1. Ans: (b) since r is negative and close to -1 .
2. Ans: (d) $r^{2}=(-0.7761)^{2}=0.60238=60.238 \%$.
3. (a) $r^{2}=(-0.953)^{2}=0.908209=90.1 \%$. Hence the regression line of Y on X can explain 90.1% of the variation in Y.
(b) When $x_{1}=30, \hat{y}_{1}=a+b x_{1}=18.23810-0.0940476 \times 30=15.41667$ and hence $r_{1}=y_{1}-\hat{y}_{1}=16-15.41667=0.583328$.

When $x_{2}=40, \hat{y}_{2}=a+b x_{2}=18.23810-0.0940476 \times 40=14.47620$ and hence $r_{2}=y_{2}-\hat{y}_{2}=14-14.47620=-0.476196$.
(c) The t-test for the significance of the regression model is:

1. Hypotheses: $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
2. Test statistic: $t_{\mathrm{obs}}=\frac{b}{s / \sqrt{L_{x x}}}=\frac{-0.0940476}{0.788585 / \sqrt{4200}}=-7.72901$ where

$$
s^{2}=\frac{L_{y y}-b L_{x y}}{n-2}=\frac{40.88-(-0.0940476)(-395)}{8-2}=0.788585^{2}
$$

3. P-value: $2 P\left(t_{6}<-7.72901\right)<0.002(\mathrm{df}=8-2)$
4. Conclusion: Since P-value <0.05, there is strong evidence in the data against H_{0}. The regression model is significant.
(d) For an increase of 1 gm of dose, the breathing rate is decreased by 0.094 in breath per min.
5. Ans: (e) Note that $\bar{X}_{1}-\bar{X}_{2} \sim N\left(\mu_{1}-\mu_{2}, \sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right)$ under the assumption of equality of variance. When σ^{2} is unknown, it is estimated by $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$. Hence the mean estimate of $\bar{X}_{1}-\bar{X}_{2}$ is

$$
\bar{x}_{1}-\bar{x}_{2}=10-12=-2
$$

and the SE estimate is

$$
s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=4.0139 \times \sqrt{\frac{1}{9}+\frac{1}{11}}=1.8041
$$

where $s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{8\left(5^{2}\right)+10\left(3^{2}\right)}{8+10}}=4.0139$.
5. Ans: (b) We have $n=200$ and $p=0.6$ (one sample of binary data). Since n is large, the sample proportion $\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$, i.e. $N\left(0.6, \frac{0.6(1-0.6)}{200}\right)$ by CLT.
$P(\hat{p}>0.58)=P\left(Z>\frac{0.58-0.6}{\sqrt{0.6 \times 0.4 / 200}}\right)=P(Z>-0.58)=P(Z<0.58)=0.7190$
6. Ans: (e) $Z_{\text {obs }}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p}))\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{0.76-0.68}{\sqrt{0.72(1-0.72)\left(\frac{1}{100}+\frac{1}{100}\right)}}=1.2599$ where the pooled proportion is $\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}=\frac{76+68}{100+100}=0.72$.
7. Given $X_{1}, X_{2}, \ldots, X_{9} \sim N\left(5,3^{2}\right), \sum_{i=1}^{9} X_{i} \sim N\left(9(5), 9\left(3^{2}\right)\right)$, i.e. $N\left(45,9^{2}\right)$ (Read P. 23 of the lecture note on Week 6). Hence

$$
P\left(\sum_{i=1}^{9} X_{i}>54\right)=P\left(Z>\frac{54-45}{9}\right)=P(Z>1)=1-0.8413=0.1587
$$

8. We have $n=10, \bar{x}=36$ and $s=0.034$. The 80% CI for the population mean μ in Celsius is

$$
\bar{x} \mp t_{10-1,0.1} \frac{s}{\sqrt{n}}=36 \mp 1.383 \frac{0.034}{\sqrt{10}}=(35.98513,36.01487)
$$

Since $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ in Celsius and $F=\frac{9}{5} C+32$, the sample mean in Fahrenheit

$$
\bar{Y}=\frac{9}{5} \bar{X}+32 \sim N\left(\frac{9}{5} \mu+32, \frac{\left(\frac{9}{5}\right)^{2} \sigma^{2}}{n}\right) .
$$

Based on the sample mean of $\bar{x}=36$ in Celsius, the sample mean \bar{y} in Fahrenheit is

$$
\bar{y}=\frac{9}{5} \bar{x}+32=\frac{9}{5} 36+32=96.8
$$

and hence the 80% CI for the population mean μ in Fahrenheit is

$$
\bar{y} \mp t_{10-1,0.1} \frac{\frac{9}{5} s}{\sqrt{n}}=96.8 \mp 1.383 \frac{\frac{9}{5} 0.034}{\sqrt{10}}=(96.77323,96.82677)
$$

Solutions to Additional Problems and Revision for Week 13

1. (i) The correct median is $\frac{X_{(20)}+X_{(21)}}{2}$ where $X_{(k)}$ denotes the k-th ordered observation in ascending order. However the leaves are not ordered. 64 and 69 are not the $20^{\text {th }}$ and $21^{s t}$ ordered observations.
(ii) The correct median is $\frac{X_{(20)}+X_{(21)}}{2}=\frac{67+69}{2}=68$.

