TUTORIAL EXERCISE PACKAGE - 2013

MATH1015 - BIOSTATISTICS

Semester 1 Solution to Tutorial Set 11 2013	Semester 1 Solution to Tu	rial Set 11 2013
---	---------------------------	------------------

- 1. (a) a = 9.236; (b) a = 18.307(c) 0.025 < Prob < 0.05; (d) 0.025 < Prob < 0.05
- 2. (d)
- 3. (a) $\chi^2_{\text{obs}} = \sum_{i=1}^3 \frac{(18-25)^2}{25} + \frac{(55-50)^2}{50} + \frac{(27-25)^2}{25} = 1.96 + 0.50 + 0.16 = 2.62$
- 4. P-value = $P(\chi_2^2 \ge 2.62) > 0.1$ Thus the data are consistent with the null hypothesis H_0 .
- 5. The χ^2 GOF test is
 - (a) Hypothesis: $H_0: p_1 = 0.45, p_2 = 0.40, p_3 = 0.15$ vs $H_1:$ At least one equality does not hold.
 - (b) **Test statistic:** The expected frequencies are respectively:

 $200 \times 0.45 = 90;$ $200 \times 0.40 = 80;$ $200 \times 0.15 = 30$

$$\chi_{\rm obs}^2 = \sum_{i=1}^3 \frac{(O_i - E_i)^2}{E_i} = \frac{(102 - 90)^2}{90} + \frac{(82 - 80)^2}{80} + \frac{(16 - 30)^2}{30} = 8.183$$

- (c) **P-value:** $0.01 < \text{p-value} = P(\chi_2^2 > 8.183) < 0.025 \ (0.016711 \text{ from R; df=3-1=2})$
- (d) **Conclusion:** Since *P*-value < 0.05, there is strong evidence in the data against H_0 . There is significant change in the mortality rates over the past ten.
- 6. The χ^2 test for independence between "level of job satisfaction" and "gender" is
 - (a) Hypotheses:

 $H_0: p_{ij} = p_i \times p_j$, i.e. "level of job satisfaction" and "gender" are independent. H_1 : Not all equalities hold, i.e. "level of job satisfaction" and "gender" are dependent.

(b) Test statistic: The calculation of the expected frequencies E_{ij} and squared standardized residuals d_{ij}^2 under H_0 are:

Gender	Very interesting	Fairly interesting	Not interesting
Male	$E_{11} = \frac{120 \times 105}{200} = 63$	$E_{12} = \frac{120 \times 75}{200} = 45$	$E_{13} = \frac{120 \times 20}{200} = 12$
	$d_{11}^2 = \frac{(70 - 63)^2}{63} = 0.778$	$d_{12}^2 = \frac{(41 - 45)^2}{45} = 0.356$	$d_{13}^2 = \frac{(9-12)^2}{12} = 0.750$
Female	$E_{21} = \frac{80 \times 105}{200} = 42$	$E_{22} = \frac{80 \times 75}{200} = 30$	$E_{23} = \frac{80 \times 20}{200} = 8$
	$d_{21}^2 = \frac{(35-42)^2}{42} = 1.167$	$d_{22}^2 = \frac{(34-30)^2}{30} = 0.533$	$d_{23}^2 = \frac{(11-8)^2}{8} = 1.125$

$$\chi_{\rm obs}^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = 0.778 + 0.356 + \ldots + 1.125 = 4.708$$

(c) *P*-value: $P(\chi_2^2 > 4.708) < 0.10 \ (0.09497 \text{ from R}; df=(3-1)(2-1)=2)$

- (d) Conclusion: Since *P*-value < 0.10, there is sufficient evidence in the data against H_0 . We conclude that "level of job satisfaction" and "gender" are dependent at $\alpha = 0.10$.
- 7. Refer to Q1.
 - (c) 1 pchisq(38.5, 25) Answer is 0.04131387
 - (d) 1 pchisq(22.1, 12) Answer is 0.03641422
- 8. Refer to Q5.

