\frac{19+35}{120+120}=0.225$.
3. The P-value: $\mathrm{P}(Z>2.47)=1-0.9932=0.0068$.
4. Conclusion: Since P-value <0.05, we have strong evidence against H_{0}. That is, the percent of people with reduced iron is higher among the treated patients.
8. For the P-value use 1 - $\mathrm{pt}(3.45,26)$. Answer is 0.0009627558 . For the critical value use $\mathrm{qt}(0.95,26)$. Answer is 1.705618 .
9. $>\mathrm{x}=\mathrm{scan}()$

1: 6711118121211131010124891087118101411587812
29:
Read 28 items
$>y=s c a n()$
1: 125101291312912131314121261112812121011111410125121411
31:
Read 30 items
>t.test(x, y, var.equal = T)

Two Sample t-test
data: x and y
$\mathrm{t}=-2.4611, \mathrm{df}=56, \mathrm{p}$-value $=0.01696$
alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:
-2. $8548132-0.2928059$
sample estimates:
mean of x mean of y
9.39285710 .966667
>boxplot (x, y)

Conclusion: Since the P-value $=0.01696<0.05$, the data provide strong evidence against the null hypothesis. Therefore, we have evidence that the mean marks in the two tutorials are different.

Comment: It seems that the midmorning tutorial has marks that are not normally distributed - the distribution is heavily left skewed and has two outliers. Also the equality of variance assumption might not be met because the spread of the two distribution are not similar. The midmorning tutorial has lower spread (variance) after excluding the two outliers.
10. prop.test $(c(35,19), c(120,120)$, alt $=$ "g", correct $=F)$

2-sample test for equality of proportions without continuity correction
data: $c(35,19)$ out of $c(120,120)$
X-squared $=6.1171, \mathrm{df}=1, \mathrm{p}$-value $=0.006694$
alternative hypothesis: greater
95 percent confidence interval:
0.04579721 .0000000
sample estimates:
prop 1 prop 2
0.29166670 .1583333
$2.47^{\wedge} 2$
[1] 6.1009
Result almost the same as X -squared $=6.1171$ (if we keep 3 dp for $z_{0}=2.473$, then the result is more accurate).

1-pnorm(2.47)
[1] 0.006755653
Again, result is almost identical to the P-value calculated from the Z-table, except that R provides more precision.

Additional Problems to Week 10 - Solutions

1. Two sample t-test:

Year	Size	Mean	St. Dev
1975	30	12.78	0.43
1985	40	12.42	0.67

Let $\mu_{1}=$ mean age at menarche of girls in the 1975 class and $\mu_{2}=$ mean age at menarche of girls in the 1985 class.

1. The hypotheses: $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{1}: \mu_{1} \neq \mu_{2}$.
2. Test statistic:

$$
t_{0}=\frac{\bar{x}-\bar{y}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{12.78-12.42}{0.5799239 \sqrt{\frac{1}{30}+\frac{1}{40}}}=2.570237
$$

where $s_{p}^{2}=\frac{29(0.43)^{2}+39(0.67)^{2}}{30+40-2}=0.5799239^{2}$.
3. The P-value: $2 \mathrm{P}\left(T_{68}>2.570237\right) \in(0.005,0.01)$.
4. Conclusion: Since P-value <0.05, we have strong evidence against H_{0}. That is, the mean age at menarche of girls in the 1975 class is different from those from the 1985 class.

If the comparison is made on classes from the same school, the school effect is controlled or eliminated.
2. Paired sample t-test:

Person i	1	2	3	4	5	6	7	8	9	10	mean	s.d.
Aspirin A x_{i}	15	26	13	28	17	20	7	36	12	18		
Aspirin B y_{i}	13	20	10	21	17	22	5	30	7	11		
Difference d_{i}	2	6	3	7	0	-2	2	6	5	7	3.6	3.0984

Let $\mu_{1}=1$-hour concentration for Aspirin A and $\mu_{2}=1$-hour concentration for Aspirin B.

1. The hypotheses: $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{1}: \mu_{1} \neq \mu_{2}$.
2. Test statistic:

$$
t_{0}=\frac{\bar{d}-\mu_{d}}{s_{d} / \sqrt{n}}=\frac{3.6-0}{3.0984 / \sqrt{10}}=3.674219
$$

3. The P-value: $2 \mathrm{P}\left(T_{9}>3.674219\right) \in(0.001,0.005)$.
4. Conclusion: Since P-value <0.05, we have strong evidence against H_{0}. That is, the 1-hour concentration for Aspirin A is different from those from Aspirin B.
5. Two sample Z-test:

Group	Size	Count
Current smoker	2000	40
Ex-smoker	1000	10

Let $p_{1}=$ proportion of current woman smoker who developed MI and $p_{2}=$ proportion of woman ex-smoker who developed MI.

1. Hypotheses: $H_{0}: p_{1}=p_{2}$ vs. $H_{1}: p_{1}>p_{2}$.
2. Test statistic:

$$
z_{0}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{\frac{40}{2000}-\frac{10}{1000}}{\sqrt{\frac{50}{3000}\left(1-\frac{50}{3000}\right)\left(\frac{1}{2000}+\frac{1}{1000}\right)}}=2.016878,
$$

where $\hat{p}=\frac{40+10}{2000+1000}=\frac{50}{3000}$.
3. The P-value: $2 \mathrm{P}(Z>2.016878)=2(1-0.9783)=0.0434$.
4. Conclusion: Since P-value <0.05, we have sufficient evidence against H_{0}. That is, the incidence rate of MI among current woman smoker is different from those among woman ex-smoker.