To draw boxplot, we also need
$\operatorname{Min}=24.0$;
$Q_{1}=\frac{X_{(10)}+X_{(11)}}{2}=\frac{50+53}{2}=51.5$;
$Q_{2}=68 ;$
$Q_{3}=\frac{X_{(30)}+X_{(31)}}{2}=\frac{79+80}{2}=79.5 ;$
$\operatorname{Max}=95.0$.
$\mathrm{IQR}=Q_{3}-Q_{1}=79.5-51.5=28$.
To check if there are outliers, we calculate
$\mathrm{LT}=Q_{1}-1.5 \times I Q R=51.5-1.5(28)=9.5$ and
$\mathrm{UT}=Q_{3}+1.5 \times I Q R=79.5+1.5(28)=121.5$.
Since all observations lie within (LT,UT), there is no outlier.
The boxplot is

The distribution is slightly left skewed.
(iii) $7 / 40$ or 17.5%.
2. The expected frequencies are

Observed frequencies, O_{i}	38	43	10	5	96
(a) Expected frequencies, E_{i}	$96\left(\frac{1}{4}\right)=24.0$	$96\left(\frac{1}{4}\right)=24.0$	$96\left(\frac{1}{4}\right)=24.0$	$96\left(\frac{1}{4}\right)=24.0$	96
(b) Expected frequencies, E_{i}	$96\left(\frac{4}{10}\right)=38.4$	$96\left(\frac{4}{10}\right)=38.4$	$96\left(\frac{1}{10}\right)=9.6$	$96\left(\frac{1}{10}\right)=9.6$	96

(a) 1. The hypotheses are $H_{0}: p_{1}=p_{2}=p_{3}=p_{4}=\frac{1}{4}$ vs H_{1} : not all equalities hold.
2. The goodness of fit statistic is

$$
\chi_{\mathrm{obs}}^{2}=\sum_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{14^{2}}{24}+\frac{19^{2}}{24}+\frac{14^{2}}{24}+\frac{19^{2}}{24}=46.42
$$

3. P -value $=P\left(\chi_{3}^{2} \geq 46.42\right)<0.01$
4. Conclusion: We have very strong evidence against H_{0}.
(b) 1. The hypotheses are $H_{0}: p_{1}=p_{2}=\frac{4}{10} ; p_{3}=p_{4}=\frac{1}{10}$ vs H_{1} : not all equalities hold.
5. The goodness of fit statistic is

$$
\chi_{\text {obs }}^{2}=\sum_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{0.4^{2}}{38.4}+\frac{4.6^{2}}{38.4}+\frac{0.4^{2}}{9.6}+\frac{4.6^{2}}{9.6}=2.78
$$

3. P -value $=P\left(\chi_{3}^{2} \geq 2.78\right)>0.10$
4. Conclusion: The data are consistent with H_{0}.
5. (i) P (pass or better) $=0.85$ and therefore, P (not qualify for a grade) $=0.15$

Hence the required probability $=2 \times 0.15 \times 0.06=0.0180$.
(ii) Each trial has a probability of success $p=0.6$ and there are n (fixed) number of independent trials. Thus, $X \sim B(n, 0.60)$.
(a) Since $X \sim B(10,0.60), P(X \leq 6)=0.6177$ from the binomial table.

Hence $P(X \geq 7)=1-0.6177=0.3823$.
(b) Since $X \sim B(25,0.60), P(X=12)=\binom{25}{12}(0.60)^{12}\left(0.40^{13}=0.0760\right.$.
(iii) $P(X>63.5)=P\left(Z>\frac{63.5-48}{6}\right)=P(Z>2.58)=0.0049$.

Let p be the true proportion of students live in apartments.
The hypotheses are $H_{0}: p=0.25$ vs $H_{1}: p>0.25$
Let X be the number of students live in apartments in a sample of 192. Under H_{0},

$$
\hat{p}=\frac{X}{n} \sim N\left(p, \frac{p(1-p)}{n}\right) \quad \text { or } \quad Z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1) .
$$

Since $\hat{p}=\frac{64}{192}=\frac{1}{3}$, the test statistic is $z_{\text {obs }}=\frac{1 / 3-1 / 4}{\sqrt{\frac{0.25(0.75)}{192}}}=2.67$.
The P -value $=P(Z \geq 2.67)=0.0038$
This probability is too small. Therefore we have very strong evidence against H_{0}.
4. $L_{x x}=\sum_{i} x_{i}^{2}-\frac{\left(\sum_{i} x_{i}\right)^{2}}{n}=24625-\frac{475^{2}}{10}=2062.5$
$L_{y y}=\sum_{i} y_{i}^{2}-\frac{\left(\sum_{i} y_{i}\right)^{2}}{n}=9547.56-\frac{307.6^{2}}{10}=85.784$ and
$L_{x y}=\sum_{i} x_{i} y_{i}-\frac{\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n}=14234.5-\frac{475(307.6)}{10}=-376.5$
(a) $r^{2}=\frac{L_{x y}^{2}}{L_{x x} L_{y y}}=\frac{(-376.5)^{2}}{(2062.5)(85.784)}=0.801$

Since r is negative and r^{2} is large, there is a strong negative linear relationship between x and y variables.
(b) $b=\frac{L_{x y}}{L_{x x}}=\frac{-376.5}{2062.5}=-0.183$ and $a=30.76-(-0.183 \times 47.5)=39.431$.

