1. 2. Hypotheses:
H_{0} : performance and training are independent
H_{1} : performance and training are dependent
The expected counts under H_{0} are:

$$
E_{11}=\frac{150(120)}{200}=90, E_{12}=\frac{150(80)}{200}=60, E_{21}=\frac{50(120)}{200}=30, E_{22}=\frac{50(80)}{200}=20
$$

2. The test statistic is:

$$
\chi_{\text {obs }}^{2}=\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=\frac{(100-90)^{2}}{90}+\frac{(50-60)^{2}}{60}+\frac{(20-30)^{2}}{30}+\frac{(30-20)^{2}}{20}=11.1
$$

3. P-value: $\mathrm{P}\left(\chi_{1}^{2}>11.1\right)<0.01$, where $\mathrm{df}=(2-1)(2-1)=1$.
4. Conclusion: Since P-value $<0.01<0.05$, we have very strong evidence against H_{0}. That is, work performance and training are related to each other.
5. 6. Hypotheses: $H_{0}: p_{1}=p_{2}=p_{3}=p_{4}=0.25$ vs. H_{1} : at least one $p_{i} \neq 0.25$

The expected counts under H_{0} are: $E_{1}=E_{2}=E_{3}=E_{4}=0.25(100)=25$
2. The test statistic is:

$$
\chi_{\mathrm{obs}}^{2}=\sum_{i=1}^{4} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=\frac{(35-25)^{2}}{25}+\frac{(30-25)^{2}}{25}+\frac{(20-25)^{2}}{25}+\frac{(15-25)^{2}}{25}=10 .
$$

3. P-value: $\mathrm{P}\left(\chi_{3}^{2}>10\right) \in(0.01,0.025)$, where $\mathrm{df}=4-1=3$.
4. Conclusion: Since P-value $<0.025<0.05$, we have strong evidence against H_{0}. That is, the proportions of movie type preferences are different.
5. Answer. (d) $L_{x x}=\sum_{i} x_{i}{ }^{2}-\left(\sum_{i} x_{i}\right)^{2} / n=59-(25)^{2} / 12=6.917$,
$L_{y y}=\Sigma_{i} y_{i}{ }^{2}-\left(\Sigma_{i} y_{i}\right)^{2} / n=15648-(432)^{2} / 12=96$ and
$L_{x y}=\Sigma_{i} x_{i} y_{i}-\left(\Sigma_{i} x_{i}\right)\left(\Sigma_{i} y_{i}\right) / n=880-(25)(432) / 12=-20$ and therefore,
$r=\frac{-20}{\sqrt{6.917(96)}}=-0.776$
6. Answer: (c). Explanation: See Q3 solution.
7. Answer: (d). Explanation: $b=\frac{L_{x y}}{L_{x x}}=\frac{-20}{6.917}=-2.891$
8. Answer: (a). Explanation: $a=\bar{y}-b \bar{x}=\frac{432}{12}-(-2.891) \frac{25}{12}=36+2.891(2.083)=42.02$. Therefore, $\hat{y}=42.02+(-2.891)(5)=27.568$.
9. $\quad \Sigma_{i} x_{i}=520 ; \quad \Sigma_{i} x_{i}{ }^{2}=38000 ; \quad \Sigma_{i} y_{i}=97 ; \quad \Sigma_{i} y_{i}{ }^{2}=1217 ; \quad \Sigma_{i} x_{i} y_{i}=5910$
$L_{x x}=\Sigma_{i} x_{i}{ }^{2}-\left(\sum_{i} x_{i}\right)^{2} / n=38000-520^{2} / 8=4200$;
$L_{y y}=\Sigma_{i} y_{i}{ }^{2}-\left(\Sigma_{i} y_{i}\right)^{2} / n=1217-97^{2} / 8=40.88$;
$L_{x y}=\Sigma_{i} x_{i} y_{i}-\left(\Sigma_{i} x_{i}\right)\left(\Sigma_{i} y_{i}\right) / n=5910-520(97) / 8=-395$.
(a) $r=\frac{L_{x y}}{\sqrt{L_{x x} L_{y y}}}=\frac{-395}{\sqrt{4200 \times 40.88}}=-0.953$.
(b) $b=\frac{L_{x y}}{L_{x x}}=\frac{-395}{4200}=-0.0940476$;
$a=\bar{y}-b \bar{x}=12.125-65 \times(-0.0940476)=18.261306$.
Thus the regression line is $\hat{y}=18.261306-0.0940476 x$.
(c) When $x=85$, the predicted breathing rate is $\hat{y}=18.261306-0.0940476 \times 85=$ 10.267 .
(d) Scatter plot shows that the points are negatively correlated:

(e) The plot shows that one of the positive residuals is unusually high.