> chisq.test(c(102,82,16),p=c(0.45,0.4,0.15))

Chi-squared test for given probabilities

data: c(102, 82, 16)
X-squared = 8.1833, df = 2, p-value = 0.01671

9. Refer to Q6.

```
> x=c(70,35,41,34,9,11)
> x.mat=matrix(x,2,3)
> x.mat
      [,1] [,2] [,3]
[1,] 70 41 9
[2,] 35 34 11
> chisq.test(x.mat)
```

Pearson's Chi-squared test

data: x.mat
X-squared = 4.7083, df = 2, p-value = 0.09497

```
10. > dat=read.table(file="lead-IQ.txt")
> x=dat[,1]
> y=dat[,2]
> tab=table(x,y)
> tab
        y
x        1      2
        1      46      11
        2      33      12
        3      15      7
> chisq.test(tab)
```

Pearson's Chi-squared test

```
data: tab
X-squared = 1.5922, df = 2, p-value = 0.4511
```

The test statistic is 1.5922, the df is 2 ((3-1)(2-1)=2) and the *P*-value is 0.4511. Since the *P*-value is greater than 0.05, the data are consistent with H_0 . The two factors of **distance** and **IQ** are independent.

Additional Problems for Week 11 - Solutions

1. Complete the following table to calculate the test statistics $\chi^2_{\rm obs}$:

Restaurant	Observed	Expected freq.		
	freq. O_i	$E_i = np_i$	$(O_i - E_i)$	$\frac{(O_i - E_i)^2}{E_i}$
А	48	$150 \times \frac{1}{3} = 50$	-2	$\frac{(-2)^2}{50} = 0.08$
В	62	$150 \times \frac{1}{3} = 50$	12	$\frac{12^2}{50} = 2.88$
С	40	$150 \times \frac{1}{3} = 50$	-10	$\frac{(-10)^2}{50} = 2.00$
Total	150	150	0	$\chi^2_{\rm obs} = 4.96$

The χ^2 GOF test is

1. Hypothesis:	$H_0: p_1 = p_2 = p_3 = \frac{1}{3}$ vs
	H_1 : At least one equality does not hold.
2. Test statistic:	$\chi^2_{\rm obs} = \sum_i \frac{(O_i - E_i)^2}{E_i} = 4.96$
3. P-value:	P -value = $P(\chi_2^2 > 4.96) > 0.05 (0.08374 \text{ from R; df=3-1=2})$
4. Conclusion:	Since P -value > 0.05, the data are consistent with H_0 .
	There is no preference among the three restaurants.

> x=c(48,62,40)

> p=c(1/3,1/3,1/3)

```
> chisq.test(x,p=p)
```

Chi-squared test for given probabilities

data: x
X-squared = 4.96, df = 2, p-value = 0.08374

2. The data are

		Duration of IUD use			
	< 3	$\geq 3, < 8$	$\geq 18, \leq 36$	> 36	Total
Cases	10	23	20	36	89
Controls	53	200	168	219	640
Total	63	223	188	255	729

The χ^2 test for independence between "duration of IUD" and "infertility" is

(a) Hypotheses:

 $H_0: p_{ij} = p_i \times p_j$, i.e. "duration of IUD" and "infertility" are independent. $H_1:$ Not all equalities hold, i.e. "duration of IUD" and "infertility" are dependent.

(b) Test statistic: The calculation of the expected frequencies E_{ij} and squared residuals d_{ij}^2 under H_0 are:

	< 3	$\geq 3, < 8$	$\geq 18, \leq 36$	> 36
	125	120	120	$E_{14} = \frac{89 \times 255}{729} = 31.13$
	$d_{11}^2 \!=\! \frac{(10-7.69)^2}{7.69} \!=\! 0.693$	$d_{12}^2 = \frac{(23 - 27.22)^2}{27.22} = 0.656$	$d_{13}^2 = \frac{(20 - 22.95)^2}{22.95} = 0.380$	$d_{14}^2 \!=\! \frac{(36 \!-\! 31.13)^2}{31.13} \!=\! 0.761$
Control	$E_{21} = \frac{640 \times 63}{729} = 55.31$	$E_{22} = \frac{640 \times 223}{729} = 195.78$	$E_{23} = \frac{640 \times 188}{729} = 165.05$	$E_{24} = \frac{640 \times 255}{729} = 223.87$
	$d_{21}^2 = \frac{(53 - 55.31)^2}{55.31} = 0.096$	$d_{22}^2 = \frac{(200 - 195.78)^2}{195.78} = 0.091$	$d_{23}^2 = \frac{(168 - 165.05)^2}{165.05} = 0.053$	$d_{24}^2 = \frac{(219 - 223.87)^2}{223.87} = 0.106$