Therefore, $y=39.431-0.183 x$.
(c) $x=125$ is very far away from the given range (25-70) for x. Thus it is not reasonable to use this model to estimate the value of y when $x=125$.
5. Q11.21-Q11.23 (P.227)

$$
\begin{aligned}
& L_{x x}=\sum_{i} x_{i}^{2}-\frac{\left(\sum_{i} x_{i}\right)^{2}}{n}=46689410-\frac{23670^{2}}{12}=335 \\
& L_{y y}=\sum_{i} y_{i}^{2}-\frac{\left(\sum_{i} y_{i}\right)^{2}}{n}=4033.83-\frac{214.9^{2}}{12}=185.3292 \text { and } \\
& L_{x y}=\sum_{i} x_{i} y_{i}-\frac{\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n}=423643.3-\frac{23670(214.9)}{12}=-246.95
\end{aligned}
$$

(a) $b=\frac{L_{x y}}{L_{x x}}=\frac{-246.95}{335}=-0.7371642$ and
$a=\bar{y}-b \bar{x}=\frac{214.9}{12}-(-0.7371642) \frac{23670}{12}=1471.9646766$.
Therefore, Infant-mortality rate $=1471.9646766-0.7371642 \times$ Chronological year.
(b) The t-test for the significance of the regression model is:

1. Hypotheses: $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
2. Test statistic: $t_{\mathrm{obs}}=\frac{b}{s / \sqrt{L_{x x}}}=\frac{-0.7371642}{0.5465988 / \sqrt{335}}=-24.6841376$ where

$$
s^{2}=\frac{L_{y y}-b L_{x y}}{n-2}=\frac{185.3292-(-0.7371642)(-246.95)}{12-2}=0.5465988^{2}
$$

3. P-value: $2 P\left(t_{10}<-24.6841376\right)<0.000(\mathrm{df}=8-2)$
4. Conclusion: Since P-value <0.05, there is strong evidence in the data against H_{0}. The regression model is significant.
(c) When the year is $x=1989$, the infant-mortality rate is $\hat{y}=1471.9646766-$ $0.7371642 \times 1989=5.750$.
5. Q11.36 (P.228) and Q11.38 to Q11.41 (P.229)
$L_{x x}=\sum_{i} x_{i}^{2}-\frac{\left(\sum_{i} x_{i}\right)^{2}}{n}=1.31-\frac{2.38^{2}}{8}=0.60195$
$L_{y y}=\sum_{i} y_{i}^{2}-\frac{\left(\sum_{i} y_{i}\right)^{2}}{n}=30.708-\frac{(-15.55)^{2}}{8}=0.4826875$ and
$L_{x y}=\sum_{i} x_{i} y_{i}-\frac{\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n}=-4.125-\frac{2.38(-15.55)}{8}=0.501125$.
(a) $r^{2}=\frac{L_{x y}}{\sqrt{L_{x x} L_{y y}}}=\frac{0.501125}{\sqrt{(0.60195)(0.4826875)}}=0.9296786$
(b) $b=\frac{L_{x y}}{L_{x x}}=\frac{0.501125}{0.60195}=0.8325027$ and
$a=\bar{y}-b \bar{x}=\frac{-15.55}{8}-(0.8325027) \frac{2.38}{8}=-2.1914196$.
Therefore, Log mortality $=-2.1914196+0.8325027 \times$ Log annual cigarette consumption.
(c) The t-test for the significance of the regression model is:
6. Hypotheses: $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
7. Test statistic: $t_{\mathrm{obs}}=\frac{b}{s / \sqrt{L_{x x}}}=\frac{0.8325027}{0.0967320191 / \sqrt{0.60195}}=6.6772187887$ where

$$
s^{2}=\frac{L_{y y}-b L_{x y}}{n-2}=\frac{0.4826875-(0.8325027)(0.501125)}{8-2}=0.0967320191^{2}
$$

3. P-value: $2 P\left(t_{10}>6.6772187887\right)<0.000(\mathrm{df}=8-2 ; 0.0005464681$ from R)
4. Conclusion: Since P-value <0.05, there is strong evidence in the data against H_{0}. The regression model is significant.
(d) When the \log annual cigarette consumption is $x=\log (1)=0$, the \log mortality rate is $\hat{y}=-2.1914196+0.8325027 \times 0=-2.1914196$. Hence the mortality rate $10^{-2.1914196}=0.006435472$.
(e) The linear relationship only exists on \log scale.