10. (a) attach (cars)
(b) cor (speed, dist)
[1] 0.8068949
(c) $\operatorname{lm}($ dist \sim speed $)$

Call:
$\operatorname{lm}($ formula $=$ dist \sim speed $)$
Coefficients:
(Intercept) speed
$-17.5793 .932$
(d) dist $=-17.58+3.93 \times$ speed
9. $>\mathrm{x}=\mathrm{c}(30,40,50,60,70,80,90,100)$
$>y=c(16,14,13,13,11,12,9,9)$
$>\operatorname{cor}(\mathrm{x}, \mathrm{y})$
[1] -0.9533307
$>\operatorname{lm}\left(y^{\sim} \mathrm{x}\right)$
Call:
$\operatorname{lm}(f o r m u l a=y \sim x)$
Coefficients:
$\begin{array}{rr}\text { (Intercept) } & \text { x } \\ 18.23810 & -0.09405\end{array}$

```
> 18.23810-0.09405*85
```

[1] 10.24385
$>\operatorname{plot}(\mathrm{x}, \mathrm{y})$
> abline(lm(y~x)\$coeff)
$>\operatorname{plot}\left(x, \operatorname{lm}\left(y^{\sim} x\right) \$ r e s i d\right)$
> abline(h = 0)

Additional Problems for Week 12 - Solutions

1. From Chi-square table,
(a) $a=15.987$ (b) $a=24.996$
(c) $0.025<\operatorname{Prob}<0.05$;
(d) $0.05<$ Prob <0.1
2. (a) The χ^{2} GOF test is
(a) Hypothesis:
$H_{0}: p_{1}=0.25, p_{2}=0.25, p_{3}=0.25, p_{3}=0.25 \mathrm{vs}$ H_{1} : At least one equality does not hold.
(b) Test statistic: The expected frequencies are all:

$$
\begin{gathered}
198 \times 0.25=49.5 \\
\chi_{\mathrm{obs}}^{2}=\sum_{i=1}^{3} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{(61-49.5)^{2}}{49.5}+\frac{(55-49.5)^{2}}{49.5}+\frac{(41-49.5)^{2}}{49.5}+\frac{(41-49.5)^{2}}{49.5}=6.202
\end{gathered}
$$

(c) P -value: p -value $=P\left(\chi_{3}^{2}>6.202\right)>0.05(0.1022$ from $\mathrm{R} ; \mathrm{df}=4-1=3)$
(d) Conclusion: Since P-value >0.05, the data are consistent with H_{0}. The four colours are equally likely.

Check:

```
> chisq.test(c(61,55,41,41),p=c(1/4,1/4,1/4,1/4))
```

 Chi-squared test for given probabilities
 data: $c(61,55,41,41)$
X-squared $=6.202, \mathrm{df}=3, \mathrm{p}$-value $=0.1022$
(b) The χ^{2} GOF test is
(a) Hypothesis: $H_{0}: p_{1}=1 / 3, p_{2}=5 / 18, p_{3}=2 / 9, p_{3}=1 / 6 \mathrm{vs}$ H_{1} : At least one equality does not hold.
(b) Test statistic: The expected frequencies are all:

$$
\begin{aligned}
198 \times 1 / 3 & =66 ; 198 \times 5 / 18=55 ; 198 \times 2 / 9=44 ; 198 \times 1 / 6=33 \\
\chi_{\mathrm{obs}}^{2}=\sum_{i=1}^{3} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} & =\frac{(61-66)^{2}}{66}+\frac{(55-55)^{2}}{55}+\frac{(41-44)^{2}}{44}+\frac{(41-33)^{2}}{33}=2.5227
\end{aligned}
$$

(c) P -value: p -value $=P\left(\chi_{3}^{2}>2.5227\right)>0.05(0.4712$ from R ; $\mathrm{df}=4-1=3)$
(d) Conclusion: Since P-value >0.05, the data are consistent with H_{0}. The four colours are in the ratio 6:6:4:3.