$$\chi_{\rm obs}^2 = \sum_{i=1}^2 \sum_{j=1}^4 \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = 0.693 + 0.656 + \ldots + 0.106 = 2.836$$

(c) *P*-value: $P(\chi_3^2 > 2.836) > 0.25$ (0.4176 from R; df=(4-1)(2-1)=3)

(d) Conclusion: Since P-value > 0.05, the data are consistent with H_0 . We conclude that "duration of IUD" and "fertility" are independent.

> x=c(10,53,23,200,20,168,36,219)
> x.mat=matrix(y,2,4)
> x.mat
 [,1] [,2] [,3] [,4]
[1,] 10 23 20 36

```
[2,] 53 200 168 219
> chisq.test(x.mat)
```

Pearson's Chi-squared test

data: x.mat
X-squared = 2.8358, df = 3, p-value = 0.4176

3. The data are

	sex-linked	recessive	dominant	Total
English	46	25	54	125
Swiss	1	99	10	110
Total	47	124	64	235

The χ^2 test for independence between "ethnic origin" and "genetic type" is

(a) Hypotheses:

 $H_0: p_{ij} = p_i \times p_j$, i.e. "ethnic origin" and "genetic type" are independent. $H_1:$ Not all equalities hold, i.e. "ethnic origin" and "genetic type" are dependent.

(b) Test statistic: The calculation the expected frequencies E_{ij} and squared residuals d_{ij}^2 under H_0 are:

	sex-linked	recessive	dominant
Eng	$E_{11} = \frac{125 \times 47}{235} = 25.00$	$E_{12} = \frac{125 \times 124}{235} = 65.96$	$E_{13} = \frac{125 \times 64}{235} = 34.04$
	$d_{11}^2 = \frac{(46-25)^2}{25} = 17.64$	$d_{12}^2 = \frac{(25 - 65.96)^2}{65.96} = 25.43$	$d_{13}^2 \!=\! \frac{(54 - 34.04)^2}{34.04} \!=\! 11.70$
Swiss	$E_{21} = \frac{110 \times 47}{235} = 22.00$	$E_{22} = \frac{110 \times 124}{235} = 58.04$	$E_{23} = \frac{110 \times 64}{235} = 29.96$
	$d_{21}^2 = \frac{(1-22)^2}{22} = 20.05$	$d_{22}^2 = \frac{(99-58.04)^2}{58.04} = 28.90$	$d_{23}^2 = \frac{(10 - 29.96)^2}{29.96} = 13.30$
$v^2 = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{(O_{ij} - E_{ij})^2}{(O_{ij} - E_{ij})^2} = 17.64 \pm 25.43 \pm 13.30 \pm 117.02$			

$$\chi^2_{\text{obs}} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{(0 i j - L i j)}{E_{ij}} = 17.64 + 25.43 + \dots + 13.30 = 117.02$$

(c) *P*-value: $P(\chi_2^2 > 117.02) < 0.0000$ (0.0000 from R; df=(3-1)(2-1)=2)

(d) Conclusion: Since *P*-value < 0.05, there is very strong evidence in the data against H_0 . We conclude that "ethnic origin" and "genetic type" are dependent.

```
> x=c(46,1,25,99,54,10)
> x.mat=matrix(y,2,3)
> x.mat
      [,1] [,2] [,3]
```

[1,] 46 25 54 [2,] 1 99 10 > chisq.test(x.mat)

Pearson's Chi-squared test

data: x.mat
X-squared = 117.0157, df = 2, p-value < 2.2e-16</pre>