Check:
> chisq.test $(\mathrm{c}(61,55,41,41), \mathrm{p}=\mathrm{c}(1 / 3,5 / 18,2 / 9,1 / 6))$

Chi-squared test for given probabilities
data: $c(61,55,41,41)$
X -squared $=2.5227, \mathrm{df}=3, \mathrm{p}$-value $=0.4712$
3. As above.
4. As above.
5. Q10.37, 10.38: The χ^{2} test for independence between "treatment" and "response" is
(a) Hypotheses:
$H_{0}: p_{i j}=p_{i} \times p_{j}$, i.e. "treatment" and "response" are independent.
H_{1} : Not all equalities hold, i.e. "treatment" and "response" are dependent.
(b) Test statistic: The calculation of the expected frequencies $E_{i j}$ and squared standardized residuals $d_{i j}^{2}$ under H_{0} are:

Treatment	+ Smear	-Smear + culture	-Smear -culture
Pen	$E_{11}=\frac{200 \times 65}{400}=32.5$	$E_{12}=\frac{200 \times 90}{400}=45$	$E_{13}=\frac{200 \times 245}{400}=122.5$
	$d_{11}^{2}=\frac{(40-32.5)^{2}}{32.5}=1.731$	$d_{12}^{2}=\frac{(30-45)^{2}}{45}=5.000$	$d_{13}^{2}=\frac{(130-122.5)^{2}}{122.5}=0.459$
Spect(low)	$E_{21}=\frac{100 \times 65}{400}=16.25$	$E_{22}=\frac{100 \times 90}{400}=16.25$	$E_{23}=\frac{100 \times 245}{400}=61.25$
	$d_{21}^{2}=\frac{(10-16.25)^{2}}{16.25}=2.404$	$d_{22}^{2}=\frac{(20-16.25)^{2}}{16.25}=0.278$	$d_{23}^{2}=\frac{(70-61.25)^{2}}{61.25}=1.250$
Spect(high)	$E_{21}=\frac{100 \times 65}{400}=16.25$	$E_{22}=\frac{100 \times 90}{400}=16.25$	$E_{23}=\frac{100 \times 245}{400}=61.25$
	$d_{21}^{2}=\frac{(15-16.25)^{2}}{16.25}=0.096$	$d_{22}^{2}=\frac{(40-16.25)^{2}}{16.25}=13.611$	$d_{23}^{2}=\frac{(45-61.25)^{2}}{61.25}=4.311$

$$
\chi_{\mathrm{obs}}^{2}=\sum_{i, j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=1.731+5.000+\ldots+4.311=29.14
$$

(c) P-value: $P\left(\chi_{4}^{2}>29.14\right)<0.05(0.0000$ from R ; $\mathrm{df}=(3-1)(3-1)=4)$
(d) Conclusion: Since P-value <0.05, there is strong evidence in the data against H_{0}. We conclude that "treatment" and "response" are dependent at $\alpha=0.05$.

Check:
$>y=c(40,10,15,30,20,40,130,70,45)$
> $\mathrm{n}=\mathrm{sum}(\mathrm{y})$
> n
[1] 400
> $\mathrm{c}=3$
$>\mathrm{r}=3$
> y.mat=matrix(y,r,c)
> y.mat
[,1] [,2] [,3]

$[1]$,	40	30	130
$[2]$,	10	20	70
$[3]$,	15	40	45

> chisq.test(y.mat)
data: y.mat
X-squared $=29.1401, \mathrm{df}=4, \mathrm{p}$-value $=7.322 \mathrm{e}-06$
6. Q11.1 $\Sigma_{i} x_{i}=12.6 ; \Sigma_{i} x_{i}{ }^{2}=32.02$;
$\Sigma_{i} y_{i}=18466 ; \Sigma_{i} y_{i}^{2}=41504606 ; \Sigma_{i} x_{i} y_{i}=27464.6$
$L_{x x}=\Sigma_{i} x_{i}{ }^{2}-\left(\Sigma_{i} x_{i}\right)^{2} / n=32.02-12.6^{2} / 9=14.38 ;$
$L_{y y}=\Sigma_{i} y_{i}^{2}-\left(\Sigma_{i} y_{i}\right)^{2} / n=41504606-18466^{2} / 9=3616477.556 ;$
$L_{x y}=\Sigma_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\Sigma_{i} y_{i}\right) / n=27464.6-12.6(18466) / 9=1612.2$.
$b=\frac{L_{x y}}{L_{x x}}=\frac{1612.2}{14.38}=112.114 ; \quad a=\bar{y}-b \bar{x}=1.4-112.114 \times 2051.778=1894.818$.
Thus the regression line is $\hat{y}=1894.818+112.114 x$.
Q11.3 $r=\frac{L_{x y}}{\sqrt{L_{x x} L_{y y}}}=\frac{1612.2}{\sqrt{14.38 \times 3616477.556}}=0.2235613$.
Hence $r^{2}=0.2235613^{2}=0.04997965$. This r^{2} is very small and so the regression model provides poor fit.

